Martin H. Müser,
Response to “A Comment on Meeting the Contact‑(Mechanics) Challenge”
Tribol. Lett. 65, 103 (2017).
(accepted version)
DOI: 10.1007/s11249-018-0986-1.
Category: Publications
The height-difference ACF
Anle Wang and Martin H. Müser,
On the usefulness of the height-difference-autocorrelation function
for contact mechanics
Tribol. Int. 123, 224-233 (2018).
Free download (until May 12, 2018)
DOI: 10.1016/j.triboint.2018.02.002
submitted version
On the linearity of contact area and reduced pressure
Martin H. Müser,
On the linearity of contact area and reduced pressure
Tribol. Lett. 65, 129 (2017).
DOI: 10.1007/s11249-017-0912-y. (view only)
(accepted version).
Gauging Persson theory on adhesion
Anle Wang and Martin H. Müser,
Gauging Persson theory on adhesion
Tribol. Lett. 65, 103 (2017).
(accepted version)
DOI: 10.3390/10.1007/s11249-017-0886-9.
Contact-mechanics-modeling challenge
Martin H. Müser, Wolf B. Dapp, Romain Bugnicourt et al,
Meeting the contact-mechanics challenge
Tribol. Lett. 65, 188 (2017).
DOI: 10.1007/s11249-017-0900-2.
(submitted version)
Selected as one of 250 articles by Springer-Nature as a potential change-the-world article.
See also: Robert W. Carpick’s Perspective in
DOI: Science 359, 38 (2017) .
GFDD
Syam P. Venugopalan, Martin H. Müser and Lucia Nicola
Green’s function molecular dynamics meets discrete dislocation plasticity
Model. Simul. Mater. Sc. Eng. 25, 065018 (2017). (submitted version)
DOI: 10.1088/1361-651X/aa7e0e
GFMD – finite height and shear
S. P. Venugopalan, Martin H. Müser and Lucia Nicola
Green’s function molecular dynamics: Including finite heights, shear, and body fields
Model. Simul. Mater. Sc. Eng. 25, 034001 (2017)
DOI: 10.1088/1361-651X/aa606b
(accepted version)
Determination of bond lengths
S. V. Sukhomlinov and M. H. Müser,
Determination of accurate, mean bond lengths from radial distribution functions
J. Chem. Phys. 146, 024506 (2017).
Contact mechanics of thin, elastic sheets
Carmine Putignano, Wolf B. Dapp and Martin H. Müser,
A Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces
Biomimetics 1, 7 (2016)
DOI: 10.3390/biomimetics1010007.
Nominally flat Hertzian contacts
Martin H. Müser,
On the contact area of nominally flat Hertzian contacts,
Tribol. Lett. 64, 14 (2016). (submitted version)
DOI: 10.1007/s11249-016-0750-3
Constraints of EAM-type potentials
S. V. Sukhomlinov and M. H. Müser,
Constraints on phase stability, defect energies, and elastic constants of metals described by EAM-type potentials
J. Phys.: Condens Matt 28, 395701 (2016).
DOI: 10.1088/0953-8984/28/39/395701.
accepted version
See also the summarizing labtop article http://journals.iop.org/cws/article/jpcm/65856.
Link might be broken: promotion.pdf
Leakage near percolation
Wolf B. Dapp and Martin H. Müser,
Fluid leakage near the percolation threshold,
Sci. Rep. 6, 19513 (2016).
DOI: 110.1038/srep19513.
http://arxiv.org/abs/1512.00186 (submitted version).
Dimensionless measure for adhesion
Martin H. Müser,
A dimensionless measure for adhesion and effects of the range of adhesion
in contacts of nominally flat surfaces,
Tribol. Int. 100, 41–47 (2016)
DOI: 10.1016/j.triboint.2015.11.010.
Dynamic shear force microscopy
M.-D. Krass, N. N. Gosvami, R. W. Carpick, M. H. Müser, and R. Bennewitz,
Dynamic shear force microscopy of nanometer-confined hexadexane layers ,
J. Phys.: Condens. Matt. 28, 13004 (2016).
DOI: 10.1088/0953-8984/28/13/134004.
Cauchy violation and charge-transfer potentials
S. V. Sukhomlinov and M. H. Müser,
Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state,
J. Chem. Phys. 143, 224101 (2015).
DOI: 10.1063/1.4936575
accepted version
High-order Gaussian chain simulations
Martin H. Müser and Marcus Müller,
High-order sampling schemes for path integrals and Gaussian chain simulations of polymers,
J. Chem. Phys. 142, 174105 (2015)
DOI: 10.1063/1.4919311
(submitted version).
Friction and adhesion hysteresis of polymer brushes
Sissi de Beer, G. Djuijé Kenmoé and Martin H. Müser,
On the friction and adhesion hysteresis between polymer
brushes attached to curved surfaces,
Friction 3, 148-160 (2015). (accepted version)
DOI: 10.1007/s40544-015-0078-2
Critical constrictions
Wolf B. Dapp and Martin H. Müser,
Contact mechanics of and Reynolds flow through saddle points,
EPL 109, 44001 (2015).
DOI: 10.1209/0295-5075/109/44001
Systematically modified embedded-atom potentials
Jari Jalkanen and Martin H. Müser,
Systematic analysis and modification of embedded-atom potentials: Case study of copper,
Model. Simul. Mater. Sc. Eng. 23, 074001 (2015).
DOI: 10.1088/0965-0393/23/7/074001
(accepted version).
Polymer-brush preparation
de Beer, S., Kutnyanszky, E., Müser, M. H., Vancso, G. J. ,
Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes,
J. Vis. Exp. (94), e52285 (2014)
http://www.jove.com/video/52285.
doi:10.3791/52285
Polymer-brush tilting in frictional contacts
Sissi de Beer and Martin H. Müser,
Friction in (im-)miscible polymer brush systems and the role of transverse polymer-tilting,
Macromolecules 47, 7666-7673 (2014). (accepted preprint)
DOI information: http://pubs.acs.org/doi/abs/10.1021/ma501718b
Atomic structure in interfaces of bulk metallic glasses with crystals
X. Z. Gao, Martin H. Müser, L. T. Kong, and J. F. Li,
Atomic structure and energetics of amorphous-crystalline CuZr interfaces: A molecular
dynamics study,
Model. Simul. Mater. Sc. Eng. 22, 065007 (2014); (accepted version).
Doi: 10.1088/0965-0393/22/6/065007
Reducing friction
Sissi de Beer, Edit Kutnyanszky, Peter M. Schön, G. Julius Vansco, and Martin H. Müser,
Solvent induced immiscibility of polymer brushes eliminates dissipation channels,
Nat. Commun. 5, 3781 (2014),
DOI: doi:10.1038/ncomms4781
(accepted version and supplementary material).
Test of Persson Theory
Wolf B. Dapp, Nikolay Prodanov, and Martin H. Müser,
Systematic analysis of Persson’s contact mechanics theory of randomly rough elastic surfaces,
J. Phys. Condens Matt. 26, 355002 (2014).
DOI: 10.1088/0953-8984/26/35/355002
(accepted version).
Single-asperity contact mechanics
Martin H. Müser,
Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids,
Beilstein J. Nanotech. 5, 419-437 (2014).
(accepted version)
Open access: http://www.beilstein-journals.org/bjnano/content/5/1/50
Layering of ionic liquids
Judith Hoth, Florian Hausen, Martin H. Müser, and Roland Bennewitz,
Force microscopy of layering and friction in an ionic liquid ,
J. Phys.: Condens. Matt. 26, 284110 (2014).
(accepted version)
DOI: 10.1088/0953-8984/26/28/284110
Landau Theory for PCMs
Matthias Thielen, Razvan A. Nistor, Guillermo Beltramo, Margret Giesen, and Martin H. Müser,
Landau theory for stress-induced, order-disorder transitions in phase change materials ,
Phys. Rev. B 89, 054101 (2014). (accepted version)
DOI: 10.1103/PhysRevB.89.054101
Contact area and mean gap
Nikolay Prodanov, Wolf. B. Dapp, and Martin H. Müser,
On the contact area and mean gap of rough, elastic contacts:
Dimensional analysis, numerical corrections and reference data,
Tribol. Lett. 53, 433–448 (2014).
DOI: 10.1007/s11249-013-0282-z,
arxiv: http://arxiv.org/abs/1311.7547.
Dielectric response functions
Martin H. Müser
Modeling the dielectric response of atomistic and continuous media with the split-charge method,
in Multiscale Modelling Methods for Applications in Materials Science,
IAS Series 19, 115–134 (2013), I. Kondov and G. Sutman (Eds.).
(submitted version)
Dissipation mechanisms for polymer brushes
Sissi de Beer and Martin H. Müser,
Alternative dissipation mechanisms and the effect of the solvent in friction
between polymer brushes on rough surfaces,
Soft Matter 9, 7234 – 7241 (2013); (accepted version) and (supplementary material).
DOI: C3SM50491C, elected to be a hot paper of July 2013 by RSC
Atomistic battery discharge simulations
W. B. Dapp and M. H. Müser,
Redox reactions with empirical potentials: Atomistic battery discharge simulations,
J. Chem. Phys. 139, 064106 (2013); (accepted version).
DOI: 10.1063/1.4817772, arXiv: http://arxiv.org/abs/1308.3424
Simulating contact electrification
W. Dapp and M. H. Müser,
Towards time-dependent, non-equilibrium charge-transfer force fields,
Eur. Phys. J. B 86, 337 (2013); (accepted version).
DOI: 10.1140/epjb/e2013-40047-x
Finite-size effects in contacts between self-affine surfaces
L. Pastewka, N. Prodanov, B. Lorenz, M. H. Müser, M. O. Robbins, and B. N. J. Persson,
Finite-size effect in the interfacial stiffness of rough elastic contacts,
Phys. Rev. E 87, 062809 (2013); (accepted version).
DOI: 10.1103/PhysRevE.87.062809
Contact mechanics of LST surfaces
N. Prodanov, C. Gachot, A. Rosenkranz, F. Mücklich, and M. H. Müser,
Contact mechanics of laser-textured surfaces,
Tribol. Lett. 50, 41-48 (2013); (accepted version).
DOI: 10.1007/s11249-012-0064-z
Friction between laser-patterned surfaces
C. Gachot, A. Rosenkranz, L. Reinert, E. Ramos-Moore, N. Souza, M. H. Müser and F. Mücklich,
Dry friction between laser-patterned surfaces: Role of alignment, structural wavelength and surface chemistry,
Tribol. Lett. 49, 193-202 (2013); (accepted version).
DOI: 10.1007/s11249-012-0057-y
New wear mechanism due to surface instabilities
Sissi de Beer and Martin H. Müser,
Viewpoint: Surface folds make tears and chips,
Physics 5, 100 (2012).
DOI: 10.1103/Physics.5.100.
Contact percolation and leakage
W. B. Dapp, A. Lücke, B. N. J. Persson, and M. H. Müser,
Self-affine elastic contacts: percolation and leakage
Phys. Rev. Lett. 108, 244301 (2012); (accepted version).
DOI: 10.1103/PhysRevLett.108.244301
Velocity dependence of friction
M. H. Müser,
The velocity dependence of kinetic friction in the Prandtl-Tomlinson model,
Phys. Rev. B 84, 125419 (2011); (accepted version), DOI: 10.1103/PhysRevB.84.125419
Cuts through self-affine surfaces
S. B. Ramisetti, C. Campana, G. Anciaux, J.-F. Molinari, M. H. Müser, and M. O. Robbins,
Autocorrelation functions for contour cuts through self-affine surfaces,
J. Phys.: Condens. Matt. 23 215004 (2011); (submitted version). DOI: http://dx.doi.org/10.1088/0953-8984/23/21/215004
Chemical hardness within charge equilibration
The chemical hardness of molecules and the band gap of solids within charge equilibration formalisms,
Eur. Phys. J. B 85, 135 (2012) (accepted version),
DOI: 10.1140/epjb/e2012-21081-8.