Martin H. Müser and Marcus Müller,

**High-order sampling schemes for path integrals and Gaussian chain simulations of polymers**,

J. Chem. Phys. **142**, 174105 (2015)

DOI: 10.1063/1.4919311

(submitted version).

# Tag: Path Integrals

Path Integral and Related Quantum Simulations

## A comparative study of the centroid and ring polymer molecular dynamics

A. Perez, M. E. Tuckerman, and M. H. Müser,

** A comparative study of the centroid and ring polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals,**

J. Chem. Phys. **130**, 184105 (2009); accepted version, DOI:10.1063/1.3126950.

## A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators

A. Jones, A. Thomas, J. Crain, M. H. Müser, and G. J. Martyna,

** A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators: Application to solid xenon, **

Phys. Rev. B **79**, 144119 (2009); submitted version.

DOI information: 10.1103/PhysRevB.79.144119.

## Many-body quantum dynamics by adiabatic path-integral molecular dynamics: Disordered Frenkel Kontorova models

F. R. Krajewski and M. H. Müser,

** Many-body quantum dynamics by adiabatic path-integral molecular dynamics: Disordered Frenkel Kontorova models, **

Comput. Phys. Comm. **169**, 426-429 (2005). (preprint).

## Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model

F. R. Krajewski and M. H. Müser,

** Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model: A path-integral molecular dynamics study,**

J. Chem. Phys. 122, 124711 (2005). (preprint).

## Quantum creep and quantum creep transitions in 1D sine-Gordon chains

F. R. Krajewski and M. H. Müser,

** Quantum creep and quantum creep transitions in 1D sine-Gordon chains, **

Phys. Rev. Lett. **92**, art. no. 030601 (2004); cond-mat/0305050.

## On new efficient algorithms for PIMC and PIMD

M. H. Müser,

** On new efficient algorithms for PIMC and PIMD,**

Comput. Phys. Comm. ** 147**, 83-86 (2002).

## Comparison of two non-primitive methods for path integral simulations

F. Krajewski and M. H. Müser,

** Comparison of two non-primitive methods for path integral simulations: Higher-order corrections vs. an effective propagator approach, **

Phys. Rev. B **65**, 174304 (2002); preprint: cond-mat/0108183.

## On quantum effects at the liquid fluid transition in Helium

M. H. Müser and E. Luijten,

** On quantum effects at the liquid fluid transition in Helium, **

J. Chem. Phys. **116**, 1621-1628 (2002); cond-mat/0105283.

## Elastic constants of quantum solids by path integral simulations

P. Schöffel and M. H. Müser,

** Elastic constants of quantum solids by path integral simulations,**

Phys. Rev. B **63**, 224108 (2001); cond-mat/0009379 .

## Material properties of quartz below the Debye temperature

M. H. Müser,

** Material properties of quartz below the Debye temperature:
A path-integral molecular dynamics study,**

J. Chem. Physics

**114**, 6364 (2001); cond-mat/0011137.

## Path integral Monte Carlo simulation of silicates

Chr. Rickwardt, P. Nielaba, M. H. Müser, and K. Binder,

** Path integral Monte Carlo simulation of silicates,**

Phys. Rev. B ** 63**, 045204 (2001); cond-mat/0010315.

## Second-order reentrant phase transition in the quantum anisotropic planar rotor model

B. Hetenyi, M. H. Müser, and B. J. Berne,

** Second-order reentrant phase transition in the quantum anisotropic planar rotor model,**

Phys. Rev. Lett. **83**, 4606 (1999).

## Path-integral simulations for rotors: Theory and applications

D. Marx and M. H. Müser,

** Path-integral simulations for rotors: Theory and applications,**

invited review article in J. Phys.: Condens. Matter **11**, R117-R155 (1999).

## Orientational quantum melting and reentrance of linear rotors pinned onto surfaces

M. H. Müser and J. Ankerhold,

** Orientational quantum melting and reentrance of linear rotors pinned onto surfaces,**

Europhys. Lett. **44**, 216 (1998).

## Zero-temperature phase transitions in molecular solids by diffusion Monte Carlo

M. H. Müser,

** Zero-temperature phase transitions in molecular solids by diffusion Monte Carlo,**

in * Computer Simulation Studies in Condensed Matter Physics XI*

Eds. D. P. Landau, K. K. Mon, and H. B. Schüttler (Springer Verlag, Berlin, 1998).

## Circumventing the pathological behavior of path-integral Monte Carlo for systems with Coulomb potentials

M. H. Müser and B. J. Berne,

** Circumventing the pathological behavior of path-integral Monte Carlo for systems with Coulomb potentials,**

J. Chem. Phys. **107**, 571 (1997).

## The path-integral Monte Carlo method for rotational degrees of freedom

M. H. Müser,

** The path-integral Monte Carlo method for rotational degrees of freedom,**

in * Computer Simulation Studies in Condensed Matter Physics IX*

Eds. D.P. Landau, K.K. Mon, and H.B. Schüttler (Springer Verlag, Berlin, 1997).

## The path-integral Monte Carlo of rigid linear molecules in three dimensions

M. H. Müser,

** The path-integral Monte Carlo of rigid linear molecules in three dimensions,**

Molecular Simulation **17**, 131 (1996). (preprint)

## The path-integral Monte Carlo scheme for rigid tops

M. H. Müser and B. J. Berne,

** The path-integral Monte Carlo scheme for rigid tops: Application to quantum rotator phase transition in solid methane,**

Phys. Rev. Lett. **77**, 2638 (1996).

## The path-integral Monte Carlo of rigid linear molecules in three dimensions

M. H. Müser,

**The path-integral Monte Carlo of rigid linear molecules in three dimensions**,

Molecular Simulation 17, 131 (1996). (preprint)

## Path-integral Monte Carlo of crystalline Lennard-Jones systems

M. H. Müser, P. Nielaba, and K. Binder,

** Path-integral Monte Carlo of crystalline Lennard-Jones systems,**

Phys. Rev. B **51**, 2723 (1995).

## Low-temperature anharmonic lattice deformations near rotator impurities

M. H. Müser, W. Helbing, P. Nielaba, and K. Binder,

** Low-temperature anharmonic lattice deformations near rotator impurities: A quantum Monte Carlo approach,**

Phys. Rev. E ** 49**, 3956 (1994).