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Structural, thermomechanical, and dynamic properties of pure silica, SiO2, are calculated with
three different model potentials, namely the potential suggested by van Beest, Kramer, and van
Santen (BKS), the fluctuating charge potential with a Morse stretch term for the short-range in-
teractions proposed by Demiralp, Cagin, and Goddard (DCG), Phys. Rev. Lett. 82, 1708 (1999),
and a polarizable force field proposed by Tangney and Scandolo (TS), J. Chem. Phys. 117, 8898
(2002). The DCG potential had to be modified due to flaws in the original treatment. While
BKS reproduces many thermomechanical properties of different polymorphs rather accurately, it
also shows qualitatively wrong trends concerning the phononic density of states, an absence of the
experimentally observed anomaly in the c/a ratio at the quartz α−β transition, pathological insta-
bilities in the β-cristobalite phase and a vastly overestimated transition pressure for the stishovite i
- ii transition. These shortcomings are only partially remedied by the modified DCG potential but
greatly improved by the TS potential. DCG and TS both reproduce a pressure-induced transition
from α-quartz to quartz II, predicted theoretically based on the BKS potential.

I. INTRODUCTION

Understanding the thermomechanical properties of
glassy silica and its various crystalline polymorphs has
been subject of intensive research. [1] The interest in
silica and silicates is due to their abundance in nature,
their numerous technological applications, and their pe-
culiar behavior that is challenging to understand. Good
model potentials are required that describe the relevant
atomic interactions in silicates if one wants to model and
ultimately understand the properties of silicates from
an atomistic point of view. In a pioneering work by
Woodcock et al., [2] the energy surface of bulk SiO2 sys-
tems was modeled as a sum over two-body potentials
having the Born-Mayer-Huggins form. This interatomic
pair potential was later generalized and parametrized by
Tsuneyuki et al. based on ab initio Hartree-Fock self-
consistent-field calculations. [3] The form of their poten-
tial, referred to as TTAM potential, is

φij(r) = φCoulomb
ij (r) + Aije

−Bijr − Cij/r6, (1)

which consists of Coulomb interactions, Born-Mayer-
type repulsion, and dispersive interactions. Van Beest,
Kramer, and van Santen (BKS) reparametrized this
model potential by combining microscopic (ab initio com-
putations) and macroscopic (experimental) data. [4]

Both TTAM and BKS potential allow one to imi-
tate thermomechanical properties of various silica poly-
morphs fairly well. In general, experimental findings
are reflected slightly better with BKS than with TTAM.
Yet, the use of the TTAM potential resulted in a re-
spectable reproduction of the lattice parameters, bond
lengths, and bulk modulus of α-quartz, α-cristobalite,
coesite, and stishovite [3] as well as in a rather precise
location of the α-β transition temperature of quartz at
ambient pressures. [5] Pair correlation functions for α-

and β-cristobalite have been predicted using TTAM po-
tentials [6] and later been found to be in good agree-
ment with neutron scattering data. [7] Beside the orig-
inal applications of the BKS potential to the proper-
ties of quartz, [4] crystalline-to-amorphous phase tran-
sitions, [8–10] and the equation of state for α-quartz,
cristobalite, and stishovite [11, 12] were found to be in ex-
cellent agreement with experiment. Furthermore, predic-
tions for the stability of various polymorphs under large
uniform pressures were made [11, 13] and confirmed by
experiment and first-principle calculations. [14] This con-
firmation is surprising, because the BKS potential had
been optimized for four-coordinated silicon, while the
high-pressure phases of silica consist of six-coordinated
silicon. Also, ab initio calculations [15] supported molec-
ular dynamics simulations [16] which predicted a trans-
formation from α-quartz to five-coordinated silica poly-
morphs for certain non-uniform pressures. Moreover, the
BKS potential was used rather successfully for the study
of static and dynamic properties of molten and amor-
phous SiO2. [17–22]

Despite the success of TTAM and BKS, some features
remain unsatisfactory. This does not only concern their
limited transferability to more generalized chemical com-
positions and/or to surface phenomena, but it also con-
cerns bulk properties of pure SiO2 in the bulk. For in-
stance, the anomaly in the c/a ratio at the α − β tran-
sition in quartz is absent in molecular-dynamics (MD)
simulations. [23] Moreover, the phononic density of states
shows the wrong trend in the glassy phase [24] at small
and intermediate frequencies, and as shown in this pa-
per, BKS (as well as TTAM) β-cristobalite and tridymite
are not thermodynamically stable: In order for these
phases to appear stable in simulations, appropriate pe-
riodic boundary conditions must be chosen, i.e., bound-
ary condition which are incommensurate with the modes
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leading into the energetically favored structures.
Recently, a Morse stretched potential allowing for

fluctuating charges was suggested by Demiralp, Cagin,
and Goddard. [25] Fluctuating charge energy surfaces
promise to be more easily transferable than rigid ion po-
tentials, because the charges on individual atoms can ad-
just to the instantaneous chemical environment. A sec-
ond approach, suggested by Tangney and Scandolo [26]
adds a polarizability to the oxygen atoms, which intro-
duces additional electrostatic interactions between the
charges and the new dipoles. The polarizability of the
oxygen atom is well established [27, 28] and is thus likely
to mimic necessary electronic degrees of freedom.

While both groups of authors claimed their potential
to mirror experimental observations rather well, none of
their simulations addressed one of the above-mentioned
points, where BKS and TTAM fail. It is thus necessary
to check whether the two model potential approaches are
able to remedy these failures.

The initial purpose of this study was to test the merits
of the fluctuating charge model and the fluctuating dipole
model for silica more thoroughly than this had been done
before. However, as we will describe in more detail in the
main part of this article, we had to realize soon that the
treatment in the original paper proposing the fluctuating
charge force field is flawed and that their data could not
be reproduced. This does not imply that a fluctuating
charge model has to fail per se, however, it was necessary
to modify the pseudo potential of the fluctuating charge
model in order to make a meaningful comparison to ex-
perimental SiO2 systems. In the remainder of this paper,
we will first give a brief overview over the methodology.
This includes a discussion of the DCG and TS potential.
In Sect. III, we test whether the DCG and TS potentials
are able to reduce the discrepancies between experiments
and ab initio simulations on one hand and classical force
fields on the other hand. Sect. IV gives a summary.

II. METHOD AND MODELS

A. MD Methods

In this study, standard MD techniques are used. Con-
stant temperature of the ionic motion is maintained via
a Langevin thermostat and stress is kept constant within
the Parrinello-Rahman method, similarly as described
previously. [23] For the simulations allowing fluctuating
charges, see below for more details, we used an extended
Lagrange method. Both charge motion and ionic motion
were damped with coefficients γq and γion, respectively,
but only ions experience random forces imposing non-
zero temperatures. Time steps dt and the total simula-
tion time ts were chosen such that the following series of
inequality held sufficiently well for our purposes:

dt �
1

wq
�

1

γq
�

1

ωion
�

1

γion
� ts, (2)

where ωq and ωion are characteristic frequencies of the
charge and the ionic motion. With these inequalities, it
is ensured that the charges relax close to their equilib-
rium values for a given ionic configuration. At the same
time, neither ionic nor charge motion is overdamped. We
tested explicitly convergence of our results by changing
the free parameters dt = 0.1 fs, ωq ≈ O(3 fs) (adjusted by
the choice of the charge inertia), γq = 10 fs, γion = 0.1 ps,
and ts typically 10 ps, while the intrinsic frequency re-
lated to tetrahedral vibrations ωion = O(30 fs).

With this choice of parameters, we see our results (lat-
tice constants, elastic constants, DOS, internal energy,
etc.) converged, that is to say, none of the observables’
thermal averages changes within our (small) statistical
error bars, if one of the free parameters is changed by a
factor of two. The only exception is the DOS at small
frequencies, where characteristic features such as peaks
are slightly broadened due to the damping/thermostating
related to ionic motion.

1. Implementation of the DCG potential

As mentioned above, fluctuating charge potentials al-
low the effective ionic charge on an atom to vary as a
function of the local environment. Thus, at a given set of
coordinates, the charges have to be determined first, be-
fore the forces on the ions can be determined. Often, the
1/r Coulomb potential is replaced with a function J(r) in
which the singularity at small distances is screened. For
more information, we refer to the original literature. [29]

Despite careful implementation of the fluctuating-
charge Morse stretched potential suggested by Demiralp,
Cagin, and Goddard (DCG), we were not able to re-
produce any data presented in Ref. 25, as long as we
proceeded as described in the original publication. The
original paper claims that the 1/r Coulomb potential is
replaced by the smoothed J(r) function. Using J(r) for
the charge optimization and the calculation of the forces
did not enable us to reproduce any of the original re-
sults. We are yet confident about our implementation of
the code, because we could most easily reproduce data on
TiO2 [30, 31], which was simulated with a model poten-
tial identical in form as that claimed to have been used
by CGS.

Also replacing J(r) back with the Coulomb potential
did not remedy the situation. We could only reproduce
the data published in Ref. 25 by using the 1/r potential
for the calculation of the ionic forces, while the charges
were optimized with respect to the J(r) interaction (plus
the additional term in a fluctuating charge potential such
as the atomic hardness). While this treatment provides
well-defined forces as a function of the coordinates, it
is certainly unsatisfactory to treat charges and ions in-
consistently. In particular, if the charges are not deter-
mined by exact diagonalisation but with an extended La-
grangian approach, it is not possible to check for energy
conservation as charges and center of masses see a dif-
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FIG. 1: Pair radial distribution function gSiO(R) of α-quartz
at 300 K. The curves for the new consistent fluctuating charge
potential and the original inconsistent potential basically lie
on top of each other. The nearest neighbor peak, which is
located at 1.6 Å, is not included in the graph.

ferent potential energy surface. Therefore modifications
needed to be applied, which are explained in the next
section.

2. Modification of the DCG potential

In the following, we attempted to treat ionic and elec-
tronic potentials on equal grounds. It appears that the fit
of the ab-initio data was based on the above-mentioned
inconsistent treatment, as this was the only way to re-
flect the data published in the original paper. To obtain
a consistent energy surface, we decided to use J(r) for
the electrostatic part (relevant to the charge equilibra-
tion) and to add a term 〈qi〉〈qj〉[J(r) − 1/r] (with 〈qi〉
the average charge of ion i in α-quartz at ambient condi-
tions) to the short range potential term. This modifica-
tion is of course purely heuristically. However, it results
in reasonably accurate partial radial distribution func-
tions in α-quartz, and it also reproduces very well results
from the inconsistent treatment, which had been fitted
to first-principle calculations. All results presented in
this paper were obtained in very close agreement with
both the modified potential in an extended Lagrangian
formalism and the original inconsistent approach with di-
rect diagonalization. In the following we will refer to this
modification as the mDCG potential.

B. TS potential

In the potential suggested by Tangney and Scandolo
(TS), ionic charges are kept fixed, but the oxygen atoms

are polarizable. [26] The potential consists of a pair po-
tential

Uij =
qiqj

Rij
+ Dij [e

γij(1−rij/r0

ij) − 2eγij/2(1−rij/r0

ij)]. (3)

with additional dipole moments on the oxygen atoms,
which are calculated self consistently with the electric
field in every MD step. The dipoles will interact electro-
statically with the other dipoles in the system as well as
with the charges, which are both calculated via Ewald
summation. Following Wilson and Madden, [32] we in-
clude the effect of charge distribution overlap at short
distances. A force routine provided by Paul Tangney
was used for the TS potential.

III. RESULTS

A. Density of states in α-quartz

The vibrational density of states (DOS) is compared
for the different models, in order to obtain an estimate
for their accuracy of the lattice dynamics. The DOS,
g(ν), gives the normalized number of eigenstates in the
frequency range ν and ν + dν. It was shown recently by
first-principle calculations [24] that BKS does not repro-
duce the DOS of amorphous silica well, even though the
BKS structures turned out to be quite accurate. In a
large frequency range the nature of the excitations as de-
termined by the BKS potential differed significantly from
the one determined by ab initio methods. It is question-
able whether other effective force fields improve the sit-
uation. It has been suggested that good agreement can
(only) be found by employing shell models, which was
shown for the phonon dispersion curves of α-quartz by
Schober et al. [33]
Our calculations of the DOS were done at sufficiently
small temperatures where the harmonic approximation
is applicable. The DOS was determined by calculating
the Fourier transform of the mass-weighted velocity auto-
correlation function:

g(ν) =
1

NkBT

∑
j

mj

∞∫

−∞

dt 〈~vj(t).~vj(0)〉 ei2πνt. (4)

The most obvious disagreement between the lattice dy-
namics of a BKS simulation and an ab initio simulation
can already be seen directly in the vibrational DOS in
Fig. 2. The figure shows the DOS for α-quartz at 300 K
with ab initio data from Roma et al., [34] which was cho-
sen because no experimental measurement of the DOS
in quartz could be found. The figure reveals that the
inter-tetrahedral motions, the so-called rigid-unit modes,
which account for the lower frequency vibrations, show
a significant discrepancy between experiment and BKS.
This has already been known for amorphous systems [24].
In the higher frequency range, the double peak structure
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FIG. 2: Phonon Density of States in α-quartz at 300K. Com-
parison of BKS, mDCG, TS, and ab initio data. For clarity
the curves for BKS, mDCG and TS have been shifted up-
wards.

is due to intra-tetrahedral stretching vibrations. [35, 36]
The four oxygen atoms in an SiO4 tetrahedron move at
the higher frequency (“breathing mode”) as compared to
the central Si atom. At the lower frequency, two O-Atoms
oscillate in anti-phase to each other. The frequency of
these low-frequency tetrahedral oscillations to be shifted
from 32.1 THz in vitreous silica as determined by vitreous
silica [37] to around 30 THz in α-quartz as determined
by ab initio calculations. The lower peak of the BKS po-
tential, which coincides with the experimental frequency
quite well, is shifted rather to a higher frequency of about
33 THz in α-quartz.
The fluctuating charge model coincides slightly better
with ab initio at the lower frequencies. The experimen-
tally observed peaks at 11 THz and 22 THz are rea-
sonably well reproduced and the overall functional form
of g(ν) is similar to the experimentally measured curve.
The two peaks of the intra tetrahedral modes collapse
on just a single peak, but exist at roughly the right fre-
quency.
The best overall agreement for both the rigid unit modes
and the double peak is clearly shown by the fluctuat-
ing dipole potential. This is not too surprising as it was
parametrized to match ab initio forces and stresses. The
fluctuating dipole potential almost coincides with the ab
initio result in this case, only the tetrahedral breathing
mode is slightly shifted in frequency.

While we mainly focus on properties which are not
very well described by BKS, we also examined the elas-
tic properties of the three potentials as a function of
temperature. BKS was fitted to the elastic properties
of α-quartz at room temperature, so that temperature-
dependence of the elastic constants can be seen as an
additional, partly independent test for BKS. Some rep-

C11 C33 C44 C66 C12 C13

expt. 133.7 122.7 37.4 51.4 29.9 48.0

BKS 144.6 130.3 37.8 52.3 40.6 59.6

mDCG 108.3 108.1 37.9 37.8 23.8 43.0

TS 143.9 128.7 42.1 49.8 45.6 59.7

TABLE I: Elastic constants of β quartz at 1050 K in GPa.
Experimental data (expt.) from Ref. 38, taken from Fig. 9
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FIG. 3: Temperature dependence of the volume per unit cell
at the α-β transition. All of the three different model po-
tentials show qualitative agreement with experiment. The
quantitative agreement is best for the TS potential.

resentative results at temperature T = 1050 K are listed
in table I. It turns out that all three potentials repro-
duce the listed values within a reasonable standard vari-
ance, i.e., 7.0 GPa (BKS), 8.3 GPa (TS), and 11.3 GPa
(mDCG). Thus, this comparison does not discriminate
qualitatively between the three potentials.

B. The c/a anomaly at the α-β transition

The transition from α- to β-quartz is a displacive phase
transition, which occurs at a transition temperature of
Ttr = 846 K. The transition temperature in BKS is 740
K and turned out to be 712 K in TS and 581 K in mDCG.
Obviously all three potentials underestimate the transi-
tion temperature. The discrepancy is most significant
for the mDCG approach. For the determination of the
phase transition temperature, we proceeded similarly as
in Ref. 23, i.e., the fourth-order cumulant was evaluated
for different system sizes [39] and the Landau expansion
coefficients were determined at finite system size.
An important test for the different models is the tempera-
ture dependence of the volume close to the transition. As
can be seen in Fig. 3, the BKS potential coincides fairly
well with experiment, even though the volume is slightly
overestimated and the transition temperature slightly un-
derestimated as described in the previous section. The
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FIG. 4: Temperature dependence of the c/a ratio at the α-β
transition. For easier comparison the curves are shifted to
match at their respective transition temperature.

result of the mDCG potential is quite similar, although
the volume of both quartz phases is even bigger for this
potential. The best quantitative agreement with exper-
iment can be seen for the fluc-µ potential. The rather
smooth behavior at the transition is due to the fact that
the system sizes were so small that they allowed for the
existence of both of the two phases in a quite broad tem-
perature range around the transition.
The expansion at the transition is non-isotropic. A jump
was observed experimentally [38] to be of different mag-
nitude for different spatial directions, i.e., the ratio of
the lattice constants c and a show a discontinuity at the
transition. It was pointed out recently [23] that this dis-
continuity of the c/a ratio is absent in simulations based
on the BKS potential. This is shown in figure 4 together
with similar data for the mDCG and the TS potential.
The mDCG potential has a change in the slope at the
transition temperature. Thus there is at least an effect
of the transition in the c/a ratio, but it is still far away
from reproducing the experimental curve. In contrast,
the TS approach matches the experimental course of the
c/a ratio quite well. The relatively smooth behavior at
the transition is again owing to the broad range of phase
coexistence as discussed above.
A closer look at the origin of these differences can be done
by investigating the influence of the fluctuating charges
and the fluctuating dipoles on this behavior. If we use
the fluctuating charge potential with the charges fixed
on the average charges in α-quartz, the behavior of the
c/a ratio is only marginally different. The kink at Ttr

is still of the same shape as with fluctuating charges. In
general, there is not much difference between the average
charges in α-quartz, which are about 〈QSi〉 = 1.318e for
Si, and in β-quartz, where the value is 〈QSi〉 = 1.293e. So
it is justified to state that the fluctuations of the charges
barely affect the simulation, at least the kink in the c/a
ratio is certainly not a result of fluctuating charges but

FIG. 5: Structures of α-quartz (top row) and β-quartz (bot-
tom row) with dipoles from TS potential. Positions and
dipoles are shown in a snapshot (left column) and in an aver-
aged configuration (right column). Projection along the [100]
direction, [001] direction is vertical.

rather an effect of the pure two-body forces in the poten-
tial.
The same analysis for the fluctuating dipole potential
results in a different picture. The simulation crucially
depends on the fluctuating dipoles. When the dipoles
are constrained to the average values found in α-quartz,
the crystal would not transform to the β phase even at
temperatures as high as 1300K. Similarly, with fixed
average β quartz dipoles the crystal would stay in a β-
quartz configuration even at 300K.

This shows that the dipoles (or the interactions
parametrized as dipole interactions) contribute a major
part of the thermodynamic driving force. The dipole
configuration in α- and β-quartz is shown in Fig. 5 for a
random snapshot and for the averaged values. The latter
show the qualitative difference between the two phases:
while the average of the z-direction (vertical) is symme-
try forbidden in β-quartz, this component exists in the
average α-quartz dipoles and drives the transition.
The physical origin for the behavior of the c/a ratio in
quartz was investigated by Grimm and Dorner [40] and
Smith [41]. They showed that while most observation
associated with the transition can be explained by a sim-
ple tilting of rigid SiO4 tetrahedra, this cannot explain
the anomaly in the c/a ratio. Instead, it turned out to
be directly related to the deformation in the tetrahedra.
The shearing of the tetrahedra in the quartz phase is
also well established experimentally. [38, 40, 42] To test
if such a deformation is present in the simulations, one
can investigate the angles ϑOSiO formed by the silicon
atoms with their four neighboring oxygen atoms, which
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Exp. BKS mDCG TS

O1-Si-O2 110.5 107.5 108.6 110.1

O1-Si-O6 108.9 114.8 111.9 108.9

O1-Si-O5 108.8 108.2 108.8 109.1

O2-Si-O5 109.3 110.5 109.8 109.5

TABLE II: Bonding angles on the silicon atoms, experi-
ment [42] versus model potentials.

is done in table II. The comparison shows the angles
around the Si1 position in α-quartz at 298K, see the ex-
perimental paper by Kihara [42] for the definition of the
numbering. Table II shows that the deviation between
the ideal tetrahedral angle of 109.47 degrees and the cal-
culated angles has the correct sign and amplitude for
the fluctuating-dipole potential as compared with exper-
iment, in contrast to the BKS result. One can see that
the large deformation, that was also seen in the figures
above, is actually much too large compared to experi-
ment. Moreover, in three out of the four angles shown,
the aberration from the tetraeder angle that is predicted
by BKS has the wrong sign. Quantitatively, the root-
mean-square deviations between model potential and ex-
periment are 3.3 degrees (BKS), 1.8 degrees (mDCG),
and 0.3 degrees (TS).

C. Pressure induced quartz I↔II transition

The high-pressure behavior of α-quartz is not yet fully
understood neither theoretically nor experimentally. Tse
et al. [43] suggested a phase transformation into a crystal
of space group C2. For a recent discussion, we refer to
Ref. 44. The majority of polymorphs that are observed at
ambient to moderate pressures, such as cristobalite and
quartz as well as other polymorphs including tridymite
and coesite, are built up of SiO4 tetrahedra. [1] At higher
pressures dense forms containing SiO6 octahedra are ob-
served such as stishovite above 9 GPa, which has a ru-
tile type structure. Because of the relatively strong Si-O
bonding in silica, there are high kinetic barriers asso-
ciated with the transitions to stable phases containing
octahedrally coordinated silica at high pressure.
As the pressure is increased, the four-coordinated struc-
tures become increasingly unfavorable and eventually the
polymorph becomes unstable. For molecular dynamics
simulations employing the BKS potential it was shown
that a phase transition occurs, when α-quartz is com-
pressed to pressures above 22 GPa. [8, 11, 43] It is cru-
cial for the transition to occur that a constant pressure
regime with a fluctuating box geometry is used, as the
new phase can only be established from the α-quartz con-
figuration when the box is allowed to shear. The density
changes in a compression/decompression cycle are shown
in the equation of state in Fig. 6. Starting with the α-
quartz configuration at zero pressure, the pressure is in-
creased up to 21 GPa, where the system collapses from

14 16 18 20 22
V      [cm

3
mol

-1
]

0

5

10

15

20

25

P
   

   
[G

P
a]

Q
uartz II

α-Quartz

Q
uartz II b

Experiment

mDCG
TS

FIG. 6: Equation of state for α-quartz under pressure for
mDCG and TS. Experiment and BKS both undergo the tran-
sition near 22 GPa. [44]

the α-quartz configuration into the quartz II phase. The
transition is discontinuous in the volume and the new
phase remains stable upon further compression and due
to large hysteresis even on decompression below the tran-
sition pressure. The BKS behavior, which differs quali-
tatively on decompression from the two potentials shown
here, can be seen in Fig. 1 in Ref. 44 For the mDCG and
TS potentials the equation of state for different quartz
phases is shown in Fig. 6. The phase transition in mDCG
occurs, compared to BKS, at a slightly higher pressure
of 25 GPa, and the volume of both the α-quartz and
the quartz II phase agree very well with the BKS re-
sults. Nevertheless, the quartz II phase does not remain
stable upon decompression, but the system undergoes a
reversible phase transition at 21 GPa to a structurally
similar phase named quartz II b in the figure. This phase
has a smaller density than the BKS quartz II phase at
the same pressure and reverts to the α-quartz phase at
4 GPa. These findings for the mDCG potential are also
valid for TS. As shown in the same figure, the variation
of the volume with pressure is identical to mDCG with
respect to its qualitative features. The transition tem-
perature to quartz II is 27 GPa for TS, and it has to be
noted that the transition only occurs for small systems.
For larger systems the α-quartz configuration is stabi-
lized for even higher pressures. The transition to quartz
II b occurs also at 21 GPa and the transition back to
α-quartz will not take place until 2 GPa.
The similar behavior of the three model potentials at the
quartz II transition. The apparent similarity of the crys-
talline structure emerging from these simulations gives
the simulations a certain credibility for predictions to-
wards experiment. In experiments, the structure of a
crystal can be characterized by its diffraction pattern,
such as by the energy dispersive x-ray diffraction spec-
tra [45]. In simulations the structure factor can be cal-
culated as well, and the resulting Bragg spacings can be
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FIG. 7: Interplanar spacing for the compression of α-quartz
in experiment and simulation. Experimental data by Kingma
et al. [45]

read from the peak positions. In Fig. 7 the calculated
interplanar spacings are shown and compared to the ex-
perimental data. It can be summarized that the fea-
tures of the experimental spectrum agree quite well with
the simulations. Yet there appear to be two qualitative
discrepancies in the figure. Near 3.6 Å, the experiment
shows a double peak whereas the simulations only show
a single peak. There is however a second peak in the sim-
ulation 0.05 Å below the one shown. We suppressed this
second peak to improve visualization. Thus, the differ-
ence between simulation and experiment is not necessar-
ily qualitative but perhaps only quantitative in nature.

In summary, it seems that all the three model poten-
tials support the structure seen by Kingma. Still these
results are questionable as the models were parametrized
for ambient conditions and are not verified to reproduce
the real behavior under such extreme pressures. Find-
ing the transition path ways with ab initio might be too
time consuming as the transition is only quasi-displacive,
i.e., significant thermal activation is required although no
bonds are destroyed. After α-quartz becomes unstable,
several 1,000 MD steps have to be simulated before the
new, stable structure is reached.

D. Stability of β-cristobalite

Quartz is not the only polymorph that is (meta) stable
at ambient conditions. Cristobalite, a cubic polymorph,
is found to be stable as well during accessible experi-
mental time scales. [46, 47] A model potential that is
used to mimic the behavior of silica should be able to
reflect the experimentally observed stabilities. In some
cases, the observation of stability in a simulation might
be fortuitous as it could be the consequence of periodic
boundary conditions and/or the number of atoms used.
For example, the phase into which the system would like
to convert is not compatible with the number of atoms
used in the simulation or it cannot be accessed without
a major reconstruction of the cell shape. This issue will
be discussed in more detail in this section with a focus
on cristobalite that shows significant effects depending
on the choice of the periodic boundary conditions.
For the simulation of a crystalline system, the crystal
structure has to be placed inside the box in a way that
the periodic images fit to each other at the box ends.
For the initial configuration of a simulation the atom po-
sitions are chosen to be identical with experimental crys-
tallographic data such that the atoms were set onto ideal
lattice positions and are equilibrated. For many systems
and also for the case of cristobalite there are different
ways to arrange such an initial configuration.
The most natural configuration is according to the usual
description of cristobalite as a diamond structure for
the silicon atoms with connecting oxygen atoms between
each neighboring pair of silicon atoms. This would place
the [100] crystal direction parallel to the z axis of the
simulation box, and the box geometry would be cubic.
Alternatively, one can also use the ABCABC layering of
sheets of hexagonal rings in the cristobalite structure,
which is also a common representation as it leads to
tridymite when the layers are stacked in an ABAB or-
der. (To be precise, the silicon atoms are stacked as
AABBAABB.) This layering is seen along the [111] di-
rection in the crystal, and accordingly would place this
direction parallel to the z axis of the simulation box when
the layers are stacked in the xy plane.
Both geometries are completed by the periodic bound-
ary conditions to form an infinite cristobalite crystal,
and therefore they are equivalent regarding the static
structure. However, the connectivity of the atoms at the
boundary is different and therefore the two geometries
do not sample equivalent lattice vibrations.
This difference becomes obvious in the simulation of β-

cristobalite. When relaxing the BKS crystal at T = 1273
K and zero external pressure, where cristobalite is con-
sidered to be thermodynamically stable, [1] the volume
of the simulation quickly stabilizes to a value close to the
experimental value of VSiO2

= 45.25 Å3. In contrast with
the second configuration, which had the [111] direction
parallel to the z axis, the observed volume is, if at all,
metastable only for a short period of time, before densifi-
cation of the system takes place. After 2 ps the system is
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FIG. 8: Time evolution per SiO2 unit VSiO2
for the two ge-

ometries with three different potentials.

FIG. 9: Averaged structure as in the ideal cristobalite phase
(left), which is stable in this configuration in mDCG and TS,
and in the compressed phase (right) after a short simulation
run with the BKS potential starting from the ABC setup.

stable in a phase which is much denser than cristobalite.
It was tested that this state remains stable for more than
a nanosecond, which is not shown in the picture.
Obviously in contrast to this both the fluctuating charge
and the fluctuating dipole potential do not exhibit such
a behavior, but remain stable in the cristobalite phase
regardless of the initial condition. Apparently the cristo-
balite phase is unstable in the BKS potential, but appears
to be metastable if certain modes are prohibited by the
periodic boundary conditions.
The examination over a larger temperature range yields
a similar picture. Experimentally it is known that β-
cristobalite undergoes a phase transition upon cooling to
α-cristobalite, however, this transition is experimentally
troublesome. Measurements for the transition temper-
ature range from 393 K to 545 K. [1] The simulation
results for the cubic setup as shown in Fig. 10 exhibit a
far broader spread of transition temperatures, while the
transition temperature for TS model agrees best with ex-
periment. However the drawback for this model is that
the transition is not reversible on the time scale of the
simulation. Even though the α-phase is stable at low
temperatures and rearranges to the β-phase above the
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FIG. 10: Volume per SiO2 unit against temperature for the
three different potentials with the cubic setup. Crosses denote
experimental data in the α and the β-phase.
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FIG. 11: Volume per SiO2 unit against temperature for the
three different potentials with the ABC setup. Crosses denote
experimental data in the α and the β-phase. The dotted lines
indicate non crystalline phases.

transition point, the simulation would not find the α-
phase by itself when cooling down β-cristobalite. The
“artificial” phase has an energy that is only 10 K higher
than that of α-cristobalite for classical systems at small
temperatures. Given this small energy difference and
given the smaller volume of the artificial phase, it may
well be that the quantum-mechanical ground state en-
ergy adds significantly to favor α cristobalite over the
artificial phase.

Fig. 11 shows the equation of state for the rotated sys-
tem with the ABC setup. As seen above for a temper-
ature of 1273 K, the disability of the BKS potential to
form a stable β-cristobalite configuration with the ABC
setup holds for the whole temperature range under con-
sideration. Also for the mDCG potential the equation of
state differs from the case of the cubic setup and shows
only a small stability range for β-cristobalite as a com-
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FIG. 12: Stishovite Equation of State. Solid circles are the
data of Ross et al. [48], Hemley et al. [49], and Andrault
et al. [50]; open squares are the data of Mao et al. [51]

parison of figures 10 and 11 reveals. Only the results of
the TS potential are essentially unaffected by the specific
choice of how the cristobalite geometry is set up.

E. Stishovite

The quartz and cristobalite phases studied in this
paper are composed of corner-sharing SiO4 tetrahedra,
which is the usual connectivity in the low-pressure
phases. Stishovite in contrast is a polymorph that
often serves as a prototype phase having octahedrally
coordinated silicon. It is often assumed [25, 26] that with
the fluctuating charge approach the ability of charges
to adapt to the local configuration is especially helpful
for the transferability between differently coordinated
structures. It is also likely that the degree of ionicity
changes with pressure. Therefore, one might expect
that the fluctuating charge potential fits to the available
experimental data best.
At room temperature, stishovite is stable for high
pressures, i.e., above 8 GPa. It was also found to be
metastable at ambient pressures. It was first synthesized
in the laboratory [52] and later discovered in association
with coesite. [53] Stishovite has the rutile structure,
which consists of infinite chains of edge-shared SiO6

octahedra parallel to the c-axis. Each oxygen atom is
coordinated by three silicon atoms. [49]
The equation of state for stishovite under pressure is
shown in Fig. 12. The agreement in the low pressure
range is relatively good for the BKS potential, while
neither the fluctuating dipole and nor the fluctuating
charge potential produce a stable stishovite phase at
zero pressure. When increasing the pressure, these
two potentials constantly underestimate the density
of stishovite, while the volume of the BKS simulation
deviates more for higher pressures.

0 20 40 60
p [GPa]

0.61

0.62

0.63

0.64

0.65

c/
a

Exp. (Ross, Hemley, Andrault)
Exp. (Mao)
BKS
mDCG
TS

FIG. 13: c/a ratio in stishovite against pressure. Experimen-
tal data as in Fig. 12. Note that the c/a and the volume
are continuous at the phase transition from tetragonal to or-
thorhombic stichovite.

An interesting feature of stishovite under pressure is
a different compressibility in the a and c direction,
which is shown in Fig. 13. This plot shows again a very
good agreement of the BKS data with the experimental
results. The effect of the different compressibility in
mDCG and TS is rather overestimated, while the TS
potential again improves in the quantitative prediction
for higher pressures. The result of the fluctuating charge
potential shows no improvement over neither of the two
other potentials.

1. High-Pressure Behavior

Shortly after the discovery of stishovite, a major ques-
tion evolved around possible transformations to a denser
structure at high pressures. Indeed, a pressure-induced
phase transition near 50 GPa was suggested by crys-
tal chemical arguments [54] and first-principle calcula-
tions, [55, 56] and later confirmed experimentally. [57–60]

At the transition, the SiO6 octahedra are only slightly
tilted, with the result that the lattice constants a and
b, which are identical in the low pressure rutile-type,
tetragonal phase, have different values in the CaCl2-type
orthorhombic stishovite. This tilting has the same sym-
metry as the stishovite B1g vibrational mode, which was
identified as the pressure-induced soft mode that drives
the transition. [54] By means of a Landau expansion, Car-
penter et al. [60] found a classical second-order character.
The transition has almost no impact on the volume or the
c/a ratio, which is shown in the paper by Carpenter.
However molecular dynamics models were not able to
reproduce the transition pressure. They only found the
transition at pressures in the megabar region. [13, 55, 61]
As a comparison between molecular dynamics and exper-
iment the elastic constants can be analyzed. Carpenter
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Simulation data is compared to the result of a Landau expan-
sion by Carpenter et al. [60]

et al. [60] used a Landau expansion to generate expres-
sions for the elastic constants of stishovite with pressure.
Fig. 14 shows the relevant shear modulus B11-B12, which
softens on approach of the transition, as the B1g mode
directly contributes to it. The Birch coefficients Bij have
to be considered for a stability analysis rather than the
elastic constants Cij , when the system is observed un-
der external pressure. [62] In the case of the two coef-
ficients needed here, they are related to each other as
B11 = C11 − p and B12 = C12 + p.
One can see that the BKS potential and the fluctuat-
ing dipole potential show a softening towards pressures
of over 100 GPa, which is in agreement to the molecular
dynamics simulations cited above, and far away from the
50 GPa measured experimentally. In contrast the fluc-
tuating dipole potential predicts the transition observed
experimentally at 50 GPa [60] almost perfectly.
This prediction can be verified by plotting the lattice con-
stants a and b, which coincide in a tetragonal lattice and
differ in an orthorhombic lattice. In Fig. 15 the course of
the lattice constants with pressure is compared to experi-
mental data. The transition is clearly visible at a pressure
of around 50 GPa in both the fluctuating-dipole simula-
tion and experiment. The lattice constant is overesti-
mated constantly in the simulation, which was already
obvious from the results for the volume, see Fig. 12.
However the agreement with experiment in this phase
transition is far better than in the other model poten-
tials. This is rather surprising, as it was parametrized
for tetrahedrally coordinated silicon only.

IV. CONCLUSIONS AND OUTLOOK

In this work, we compared three different model poten-
tials for the simulation of pure silica. The model potential
were a commonly used two-body potential parametrized
by van Beest, Kramers, and van Santen (BKS), [4] a fluc-
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]

TS
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FIG. 15: Lattice constants a and b against pressure. Experi-
mental data as in Fig. 12.

tuating charge potential, and a fluctuating dipole poten-
tial suggested by Tangney and Scandolo. [26] The fluc-
tuating charge potential (mDCG) was a modified version
of the energy surface proposed by Demiralp, Cagin, and
Goddard such that it reflected the equation of state and
g(r) in α-quartz reasonably well. (Also later results by
the same authors, stating “improved” values turned out
to produce meaningless results in our runs, unlike the eas-
ily reproducible data on TiO2 published in Refs. 30, 31.)

In the TS potential, the dipoles can adjust to the lo-
cal electrical field and likewise the charges in the mDCG
potential. Thus, these two approaches incorporate im-
plicitly many-body interactions. The simulation results
obtained with BKS, TS, and mDCG were compared to
a large set of experimental data available for different
SiO2 polymorphs. Special attention was paid to those
experiments that cannot be reflected satisfactorily with
BKS. The mDCG potential leads - if at all - to an almost
negligible improvement over BKS. The density of states
(DOS) in α-quartz and the stability of β-cristobalite is
slightly improved in mDCG with respect to BKS, but in
some cases, i.e., the elasticity of β quartz or the c/a ratio
in stishovite, BKS outperforms mDCG.

Conversely, the TS potential remedies all the quali-
tative failures of the BKS potential, including the c/a
anomaly at the α−β transition in quartz, the DOS in α-
quartz, the stability of cristobalite and tridymite, as well
as the shape of the SiO4 units in quartz at room tem-
perature. Unfortunately, the TS potential only performs
systematically better than BKS for polymorphs in which
the silicon atoms are four coordinated. The pressure-
induced transition from α-quartz to quartz II occurs at
too high pressures using TS. Also the equation of state
and the c/a ratio in stishovite is reproduced more satis-
factorily with BKS than with TS. On the other hand, TS
predicts the correct transition pressure P ∗ for the soft-
mode driven second-order transition in stishovite, while
BKS overestimates that value by more than 100%. In
conclusion, one may recommend TS for simulations in



11

which tetrahedral SiO4 units connect via corner sharing
oxygen atoms.

We want to conclude our paper by commenting on
some preliminary results on the piezoelectrical coeffi-
cients that one obtains with the TS potential. The
details of this unfinished study will be discussed else-
where, because many methodological points need to be
addressed for the calculation of electro-mechanical coeffi-
cients. It seems as though TS reproduces piezoelectrical
coefficients only well if the external electrical field is not
coupled to the dipoles. This observation suggests that
Tangney and Scandolo parametrized effects that are due
to three-body interactions (or higher order) effectively
into the dipole interactions. Indeed, we observe a large
correlation between the magnitude of the dipoles and the
Si-O-Si bond angle, which supports this suspicion. Thus,
despite the significant improvements thanks to the TS
potential, there is still room for further advancement in
the construction of reliable model potential for silica and

ultimately silicates. We hope that our study constitutes
a reasonable reference check list for future examinations
of SiO2 model potentials.
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