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Abstract. This work finds that different charge equilibration methods lead to qualitatively different re-

sponses of molecules and solids to an excess charge. The investigated approaches are the regular charge equi-

libration (QE), the atom-atom-charge transfer (AACT), and the split-charge equilibration (SQE) method.

In QE, the hardness of molecules and the band gap of solids approaches zero at large particle numbers,

affirming the claim that QE induces metallic behavior. AACT suffers from producing negative values of

the hardness; moreover valence and conduction bands of solids cross. In contrast to these methods, SQE

can reproduce the generic behavior of dielectric molecules or solids. Moreover, first quantitative results for

the NaCl molecule are promising. The results derived in this work may have beneficial implications for

the modeling of redox reactions. They reveal that by introducing formal oxidation states into force field-

based simulations it will become possible to simulate redox reactions including non-equilibrium contact

electrification, voltage-driven charging of galvanic cells, and the formation of zwitterionic molecules.

PACS. 34.70.+e Charge transfer – 77.22.-d Dielectric properties of solids and liquids – 34.20.Cf Inter-

atomic potentials and forces
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1 Introduction

In the quest for transferable force fields, it is necessary

to construct models allowing one to predict meaningful

partial charges of atoms and molecules so that long-range
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electrostatic interactions can be computed accurately [1,

2]. The general strategy to capture the electrostatics of

molecules, clusters, and solids is to minimize an expres-

sion for the energy V ({Q}) with respect to the set of

atomic charges {Q} [3], and potentially also with respect

to dipoles or higher-order multipoles [4]. Important terms

in these approaches are related to the electronic chemical

potential [5,6] and the chemical hardness [5,7] of atoms

as well as the Coulomb interaction between the atoms [3].

Those terms can be motivated from the density functional

theory (DFT) formulation of quantum mechanics [3,7,8],

which is based on minimizing an energy functional that

depends on continuous (charge) densities rather than an

energy function of discrete charges and multipoles.

Many different approaches have been pursued to con-

struct V ({Q}), the most prominent being the chemical

potential equalization method [3], which is also known as

charge equilibration (QE) approach [9]. Here, the relevant

degrees of freedom are solely atomic charges. More re-

cent approaches, such as the atom-atom charge transfer

(AACT) model [10], are based on the idea that charges

must be donated across a chemical bond. In the origi-

nal AACT formulation, hardness was only associated with

charge transfer through a chemical bond but not with the

atomic charges themselves. The split-charge equilibration

(SQE) method [11] overcame this limitation by combin-

ing the terms contained in AACT and QE. Although both

QE and AACT formally arise as opposite limiting cases

of SQE, realistic parameterizations [11,12] always found

finite but relatively small bond hardnesses so that AACT

should not arise as a limiting case of SQE in practice.

The quality of a charge equilibration formalism is usu-

ally evaluated by assessing to what extent the energy func-

tion can be motivated from first principles [13,14] or how

well it can reproduce electrostatic potential surfaces, par-

tial charges, or polarizabilities as computed in quantum

chemical or DFT calculations [13,12]. Limited attention

has been paid to the question of what collective properties

the various schemes produce generically when applied to a

large number of atoms. Establishing relationships between

collective response functions and the coefficients used in a

charge equilibration model can then aid in the validation

or falsification of the analyzed model, or guide its further

refinement. Moreover, parameter calibration, which some-

times turns out ill-defined when fitting to partial charges

alone [15], can be facilitated by the knowledge of how re-

sponse functions constrain the choice for the microscopic

interaction parameters.

Regular, purely atom-based QEmodels have been shown

to suffer from the following generic problems, which do

not depend on the details of the parameter calibration:

(i) They produce partial charges when molecular bonds

are broken and the fragments are moved to large dis-

tances, even if the proper response would be neutral frag-

ments [16,17]. (ii) QE equalizes electronegativity, while in

exact DFT treatments of stretched bonds, electronegativ-

ity is not equalized [18]. (iii) The polarizability of poly-

mers (e.g., simple alkanes) growths superlinearly rather

than linearly with the degree of polymerization N in the
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limit of large N [19,12]. (iv) The dielectric permittivity of

solids is automatically infinitely large [20]. (v) The only

QE-related parameter affecting the skin depth of electro-

static fields is the atomic hardness [20]. (vi) The dipole

moment of alcohols growths linearly with the length of

the alcohol rather than to level off at constant values when

more CH2 groups are inserted into the tail [21].

Bond-based approaches remedy all these problems when

properly parameterized, for example, the correct dissocia-

tion limit can be achieved by introducing an appropriate

distance dependence of the bond polarizability [17], the

dielectric permittivity χ = ǫr − 1 is now finite, (i.e., χ is

inversely proportional to the bond hardness [20]), and the

dipole of alcohols no longer grows with alcohol length [21].

Yet, new artifacts arise in exclusively bond-based mod-

els: (vii) The polarizability per monomer for short chain

molecules shows no size dependence, while the correct be-

havior is an increase of the polarizability with N at small

values of N [19]. (viii) The skin depth is zero, i.e., the elec-

trostatic field drops from the value outside a solid to the

bulk value within the first surface layer [20]. (ix) It ignores

the concept of atomic hardness, which is well motivated

from DFT [20]. (x) The values for the bond hardnesses

have to be chosen sufficiently large to ensure positive defi-

nite Hessians in the charge variables, because atomic hard-

nesses are neglected. As a consequence, the high-frequency

dielectric constant is limited to values only slightly larger

than one [20].

SQE does not appear to suffer from any of these issues,

because (unlike QE) it can suppress polarizability over

long distances through the bond hardness. Unlike AACT,

SQE does not require bond hardnesses to be large (or the

high-frequency dielectric constants to be small) in order

to ensure a positive definite Hessian, because SQE already

contains finite atomic hardnesses.

Despite the advantageous features of SQE, it is not

clear yet how to treat true ions within SQE (or AACT);

any partial atomic charge arises as a sum over split charges

that have been locally transferred between two bonded,

originally neutral atoms. Thus, so far, any SQE (or AACT)

treatment could have only dealt with systems that are lo-

cally neutral, and processes as they occur in batteries or

in friction-induced contact electrification could not have

been described.

To overcome those limitations, it will be necessary to

allow the transfer of integer charges that are no polar-

ization charges living in a bond. In a closed system, this

transfer – or redox reaction – happens between two nearby

atoms, in a way such that one atom increases its oxidation

state and that of another, nearby atom gets reduced. In a

charge equilibration scheme, all dynamic charges or split

charges have to re-adjust themselves. This process, which

we call backflow, affects the energy balance during the re-

dox reaction. In accordance with the Born-Oppenheimer

approximation we assume that the backflow occurs much

faster than ionic motion.

As a first step toward understanding the properties of

a redox reaction within the respective charge equilibration

schemes, we discuss the half reactions first, i.e., study how

a molecule or a solid changes its “state” when an integer
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charge is added to or removed from one of its atoms. The

key quantity to be studied in this context is the global

chemical hardness κg, which has not yet been analyzed

within charge equilibration formalisms. It is defined as

the second derivative of the energy Vpot with respect to

an (elementary) excess charge ∆Q that is placed onto a

molecule or a solid. κg can be related to the ionization

energy I and the electron affinity A [5] through the finite-

difference approximation κg = (I −A)/e2, which – in the

case of solids – can be associated with the band gap [7,

22,23].

In this work, formal expressions for the global hard-

ness of simple model molecules and model solids are de-

rived within the various charge equilibration formalisms.

This is done by assuming that the change of energy of

isolated ions with charge can be computed by extrapo-

lating the quadratic expansion around neutral atoms be-

yond an elementary charge. This approximation may not

be accurate enough for practical applications. However, a

reparameterization of local terms will mostly affect pref-

actors. Most generic trends will remain unaltered, such as

the functional form of the backflow. Lastly, we discuss in

detail how the analytical results can be used for the design

of force field-based potentials making it possible to model

both equilibrium and non-equilibrium redox reactions.

2 Theory

The energy function in the simplest SQE model for a neu-

tral system reads [11]:

Vpot =
∑

i,j>i

κs,ij

2
q2ij +

∑

i

(κi

2
Q2

i + χiQi

)

+ VC({R, Q})

(1)

with

Qi =
∑

j

qij . (2)

In these equations, Qi represents the charge of atom i,

while qij ≡ −qji is the “split charge” transferred from

atom j to atom i. The electronegativity of atom i is χi

and κi denotes (chemical) hardness. By altering the value

of χi → χi + ∆χ, one can include effects of an external

electrostatic potential at a given site i. κs,ij represents

the hardness of the bond connecting atoms i and j. It is

assumed to be infinitely large for non-bonded atoms, be-

cause no (partial) charge should transfer between two neu-

tral atoms if their orbitals do not overlap, at least as long

as external fields are well below dielectric breakthrough

strengths. VC({R, Q}) summarizes the electrostatic inter-

actions between different charges as a function of their co-

ordinates {R}. The set of split charges minimizing Eq. (1)

determine the equilibrium charges, from which one would

compute electrostatics-related forces via the Hellmann-

Feynman theorem.

For simplicity, we use unscreened Coulomb interac-

tions in much of the subsequent treatment. The quali-

tative conclusions drawn in this work do not depend on

the details of VC, at least as long as one restricts one-

self to positive definite Hessians. While the precise values
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of the atomic charges are certainly sensitive to screening,

the functional dependence of the relevant quantity (polar-

izability) is dominated by the long-range behavior. Simi-

lar comments apply to charge- (and later oxidation-state-)

dependent corrections that one might want to add to the

short-range potential. These corrections do not affect the

qualitative conclusions, but only renormalize the free pa-

rameters in a quadratic expansion of V ({Q}) around the

minimum.

Regular QE is the limiting case of SQE in which all

bond hardnesses are set to zero. Even bond hardnesses of

non-bonded atoms would have be set to zero in an SQE

treatment of regular QE, unless local charge constraints

were imposed by hand, as was done for individual water

molecules in the simulation of liquid water in Refs. [24,

25]. The AACT model is the limit of SQE in which the

bond hardnesses are finite but the atomic hardnesses are

set to zero.

An external excess charge ∆Qi can be added to atom

i by substituting the charge Qi in Eq. (1) according to:

Qi =
∑

j

qij +∆Qi. (3)

This addition of excess charge induces a backflow in the

split charges, which makes Qi move away from integer

values and also affects the total energy. Formally, ∆Qi is

infinitesimally small, however, we assume implicitly that

∆Qi is an integer multiple of an elementary charge. In the

language of chemistry, adding an integer positive charge

corresponds to oxidation, while removing one reflects re-

duction.

It is clear that only integer charges can be added to

a real system, at least if one wants the charge-adding de-

vice to no longer interfere with the molecule or solid of

interest after the charge was added. It is less obvious that

one should simply assign this excess charge to an indi-

vidual atom, or in the words of chemistry, it is not clear

that an atom has a well-defined oxidation state. For the

time being, let us assume that assigning (integer) oxida-

tion states is meaningful. One can then analyze what ion-

ization energies and electron affinities result in different

charge equilibration schemes. However, we will also ana-

lyze what values would be obtained for I and A if this

excess charge were distributed evenly over the atoms.

The following (operational) definition for the chemical

hardness will be used:

κg =
∂2Vpot

∂∆Q2
, (4)

where the boundary condition is that the set of split charges

minimizes Vpot at each given value of {∆Qi}. Since our en-

ergy expression is quadratic by construction, this defini-

tion of κg and the finite-difference definition of κg = I−A

coincide. In more refined treatments, for example if the

charge of an atom explicitly affected parameters of the

force field, as for example in breathing-shell models of

ionic solids [26], the two definitions for κg lead to slightly

different values.

In the following Sections we evaluate Eq. (4) for a di-

atomic molecule and a simple cubic crystal in order to

elucidate the influence that the microscopic terms, such

as atomic hardness, bond hardness, and Coulomb inter-

actions have on the effective hardness of a system as well
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as on other phenomenological properties. This includes a

quantitative analysis of the NaCl molecule.

2.1 Diatomic molecule

We start our discussion with the simplest possible model

from which one can ascertain essentially all qualitative

conclusions drawn in this work, i.e., we consider a het-

eronuclear diatomic molecule. The external charge is going

to be placed onto atom 1. The split charge q12 is simply

going to be written as q and ∆χ ≡ χ12 ≡ χ1 − χ2. The

distance between the two atoms is denoted by a. Vpot then

reads:

Vpot =
κ1

2
(∆Q+ q)2 +

κ2

2
(−q)2 +

κs

2
q2

+∆χ · q + χ1 ·∆Q+
JC
2
(∆Q+ q)(−q), (5)

where in the case of regular Coulomb interactions JC can

be calculated with

JC =
1

2πǫ0a
. (6)

The split charge can now be determined by demanding

that dVpot/dq = 0, leading to:

q = − (κ1 − JC/2) ·∆Q+∆χ

κ1 + κ2 + κs − JC
. (7)

As usual, one requires the denominator to be positive,

because this ensures that Vpot is minimized and not max-

imized with respect to q. Eq. (7) can now be inserted into

Eq. (5) and the result be sorted into powers of ∆Q. This

leads to

Vpot(∆Q) =
κg

2
·∆Q2 + χ ·∆Q+ Vpot(0), (8)

where

κg =
κ1 · (κ2 + κs)− (JC/2)

2

κ1 + κ2 + κs − JC
(9)

is the global hardness,

χ =
(κ2 + κs − JC/2) · χ1 + (κ1 − JC/2) · χ2)

κ1 + κ2 + κs − JC
(10)

is the global electronic chemical potential, and

Vpot(∆Q = 0) = −1

2
· ∆χ2

κ1 + κ2 + κs − JC
(11)

is the energy associated with the split charge for a neutral

molecule in which both atoms have oxidation state zero.

A variety of instructive limits shall now be discussed.

2.1.1 Heteronuclear QE molecule

From Eq. (9), one can see that κg is symmetric in the in-

dices 1 and 2 if κs = 0, which implies that the global hard-

ness is independent of which atom∆Q has been placed on.

As a matter of fact, none of the terms, including Q1 and

Q2, depend on to which atom the excess charge had been

donated. Vpot becomes particularly straightforward to in-

terpret (see also Ref. [27]) if one neglects the Coulomb

interaction in a heteronuclear QE molecule (κs = 0),

Vpot =
1

2

(

1

κ1

+
1

κ2

)−1

·∆Q2+
κ2χ1 + κ1χ2

κ1 + κ2

·∆Q. (12)

One can recognize that the electronic chemical potential

is a (weighted) average of the electronic chemical poten-

tial of the individual atoms. More importantly, the inverse

atomic hardnesses add, similar to the way how capaci-

tances or springs add when coupled in series. This series

coupling of atomic hardnesses is at the root of a vanish-

ing global hardness in many-atom QE molecules or QE
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solids. More generally speaking, it is at the root of why

a QE material is metallic. Many attempts to make QE

non-metallic, such as introducing screening for electroneg-

ativity differences, therefore fail. A successful attempt to

construct the correct dielectric susceptibility is necessarily

based on finding the proper Hessian for the charge vari-

ables.

We will see later that it matters in SQE to which atom

the excess charge was added. Thus, there is a qualitative

difference between these two methods in terms of their

response to an external excess charge, which already be-

comes apparent for a diatomic molecule. In order to as-

certain a qualitative difference between QE and SQE in

terms of their dielectric susceptibility, it is necessary to

study system-size effects.

2.1.2 Homonuclear AACT model

When neglecting interatomic charge interaction in a di-

atomic, homonuclear AACT molecule (χ ≡ χ1; χ12 = 0),

there is no incentive to redistribute the charge, because

κsq
2/2 is the only remaining summand to the net energy

that depends on q. Once a finite (positive) value of JC is

considered, the situation changes. However, in contrast to

chemical or physical intuition, q = JC∆Q/{2 · (κs − JC)}

turns out to be of the same sign as ∆Q given that the

model is positive definite in q. One must conclude that

backflow has the wrong sign in AACT.

When minimizing Vpot in AACT, it is easy to see that

the homonuclear reduces the net energy according to

Vtot = −1

2
· (JC/2)

2

κs − JC
·∆Q2 + χ ·∆Q, (13)

which means that the hardness is negative (despite Vpot

being positive definite in q). Consequently, charge would

diverge on atoms in the grand canonical ensemble. This

result, which would be similar for heteronuclear molecules,

can certainly be branded as pathological, just like the neg-

ative backflow.

The origin of this counterintuitive behavior is that one

can add charge to an atom without energy penalty. Thus,

if we added a charge +1 to an atom in a molecule or in a

solid consisting of originally neutral atoms and removed a

charge from another atom, one would not have to pay any

penalty energy, yet Coulomb interaction energy would be

gained. This property of AACT is at the origin of the (un-

physical) band crossing of conduction and valence band

when applied to solid as will be seen later.

2.1.3 Homonuclear SQE molecule

In the case of the homonuclear molecule, one can set κa ≡

κ1 = κ2, and in the absence of an external electric field

∆χ = 0. The global hardness for the homonuclear SQE

molecule turns out less than that of the individual atoms,

at least as long as Vpot is expanded around neutral atoms,

but for any realistic parameterization it should turn out

positive. In Fig. 1, it is shown how κg changes with κa

and κs in the homonuclear SQE model and how QE and

AACT formally arise as a limiting case of SQE.
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Fig. 1. The hardness of a homonuclear molecule in the SQE

model for different parameterizations. In realistic SQE param-

eterizations, atomic hardnesses exceed bond hardnesses so that

κg(SQE) turns out positive.

When adding an excess charge ∆Q onto atom 1, its

charge can be written as

Q1 =
1

2

(

1 +
κs

2κa + κs − JC

)

∆Q. (14)

Thus, Q1 is greater than ∆Q/2 and therefore exceeds Q2.

At the same time, Q1 is less than ∆Q. The reason is that

2 · κa should in most cases be greater than both JC and

κs. This is because κa represents the self-interaction of an

electron on an atom, while κs and JC reflect interactions

of orbitals centered on different atoms. In the Section on

solids, we further substantiate why κs should be smaller

than κa.

For the homonuclear diatomic molecule, one may no-

tice the following sequence of inequalities – assuming that

κa and κs are both positive in SQE:

Q1(QE)

∆Q
=

1

2
<

Q1(SQE)

∆Q
< 1 <

Q1(ACCT)

∆Q
. (15)

Thus, the three approaches result in three fundamentally

different responses when an excess charge ∆Q is added to

atom 1. This is demonstrated visually in Fig. 2.
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Fig. 2. The final charge Q1 of an atom in a homonuclear SQE

molecule to which an excess charge ∆Q is added. Different

parameterizations are considered. Atomic hardnesses exceed

bond hardnesses in realistic SQE parameterizations so that

1/2 < Q1(SQE) < 1.

An important observation for the SQE treatment of

homonuclear molecules is that the electronic chemical po-

tential of the molecule is identical to that of each individ-

ual atom, while the hardness, which remains positive for

reasons mentioned earlier, is reduced.

As a consequence of κg being less than κa, the (global)

electron affinity of a homonuclear SQE molecule

Ag = χ · e− κg · e2/2 (16)

is increased with respect to that of an individual atom

(since κg is less than κa), while its (global) ionization en-

ergy

Ig = χ · e + κg · e2/2 (17)



M. H. Müser: Hardness and band gap within charge equilibration formalisms 9

is decreased. This result, which requires some analysis of

Eq. (9) under the assumption of κa > JC, will be impor-

tant to keep in mind when addressing the question of how

to treat true ions in SQE.

In realistic treatments of molecular hardness, signifi-

cant corrections will certainly be necessary, in particular

when a closed-shell molecule is formed. For example, it

is well established that the hardness of a molecule corre-

lates with its stability [28]. We might want to reflect this

by choosing a large value of κs for strong chemical bonds

and by potentially adding further bond-order dependent

corrections. However, at this point it is important to in-

vestigate the trends that each charge equilibration models

predicts without further refinement before a tedious pa-

rameterization is conducted.

A non-homogeneous distribution of the excess charge

in a homonuclear molecule violates the symmetry of the

Hamiltonian. It may be tempting to reestablish the sym-

metry by hand by distributing ∆Q evenly over the two

atoms and/or by introducing split charges between atoms

and a fictitious reservoir. Neither approach will be a good

idea for a variety of reasons but mainly because either ap-

proach shortcuts the bond hardness terms – even when

two atoms are far away from one another. The investi-

gated system would then automatically be metallic just

as in the original QE method.

In order to reestablish symmetry, we can treat the ox-

idation state of an atom as a dynamic variable by intro-

ducing discrete trial moves mimicking an electron transfer

reaction. Concretely, one can decrease Q1 by an elemen-

tary charge ∆Q and increase Q2 by the same amount.

The net energy balance in the case of the considered re-

dox self-exchange reaction would be zero and both atoms

would have an average oxidation state of 1/2 in thermal

equilibrium. Yet, at each instance of time, the oxidation

state of an atom would be an integer number.

2.2 Case study for the NaCl molecule

The treatment presented in the previous Section makes

it possible to compare the microscopic parameters of the

SQE model to a variety of experimentally measurable ob-

servables. Such a quantitative analysis based on the NaCl

molecule is conducted in this Section. The goal is once

more to ascertain trends rather than to produce accurate

numbers. This is why we abstain from adjusting the bond-

related parameters κs and JC when the oxidation states

of atoms changes.

Almost all “force field” parameters in the SQE model

are those related to the Na and Cl atoms. The respective

values in Ref. [29] are: χNa = 2.73 eV, κNa = 5.82 eV,

χCl = 8.53 eV, and κCl = 9.82 eV. The coupling at the

experimental NaCl bond length, a0NaCl = 2.36 Å, would be

JpC = e/(2πǫ0 · 2.36 Å) = 12.2 eV for the bare Coulomb

potential. However, for the analysis of the molecule at

its ideal bond length, we use the value for the screened

Coulomb interaction, J0
C = 7.11 eV, instead. We augment

the set of parameters by a bond hardness of κNaCl = 8 eV,

which is close to the band gap of solid rocksalt. We justify

this choice in the Section on solids. Lastly, we assume that
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the electron affinity of the chlorine anion is zero and use

a second ionization energy of the sodium atom of 47 eV.

2.2.1 Expansion around neutral atoms

We first characterize the molecule for the case in which

the oxidation states of both atoms are zero. Using two

superscripts to label the oxidation states of Na and Cl

atoms, respectively, Q00
Na = q becomes by Eq. (7)

Q00
Na =

−χNaCl

κQE + κNaCl

, (18)

where

κQE = κNa + κCl − J0
C. (19)

The potential energy associated with the ‘00’ oxidation

state is

V 00
pot =

−χ2
NaCl

2 · (κQE + κNaCl)
. (20)

The following numerical values result for the QE and SQE

approaches: Q00
Na(QE) = 0.68 and Q00

Na(SQE) = 0.35. The

QE value is much closer to the charge of the Na atom that

one would deduce from the experimental dipole moment of

9.0 D, namely Qexp
Na ≈ 0.8. This, however, is notsignificant,

because the oxidation state ‘00’ is not the energetically

most favorable state in SQE.

One can repeat the preceding analysis for an oxidation

state ‘+−’. In this case, the potential energy to minimize

with respect to q is:

V +−

pot (q) =
κQE

2
(1+q)2+χNaCl · (1+q)+

κNaCl

2
·q2, (21)

which yields

Q+−

Na =
−χNaCl + κNaCl

κQE + κNaCl

. (22)

Within the QE approach, Q+−

Na (QE) remains unaltered,

because in QE it does not matter what atom an excess

charge is put on. In contrast, Q+−

Na (SQE) = 0.83 has in-

creased by 0.48 elementary charges as compared to the ‘00’

oxidation state and now compares nicely to the experiment-

based estimate of 0.8.

The value of the potential energy for the ‘+−’ oxida-

tion state turns out to be

V +−

pot =
κNaCl · (κQE + 2χNaCl)− χ2

NaCl

2 · (κQE + κNaCl)
. (23)

Thus, the energy to be gained by transitioning from ‘00’

to ‘+−’ is

∆Eredox =
−κNaCl · (κQE + 2χNaCl)

2 · (κQE + κNaCl)
. (24)

The numerical value for ∆Eredox(SQE) = 0.74 eV must

be compared to the first electronic excitation energy of

NaCl, which was computed to be 3.28 eV within a DFT

calculation [30]. Thus, an expansion aroung neutral atoms

produced a value for ∆Eredox(SQE) that is too small by

a factor of four. To improve this situation, one either has

to use unrealistic values for JC or κs, or alternatively, to

expand around the ionic state when computing V +−

pot .

Within a given calibration, the redox reaction should

occur as soon as κQE+2χNaCl is less than zero. This would

then be a radiation free reaction, although the charges

would change discontinuously during the reaction. To es-

timate the value where this happens, we use the pure

Coulomb potential. The condition for the “redox distance”,

aredox, then reads:

κNa + κCl − JpC(a
0
NaCl)

a0
aredox

+ 2χNaCl = 0, (25)
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which can be solved to yield aredox = 7.3 Å.

We finally add excess charges to the neutral molecule.

Given the formulas in Sec. 2.1, one obtains: κg,Cl(SQE) =

8.9 eV and κg,Na(SQE) = 7.0 eV. In the QE model, it does

not matter if we place charge on Cl or on Na, and thus

κg(QE) = 5.2 eV takes the same value for both atoms.

As argued before, the hardness in the QE approach turns

out to be smaller than in SQE, no matter which atom

receives the excess charge in the SQE model. If, however,

κg(SQE) is computed by considering the oxidation states

‘+0’ and ‘0−’ for the ions, the latter claim no longer needs

to hold. Finally, the electronegativities in QE χg(QE) =

4.4 eV lies in between the values χg,Cl(SQE) = 6.3 eV,

χg,Na(SQE) = 3.5 eV.

Once the values for χg and κg are known, one can

calculate the molecular ionization energies and electron

affinities. In the QE approach, no ambiguity exists regard-

ing what atom receives the excess charge. In SQE, the

smallest ionization energy is obtained by adding a posi-

tive charge to the sodium. Adding a negative charge to

the chlorine maximizes the electron affinity. Thus,

Ag(SQE) = χg,Cl(SQE)− κg,Cl(SQE)/2−∆Eredox

= 1.87 eV

Ig(SQE) = χg,Na(SQE) + κg,Na(SQE)/2 +∆Eredox

= 7.02 eV

Ag(QE) = χg(QE)− κg(QE)/2 = 1.96 eV

Ig(QE) = χg(QE) + κg(QE)/2 = 6.88 eV.

The ionization energies are only ≈ 25% smaller than the

desired value of Ig(DFT) = 9.3 eV [30]. The agreement

is surprisingly good, given that Q+−

Na (SQE) turns out to

slightly exceeded +1. The deviation from Ag(DFT) =

0.87 eV [30], are, however, quite substantial. This could

have been expected, because the NaCl molecule forms a

closed electron shell and our estimate for the propensity

to attract additional charge was based on electronegativ-

ities of atoms with open shells. Both numbers can easily

be improved, just as ∆Eredox before, by assigning sensi-

bly chosen ionic hardnesses and electronegativities. This

is shown next.

2.2.2 Expansion around ions

After an atom has changed its oxidation state, it is mean-

ingful to expand the energy around that given oxidation

state rather than around the neutral atom [31]. For the

‘+−’ oxidation state of the NaCl atom, one would then

have to find the value of q that minimizes

V+−(q) =
1

2
(κNa+ + κCl− + κs − JC) · q2

+(χNa+ − χCl− − JC) · q + INa −ACl. (26)

Similar potential energy functions to be minimized can be

constructed for the ‘+0’ and the ‘0−’ oxidation states of

the molecule. Proceeding as in Sect. 2.2.1 and calibrating

the parameters as stated at the beginning of Sect. 2.2,

quite reasonable numbers can be obtained. The ionization

energy now is Ig(SQE) = 8.5 eV and Ig(QE) = 7.0 eV,

which compares well with the DFT value of 9.3 eV. The er-

ror in ∆Eredox(DFT) = 3.28 eV has reduced dramatically,

i.e., ∆Eredox(SQE) = 3.8 eV and ∆Eredox(QE) = 3.6 eV.

The correction in the electronegativity of the molecule has
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the correct trend, although it overshoots to slightly neg-

ative values, i.e., χg(SQE) = −0.88 eV and χg(QE) =

−0.42 eV. The only disimprovement is a considerably re-

duced charge on the sodium, specificallyQNa(SQE) = 0.62

and QNa(QE) = 0.54.

It is easily possible to improve the results for QNa

and χg by using higher-order polynomials for VNa(Q) and

VCl(Q) without deteriorating the agreement for ∆Eredox

and Ig. However, this would be fine-tuning that we want

to leave for another study, in which transferability shall

be tested. There, we will also argue in detail why the

stated approach is not in contradiction to the finding by

DFT that the derivative of isolated fragments (atoms or

molecules) are discontinuous at integer values of the charge [32,

33]. Here, it shall suffice to say that isolated SQE frag-

ments can only acquire integer charges in their ground-

state, while the response of molecules and solids to exter-

nal electrostatic fields is continuous, except at instability

points where a redox reaction occurs. The latter would not

be the case if we translated the DFT insight in a naive

way and made the atomic expressions for V (Q) piecewise

linear.

2.3 Periodic systems

2.3.1 Analytical considerations

In order to identify the generic properties of excess charges

in polymers and solids, we analyze periodically repeated

systems, as they are amenable to significant simplifica-

tion of the underlying mathematics without compromising

the validity of the conclusions for more general situations:

charges and split charges associated with different wave

vectors k decouple due to translational invariance – at

least as long as one restricts oneself to expressions that are

quadratic in charges and split charges. For a monatomic

crystal, Vpot therefore reads as follows:

Vpot = N ·
∑

k







∑

αβ

κ̃s,αβ(k)

2
q̃∗α(k)q̃β(k)

+
κa + J̃C(k)

2
|Q̃(k)|2 + χ̃(k)Q̃∗(k)

}

. (27)

Tildes indicate the Fourier transforms of the quantities

that were introduced earlier. We define the Fourier trans-

form of a function f defined on a lattice via f̃(k) =

(1/N) · ∑N
n=1 fn exp(ik · Rn), where n runs over all N

elementary cells (atoms), and Rn is the coordinate of the

lattice site.

More than one split charge resides on each lattice site,

except for the homatomic, linear chain with nearest-neighbor

coupling, so that the qij turn into q̃α(k) and κs into a

matrix κ̃s,αβ . The Greek indeces run from 1 to half the

number of neighbors with which a central atom shares a

split charge. For example in a simple cubic system, one as-

signs one split charge between the central atom and near-

est neighbors that are displaced by one lattice constant a

in x or y or z direction, and are consequently labeled in

reciprocal space as q̃1(k), q̃2(k), and q̃3(k), respectively.

Coupling to next nearest neighbors requires six more split

charges per atom in real space, and the dimensions of q̃

and κ̃s has to be expanded accordingly. None of the con-

clusions drawn in this Section is affected in a qualitative

fashion if we introduced next-nearest coupling or crystals



M. H. Müser: Hardness and band gap within charge equilibration formalisms 13

with basis so that we content ourselves with the simplest

possible case, that is, a simple cubic solid, for which

κ̃s,αβ(k) = κs · δαβ . (28)

Adding an extra charge to an individual atom can be

done as in the treatment of molecules, except that one

should subtract a charge-balancing background in a pe-

riodic system to keep the Coulomb energy from diverg-

ing. Thus, if we place an excess charge ∆Q onto an atom

(whose position will define the center of the coordinate

system), the analogue to Eq. (3) becomes

Q̃(k) = Q̃s(k) +∆Q̃(k), (29)

where Q̃s indicates charge resulting from charge transfer

between atoms, and

∆Q̃(k) =
1

N
· (1− δk,0) ·∆Q (30)

represents the externally added charge.

Minimization of Vpot can be achieved by requiring that

∂Vpot/∂q̃
∗

α(k) be zero. In order to keep the treatment as

simple as possible, it is easiest to use the continuum limit

for a simple cubic lattice, in which one can exploit a result

of Ref. [20]:

Q̃s(k) =
∑

α

i(akα)q̃α(k). (31)

Thus, minimization of Vpot demands that for each k and

α, the equation

i(akα)
[

χ̃(k) +
{

κa + J̃C(k)
}

∆Q̃(k)
]

=

∑

β

[

κs · δαβ(k) + a2kαkβ

{

κa + J̃C(k)
}]

q̃β(k). (32)

holds. This expression can be diagonalized with the ansatz

q̃α(k) = −i
(akα)Q̃s(k)

(ak)2
, (33)

resulting in

Q̃s(k) = −
χ̃(k) +

{

κa + J̃C(k)
}

∆Q̃(k)

κs/(ak)2 +
{

κa + J̃C(k)
} . (34)

The change in potential energy due to an excess charge

can be calculated by inserting Eq. (34) into Eq. (27). The

result arises as a sum over k-dependent terms of the form

Vpot(k) =
1

2
· κg(k) ·∆Q̃(k)2. (35)

with

κg(k) =
κs · (ak)2

{

κa + J̃C(k)
}

κs + (ak)2
{

κa + J̃C(k)
} (36)

In order to proceed further, it is necessary to insert a

model for the Coulomb interaction J̃C(k). This term can

have different functional forms, depending on the precise

nature of Coulomb screening at short distances. The im-

portant long wavelengths, however, will not be affected by

short-range screening. It will therefore suffice to include

the leading-order terms in J̃C(k). Nevertheless one should

not truncate already at the continuum limit, but include

the lowest-order discretization corrections in J̃C(k) so that

a charge-density wave at k = (π/a)(1, 1, 1) is energetically

beneficial; in other words, we would want the Madelung

constant for the rocksalt structure to be positive and not

negative. In Fig. 1 of Ref. [11] it was demonstrated that

J̃C(k) =
1− α(ak)2

(ǫ0 · a) · (ak)2
(37)

is a reasonable approximation for J̃(k) in the first Bril-

louin zone (BZ) of a simple cubic solid with α = 0.2257(8).

The largest error in J̃C within the first BZ occurs at

k = (π/a)(1, 1, 1), where one would predict the rocksalt

Madelung constant to be 2.39 instead of the correct value

near 1.75.
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Using the specific choice for ∆Q̃(k) from Eq. (30), one

obtains for the global hardness:

κg =
∂2Vpot

∂∆Q2

=
1

N

∑

k∈1.BZ

κg(k) (38)

This term converges to a unique value of κg in the ther-

modynamic limit. It is unfortunate that this sum does

not simplify more even when the sum over k vectors is

replaced with an integral. One would have to make a va-

riety of approximations. The two simplest limiting cases

are that either (ak)2 · ǫ0 · a · κa much exceeds J̃c(k) or, al-

ternatively, 1/ǫ0a is much greater than (κa−α/ǫ0a)(ak)
2.

Both cases correspond to k-point sampling with one point

in the Γ point and yield

κg ≈ κs. (39)

Hence, κs does not only control the dielectric permittiv-

ity of a solid but also its electronic hardness. Since the

latter can be related to the band gap [22], SQE produces

a dielectric permittivity that is roughly inversely propor-

tional to the band gap. We will substantiate this claim by

conducting a more detailed analysis next.

2.3.2 Interpretation of analytical results

In this Section, we discuss the implications of the ana-

lytical considerations on the periodic systems in the con-

text of the three charge equilibration approaches. First, let

us consider Eq. (35), which is the energy associated with

an external charge in reciprocal space. The correspond-

ing hardness κg(k) arises in analogy to the series cou-

pling of two springs, or two hardnesses, namely the bond

hardness and κaC(k) ≡ (ak)2
{

κa + J̃C(k)
}

term. The

latter could be called a wavelength dependent, Coulomb-

corrected atomic hardness. Thus, in order to produce a

band gap, or positive values of κg(k) everywhere in the

first B.Z., both κaC(k) and κa must be positive.

Adding a charge to a QE crystal at non-zero wavevec-

tor happens at a zero energy balance, because κs and thus

κg(k 6= 0) is zero in QE. Note also that the backflow

exactly compensates the externally added charge, as one

can see from Eq. (34). Energy would only increase in a fi-

nite system. There, charge would accumulate near the sur-

faces. Conducting similar calculations as those presented

in Ref. [20], it is straightforward to obtain a charge density

that decays exponentially from the surface with a corre-

lation length of a · √ǫ0 · a · κa.

In the AACT model, the situation is even worse than

in QE: κg(k) is not only zero but negative for the wave

numbers that have a negative J̃(k). For example, if we

populate a monatomic solid in the AACT model at k =

(π/a)·(1, 1, 1), i.e., such that the “sodium” positions in the

simple cubic lattice are positively and the “chlorine” po-

sitions negatively charged, then no energy penalty would

have to be paid by the AACT hardness terms. Yet, we

would have gained Coulomb energy. In the language of

band structure, this means that valence and conduction

bands cross, which is unphysical. Given Eq. (37) and the

value of α obtained in Ref. [20], the crossing would oc-

cur at wave vector of magnitude k ≈ 1/(0.2258 · a), i.e.,

well within the first B.Z. As shown below, screening barely

changes this result as long as κa is set to zero.
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In order to obtain physically meaningful hardnesses

for dielectric materials, κs must be positive, and κa must

exceed JC(k) for every k. This last condition happens to

be identical to that of a positive definite Hessian with

respect to atomic charges in the original QE model; κa

must exceed a threshold hardness, whose precise value de-

pends on the screening of the Coulomb corrections. Thus,

one should not use κs to construct a positive definite

Hessian in the split charges, or one risks to have band

crossing as it occurs in AACT. For the simple-cubic solid

without screening, we would have to request that κa(ǫ0 ·

a) >
{

α · (akmax)
2 − 1

}

/(akmax)
2 with (a ·kmax)2 = 3π2,

which would result in rather large κa > 12 eV if we use

the nearest-neighbor NaCl distance in a rocksalt solid for

a. It yet seems as if the requirement of a positive κaC(k)

is usually satisfied; elements with small values of κa will

have large screening corrections and vice versa. A semi-

quantitative analysis of the effect of screening is given

next.

Let us estimate typical values for κ̃g(k) real materi-

als by considering a variety of limiting cases. As before,

the unit of charge will be the elementary charge so that

hardnesses are stated in eV rather than in V/e.

(i) κa = 8 eV, κs = 0 eV, QE / SQE metal

(ii) κa = 8 eV, κs = 1 eV, SQE (medium band gap)

(iii) κa = 8 eV, κs = 8 eV, SQE (large band gap)

(iv) κa = 0 eV, κs = 8 eV, AACT.

The atomic hardness of 8 eV is a typical value for atoms,

i.e., it is close to the mean value of κa(Na) and κa(Cl). A

band gap of roughly 8 eV is very large, but is close to the

experimental value for NaCl. The distance between two

atoms is chosen to be a = 2.82 Å, which is approximately

the nearest-neighbor spacing between a sodium and a chlo-

rine atom in the rocksalt structure. Coulomb potentials

will be screened with the usual Slater orbital corrections

for Na and Cl [9]. We find numerically that J̃C can be

represented in Fourier space by multiplying the Fourier

transform of the regular Coulomb potential with a Gaus-

sian correction factor, exp(−k2/2a2S), with aS = 2.78 Å,

leading to (1/ǫ0a) = 64 eV. As the Slater screening length

aS is only 1.4% less than a, one could simply use a instead

of aS in a semi-quantitative calculation.

In principle, we would have to reevaluate the term

α for screened interactions. This turns out to be impor-

tant, as the screening at the R-point in the first BZ [k =

(π/a)(1, 1, 1)] becomes extraordinarily strong, due to the

exponential dependence of J̃S on k2. We therefore replace

heuristically the Gaussian dependence with a Lorentzian

J̃S(k) =
1− α(ak)2

(ǫ0 · a) · (ak)2
· exp{−(aSk)

2/2}

≈ 1− α(ak)2

(ǫ0 · a) · (ak)2
· 1

1 + (aSk)2
(40)

so that the second moment of k2 averaged over the first

BZ remains approximately unchanged. In fact, applying

this correction factor just to the bare Coulomb potential

leads to a screened coupling JMB(r) in real space that was

suggested by Müser and Berne to avoid Coulomb singu-

larities in path integral simulations [34]:

JMB(r) =
1

4πǫ0

1

r

(

1− e−r/aS

)

, (41)
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where aS had been scaled as a function of the Trotter

number. The various couplings in real and Fourier space

are shown in Fig. 3.
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Fig. 3. (Color online) Top: Regular Coulomb coupling (black

circles), the screened coupling VMB with the screening length of

aS = 2.78 Å(red triangles) and Slater orbital screened Coulomb

interactions (blue crosses) with parameters suitable for the in-

teraction between Na and Cl. Lines are drawn to guide the eye.

Bottom: Fourier transforms of the above quantities. Lines now

represent the given analytical formulas.

In our analysis of the wavelength dependence of the

various summands to κg, we furthermore revert the con-

tinuum approximation to the κa-related terms, i.e., we

make the following substitution:

κa(ak)
2 → 2κa

3
∑

α=1

{1− cos(akα)}. (42)

With these parameters in hand, we investigate how

the different summands contribute to the global hardness,

which can be done in terms of an an analysis of the “global

hardness dispersion”. The latter may be loosely associated

with the band structure, see Fig. 4. Using the “typical”

values for the Coulomb interaction (including screening),

we find that there is relatively little wavenumber depen-

dence in the SQE model as long as κa is greater than or

similar to κs. The band gap itself is roughly as large as κs.

However, if κa were much less than κs, or even zero as in

AACT, negative hardnesses would occur, as discussed ear-

lier. In other words, conduction and valence bands would

cross.
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Fig. 4. (Color online) Fourier representation of the global

hardness κg(k) for different choices of the atomic hardness κa

and the bond hardness κs along selected paths in the first Bril-

louin zone in the simple cubic lattice. The cusps in κg at sym-

metry points are not consequences of the model itself. They

are induced by an insufficient accuracy of the Coulomb inter-

actions in a continuum description.

3 Discussion

3.1 Toward force field-based MD simulations of

equilibrium redox reactions and zwitterionic molecules

When comparing the electron affinity A of halogens (the

highest in the periodic table) to the first ionization en-
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ergy I of alkali atoms (the lowest in the periodic table), it

is not possible to find a pair of stable elements for which

an (integer) electron transfer would be energetically favor-

able (A > I) in the diatomic dissociation limit. Therefore,

any diatomic molecule in its quantum mechanical ground

state dissociates into two neutral atoms. Mimicking this

empirical fact is one of the strengths of the split charge

concept: κs can be made distance dependent so that it

diverges in the dissociation limit and no partial charge

transfers between the two atoms [17].

As one envisions the simulation of electrolytes or even

a battery driving an external electrical load, SQE would

be confronted with the problem that any charge exchange

between an electron donor and an electron acceptor has so

far been described as a polarization of the bond between

two atoms but not as a redox reaction. Thus, while atom-

based QE methods had the “metallicity” issue, SQE has

an “ionicity” problem: Although some SQE atoms may

keep some of their “electrons” on the long leash, there

are no true ions. Consequently, any current that has flown

through an external load in a hypothetical all-atom sim-

ulation of a battery would have to be inverted when the

circuit breaker is opened again.

The ionicity problem can be overcome by introduc-

ing (phenomenologically) integer charge transfer between

atoms that would not be penalized by a bond stiffness

term, e.g., by adding an integer excess charge to one atom

in a molecule and removing it from another one. Although

integer charge transfer may never be energetically favor-

able for isolated pairs of atoms, the situation can change

when there are more than two atoms present. Equations

(16) and (17) show that in the simplest SQE approach, col-

lectivity leads to increased electron affinity as compared

to that of isolated atoms and decreased ionization ener-

gies. Thus, when considering a system with more than two

atoms, integer electron transfer can be energetically favor-

able and ionic states could be produced even when the two

chemical moieties involved in the transfer are separated by

distances much exceeding a molecular bond length.

According to the SQE model, integer charge transfer

within a molecule would be favored for molecules that have

two nearby electronegative atoms within one side chain

of a molecule and one or more electropositive atoms at

another one. Integer charge exchange over long distances

and violation of local charge neutrality would then be-

come beneficial. This corresponds to what is observed in

zwitterionic molecules, containing, for example, a nega-

tively charged carboxylate group and a positive ammo-

nium group. A quantitative charge transfer model will cer-

tainly necessitate terms reflecting bond order and ioniza-

tion energies, yet the trends are already captured correctly

at the rather generic level pursued in this work.

3.2 Toward force field-based MD simulations of

contact electrification, non-equilibrium redox reactions

and history-dependent oxidation states

One of the problems of current charge fluctuation mod-

els – and also of regular DFT – is that partial changes or

charge densities arise as a unique function of the nuclear

positions. This is because both DFT and all charge equi-
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libration methods have a unique minimization principle

with which charge densities or partial charges are com-

puted. However, in reality, the oxidation state of atoms,

molecules, clusters and solids is strongly history depen-

dent, as discussed below. Having means of mimicking this

history dependence will be important to describe non-

equilibrium redox reactions such as friction-induced con-

tact electrification.

Let us consider two metal blocks with different work

functions. Assume that both blocks are in vacuum, ini-

tially neutral and separated by a distance that is suffi-

ciently large so that no electrons tunnel between the two

metals on relevant experimental time scales. If the two

blocks are then brought into close contact, charge is go-

ing to flow from the metal with the smaller to that of

the larger work function. Once the blocks are separated

from one another, the transferred charge is not going to

flow back completely. Thus, the partial atomic charges

are going to differ between the initial and the final state,

although the position of the metals are identical at the be-

ginning and at the end. This would even be true if some

daemon ensured that no atom moved throughout the ex-

periment relative to the center of mass of the metal block

to which it belongs.

A related thought experiment is the dissociation of an

NaCl molecule in the atmosphere of an inert gas. Initially,

the chlorine will have an oxidation state of -1 and sodium

of +1. If the molecule were to separate adiabatically, two

neutral atoms would be formed, but in a fast diabatic

dissociation, two charged ions would be the likely result.

The lesson to be learnt from the thought experiments

is that partial charges should not be determined based on

a unique minimization principle, but that history depen-

dence needs to be included. One should therefore have the

ability to describe diabatic and not only adiabatic dynam-

ics, as done, for example in Landau–Zener dynamics [35,

36].

In the SQE model, Landau–Zener type dynamics could

be achieved by setting up reasonable rules for the change

of oxidation state of atoms. We know that electron trans-

fer between two atoms only occurs (on time scales relevant

for MD) when the two atoms are close to one another, i.e.,

when their outer orbitals overlap, or when they are some-

how connected indirectly – as they are in a battery driv-

ing an external load, where reduction and oxidation occur

spatially separated at anode and catode, respectively. This

physical picture can be realized qualitatively with the fol-

lowing algorithm: in an MD simulation, Monte Carlo-like

trial moves are introduced in which two chemically bonded

atoms are allowed to undergo a redox reaction. These trial

moves will require the oxidation state of one atom to in-

crease and that of another atom to reduce. The trial state

can be accepted based on the energy difference between

old and new oxidation states, for example based on energy

minimization, or by using the Metropolis algorithm. When

doing such a “redox move” within the SQE formalism, it

will be necessary to relax all split charges for the new trial

configuration. This can induce a significant computational

overhead and lead to many other complications. The most
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serious complications currently apparent to the author of

this paper will be discussed in the following.

3.3 Conservation of energy and momentum

Once a trial redox move has been accepted, the system

has changed its state in a discrete – or discontinuous –

fashion. Exceptions can occur, for instance when κs asso-

ciated with the two atoms undergoing the redox reaction

is zero, because an integer split charge can move back

across the bond without any energy penalty. It is known

from Marcus theory of redox reactions [37,38] that the en-

ergy change associated with an electron transfer reaction

is usually small, which, in the context of an accepted SQE

redox move, would translate to a small change in energy.

Though the change would be small, it is finite in the most

general case.

If the redox move has not been subjected to the rules

satisfying detailed balance, for example when only those

reactions are accepted that minimize the potential energy,

one will be interested in ensuring energy conservation.

Thus both temperature and energy would not be defined.

As many redox reactions are radiation free, it will make

sense to change the momenta of the involved atoms in

such a way that not only energy but also local momen-

tum is conserved. Otherwise, one risks to destroy hydrody-

namic interactions in cases where these are relevant to the

dynamics. This is why velocity rescaling would be, once

again, a bad idea. Assuming that the momentum transfer

is parallel to the unit vector r̂ij pointing from atom j to

atom i, the new velocities would have to read

mivi new = mivi old +∆p · r̂ij , (43)

where the momentum transfer ∆p can be determined from

mi

2
v2
i new +

mj

2
v2
j new =

mi

2
v2
i old +

mj

2
v2
j old +∆Eredox.

(44)

While there are two solutions for ∆p in principle, we well

choose the one that keeps the velocities unchanged when

∆Eredox is zero, i.e.,

∆p = −pij old +
√

p2ij old + 2µij∆Eredox, (45)

where pij,old = µij · vij old · r̂ij is the relative momentum

of atoms i and j in their center-of-mass system, vijold =

viold − vjold and µij = (m−1
i + m−1

j )−1 is their reduced

mass.

In principle, one could also allow endothermic reac-

tions with the help of Eq. (45), as long as the square root

on the right-hand side is real. However, it is not obvious if

much would be gained by doing so, in particular because

the inverse reaction might happen in the next time step.

Lastly, one should be aware that the construction of a

symplectic integrator may be difficult or even impossible

to derive; even if ∆Eredox were zero, there could still be a

discontinuity in the forces upon an integer charge transfer.

3.4 Efficiency and linear scaling

Invoking a trial SQE redox move risks to slow down a

simulation because of three main reasons. First, a single

trial SQE redox move requires, in principle, an up-date of

all split charges. This could then turn a local move into
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an operation that scales at least linearly in N , making

a complete MD time step a > N2 operation. Second, a

large number of mostly unwanted trial moves might be

attempted. Lastly, the system can end up in a frustrated

state. These three issues are going to be addressed in the

remaining part of this Section.

The problem of having to minimize all split charges

after a trial redox move for an exact minimization, can be

strongly alleviated if one is willing to allow for systematic

but controllable errors. They would occur if an update

of the split charges were restricted to the vicinity of the

redox reaction. Errors would be small because the redox

move would signify a perturbation of a local dipole chang-

ing the Coulomb energy with distant volume elements only

marginally. This is particularly true whenever it is possible

to subdivide a system into neutral volume elements. Errors

would only be significant if distant atoms were allowed to

exchange integer charges. Moreover, even if a redox reac-

tion were accepted, there would be significant backflow,

as we have seen in the case study of the NaCl molecule.

Going from a ‘00’ to a ‘+−’ oxidation state in NaCl only

made the charge on each atom change by 0.27 elementary

charges. The backflow in “distant” split charges will be

much less than that number.

In order to reduce the risk of conducting an abundance

of rejected redox moves, each of which necessitating an

up-date of many split charges, one will have to restrict at-

tempts to those that have a reasonable probability to be

accepted. Moreover, one will also need to avoid “meaning-

less” redox moves, as they easily occur when κs is small

or even zero. In the latter case, each redox move will be

accepted, because the backflow will exactly compensate

the integer charge change in a metallic bond. An oxida-

tion state should usually only change when there is a local

excess charge in a dielectric that can hop from one atom

to the next, or when a chemical bond is formed or bro-

ken. If one can detect either event efficiently, the number

of redox trial moves only needs to involve very few of the

“active” split charge bonds.

Lastly, consider the frustrated state shown in Fig. 5a.

The neutral Cl and the neutral Na atom do not form a

chemical bond. A direct charge transfer from the Na to

the Cl atom will therefore not be attempted in an SQE

treatment. If the redox trial moves would be restricted

such that they could only involve two atoms or ions, then

the system would remain frustrated, because a doubly ion-

ized sodium is too expensive in energy, see Fig. 5b. The

energy barrier is much reduced if one allows charge trans-

fer through an intermediate atom, as shown in Fig. 5c.

This would allow for a redox self-exchange reaction with

a relatively small (free) energy barrier.

4 Summary and Conclusions

In this work, we study how three different charge equilibra-

tion approaches (QE, AACT, and SQE) predict the energy

of a system to change when an external excess charge ∆Q

is added to it. The intent of this work is neither to justify

the models from first principles, such as through valence

bond theory, nor to test how well one can reproduce par-

tial charges for given molecular structures. Instead, we are
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Fig. 5. (Color online) (a) Schematic drawing of a frustrated

oxidation state in a NaCl cluster. (b) As long as trial moves

only involve two atoms, e.g., the two atoms connected by the

grey line, it will be unlikely to change the oxidation state of the

two neutral atoms. (c) Allowing for charge exchange between

next-nearest neighbors, as those connected by two grey lines,

much facilitates charge hopping. The trial configuration in (c)

is similar in energy as that in (a). One more such move can

then produce a structure in which a Cl with zero oxidation

state sits right next to a Na with zero oxidation state.

interested in unravelling generic properties, in particular

the hardness of molecules and the band gap of solids, and

their dependence on system size. This way we can test if

predicted trendsmatch those observed in real systems, and

thereby obtain important clues about if and how modeling

charge-transfer reactions can be made possible in simula-

tions based on classical force fields.

It turns out, once more, that QE, AACT, and SQE dif-

fer qualitatively. The differences regarding their response

to excess charges is even more dramatic than those in their

dielectric properties (which are summarized in the intro-

duction). When it comes to excess charges, QE is again

metallic. The band gap of a QE solid is zero in the ther-

modynamic limit, and the ionization energy of a molecule

does not depend on which atom is donating or receiving an

excess charge. The AACT model behaves pathologically in

response to excess charges; the molecular hardness is neg-

ative and the analogues of valence and conduction bands

cross. Although SQE is a hybrid between QE and AACT,

it can reproduce the correct dielectric behavior; molecular

hardness and band gap are both positive. Moreover, ion-

ization energy and electron affinity depend on what atom

in a molecule or solid changed its “oxidation state.” The

key quantity for SQE solids is the bond stiffness κs. In a

previous work, we showed that it is inversely proportional

to the dielectric constant in systems like a simple cubic

crystal or in rocksalt [20]. Here, we find that the same

parameter controls the band gap, at least as long as the

charge-equilibration expansion is made around the neutral

atom.

The dramatic difference between SQE and AACTmight

be surprising, because AACT formally emerges as a limit-

ing case of SQE for small atomic hardness. However, this

limit is never reached in practice because real atoms have

a relatively narrow distribution of atomic hardnesses [29,
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39]. As a consequence, κs will rarely exceed κa. The largest

value that we found in our initial SQE work [11] was

κs = 5 eV, describing the chemical hardness of the bond

between two tetrahedrally coordinated silicon atoms. This

number is slightly larger than the direct band gap of silicon

in the diamond structure but still smaller than the atomic

hardness of silicon (6.7 eV). Likewise, the large experimen-

tal band gap of 8.7 eV in NaCl is less than κa(Na)+κa(Cl).

It seems as though the SQE model should be suitable

for a quantitative calibration. Using a parameterization

scheme based on atomic and ionic properties, which are

augmented by only one bond stiffness term of κs = 8 eV

that we chose close to the band gap in NaCl, we find that

it is possible to produce quite reasonably four important

numbers describing the NaCl molecule: the first excitation

energy of the neutral molecule, which in the SQE formal-

ism must be associated with E(Na0Cl0) − E(Na+Cl−),

the first ionization energy E(Na+Cl0)−E(Na+Cl−), and

the electron affinity E(Na0Cl−) − E(Na+Cl−) are all re-

produced within one or two eV. Furthermore, the dipole

moment is reproduced within 20%. Also metals seem to be

described reasonably well in the SQE model in the limit

of zero bond hardness. In its simplest variant that does

not allow bond-order corrections for the electron affinity,

the work function of a metal becomes identical to the elec-

tronegativity of the atoms constituting it (since the hard-

ness goes to zero). In reality, the electronegativity is close

to 2/3 to 3/4 of the work function of simple metals. Thus,

the simple treatment has captured more than 50% of the

effect, and moreover reproduced trends correctly.

The results derived in this article may have wide-reaching

implications for the force field-based modeling of dynam-

ical processes in various systems, e.g., when redox reac-

tions occur or when zwitterions are present. The calcula-

tions show that integer charge transfer, which may not be

penalized by a bond stiffness term, can happen in sys-

tems consisting of more than two atoms, while simple

pairs of atoms always dissociate into neutral atoms in their

groundstate. Such integer charge transfer plays an impor-

tant role in electrolytes and zwitterionic molecules with

important consequences for energy materials (batteries)

and electrostatics-driven molecular pattern recognition.

Pursuing integer charge transfer in molecular simu-

lation will certainly be a challenging task. In fact, each

attempt to move integer charges (be it locally between

bonded or also non-locally when conducting wires are present)

is likely to necessitate a non-local optimization of all charges.

Therefore, it will be challenging, but as outlined in the

main text not impossible, to achieve high accuracy and

linear scaling of computing time with particle number. De-

signing rules for SQE pseudo-dynamics that would even

roughly mimic real dynamics (in the sense of Ehrenfest)

still seems challenging, in particular if one wanted to roughly

reproduce Landau–Zener type dynamics. If successful, one

would be in a position to simulate processes in which the

partial charges and oxidation states of atoms is not only

a function of atomic coordinates but may also be history

dependent. No force field-based simulation method devel-

oped to date can reproduce near-equilibrium contact elec-

trification of an initially neutral metal cluster, which is
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brought in and out of contact with another metal. In con-

trast, the proposed modified SQE approach reproduces

the dynamics qualitatively. Making the agreement quan-

titative then merely becomes the question of a good cali-

bration however daunting this task appears to be.
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24 M. H. Müser: Hardness and band gap within charge equilibration formalisms

28. R. G. Pearson. Acc. Chem. Res., 26:250, 1993.

29. J. Robles and L. J. Bartolotti. J. Am. Chem. Soc.,

106:3723, 1984.

30. C.-G. Zhan, J. A. Nichols, and D. A. Dixon. J. Phys.

Chem. A, 107:4184, 2003.

31. R. Mulliken. J. Chem. Phys., 3:573, 1935.

32. J. P. Perdew, R. G. Parr, M. Levu, and Jr. J. L. Balduz.

Phys. Rev. Lett., 49:1691, 1982.

33. W. T. Yang, Y. K. Zhang, and P. W. Ayers. Phys. Rev.

Lett., 84:5172, 2000.
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