Jan Grießer, Lucas Frérot, Jonas A. Oldenstaedt, Martin H. Müser, Lars Pastewka
Analytic elastic constants in molecular calculations: Finite strain, non-affine displacements, and many-body interatomic potentials
Phys. Rev. Mater.
https://arxiv.org/abs/2302.08754
Tag: Force Field Development
Cutting off potentials
Martin H. Müser
Improved cutoff functions for short-range potentials and the Wolf summation
Mol. Phys. 48, 1393-1401 (2022)
DOI: 10.1080/08927022.2022.2094430
Preprint: arxiv.org/abs/2204.13639
Interatomic potentials
Martin H. Müser, Sergey V. Sukhomlinov, and Lars Pastewka
Interatomic potentials: Achievements and challenges
Adv. Phys. X 8, 1 (2023)
DOI: 10.1080/23746149.2022.2093129 (open access)
Preprint: arxiv.org/abs/2204.09563
Constraints of EAM-type potentials
S. V. Sukhomlinov and M. H. Müser,
Constraints on phase stability, defect energies, and elastic constants of metals described by EAM-type potentials
J. Phys.: Condens Matt 28, 395701 (2016).
DOI: 10.1088/0953-8984/28/39/395701.
accepted version
See also the summarizing labtop article http://journals.iop.org/cws/article/jpcm/65856.
Link might be broken: promotion.pdf
Cauchy violation and charge-transfer potentials
S. V. Sukhomlinov and M. H. Müser,
Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state,
J. Chem. Phys. 143, 224101 (2015).
DOI: 10.1063/1.4936575
accepted version
Systematically modified embedded-atom potentials
Jari Jalkanen and Martin H. Müser,
Systematic analysis and modification of embedded-atom potentials: Case study of copper,
Model. Simul. Mater. Sc. Eng. 23, 074001 (2015).
DOI: 10.1088/0965-0393/23/7/074001
(accepted version).
Dielectric response functions
Martin H. Müser
Modeling the dielectric response of atomistic and continuous media with the split-charge method,
in Multiscale Modelling Methods for Applications in Materials Science,
IAS Series 19, 115–134 (2013), I. Kondov and G. Sutman (Eds.).
(submitted version)
Atomistic battery discharge simulations
W. B. Dapp and M. H. Müser,
Redox reactions with empirical potentials: Atomistic battery discharge simulations,
J. Chem. Phys. 139, 064106 (2013); (accepted version).
DOI: 10.1063/1.4817772, arXiv: http://arxiv.org/abs/1308.3424
Simulating contact electrification
W. Dapp and M. H. Müser,
Towards time-dependent, non-equilibrium charge-transfer force fields,
Eur. Phys. J. B 86, 337 (2013); (accepted version).
DOI: 10.1140/epjb/e2013-40047-x
Chemical hardness within charge equilibration
The chemical hardness of molecules and the band gap of solids within charge equilibration formalisms,
Eur. Phys. J. B 85, 135 (2012) (accepted version),
DOI: 10.1140/epjb/e2012-21081-8.
Non-bonded force field for the interaction between metals and organic molecules
L. T. Kong, C. Denniston, M. H. Müser, and Y. Qi,
Non-bonded force field for the interaction between metals and organic molecules: A case study of olefins on aluminum,
Phys. Chem. Chem. Phys. 11, 10195-10203 (2009), accepted version.
DOI information: 10.1039/B906874K.
Dielectric properties of solids in the regular and split-charge equilibration formalisms
R. A. Nistor and M. H. Müser,
Dielectric properties of solids in the regular and split-charge equilibration formalisms,
Phys. Rev. B 79 104303 (2009); submitted version.
DOI information: 10.1103/PhysRevB.79.104303.
A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators
A. Jones, A. Thomas, J. Crain, M. H. Müser, and G. J. Martyna,
A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators: Application to solid xenon,
Phys. Rev. B 79, 144119 (2009); submitted version.
DOI information: 10.1103/PhysRevB.79.144119.
A generalization of the charge equilibration method for non-metallic materials
R. A. Nistor, J. G. Polihronov, M. H. Müser, and N. J. Mosey,
A generalization of the charge equilibration method for non-metallic materials,
J. Chem. Phys. 125, 094108 (2006). (accepted version); (auxiliary electronic material).
Comparison of model potentials for molecular dynamics simulations of silica
D. Herzbach, K. Binder, and M. H. Müser,
Comparison of model potentials for molecular dynamics simulations of silica,
J. Chem. Phys. 123, 124711 (2005). (preprint).