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Abstract

The properties of various algorithms, estimators, and high-temperature density matrix (HTDM) decompositions relevant
for path integral simulations are discussed. It is shown that Fourier accelerated path integral molecular dynamics (PIMD)
completely eliminates slowing down with increasing Trotter numberP . A new primitive estimator of the kinetic energy for use
in PIMD simulations is found to behave less pathologically than the original virial estimator. In particular, its variance does
not increase significantly withP . Two non-primitive HTDM decompositions are compared as well: one decomposition used
in the Takahashi Imada algorithm and another one based on an effective propagator. In the latter case, effective potentials are
constructed between two particles such that two-particle propagators are reflected exactly—even at finiteP .  2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Path integral (PI) techniques are widely used to
simulate condensed matter systems at low tempera-
tures where the quantum mechanical nature of ionic
motion becomes relevant. Monte Carlo used to be the
method of choice to treat such systems [1], but re-
cently new ideas made path integral molecular dynam-
ics (PIMD) [2] an attractive alternative. In order to ren-
der PI simulation into a powerful tool several require-
ments need to be satisfied.

(i) Good sampling: The correlation time of observ-
ables should scale linearly with Trotter numberP

(as measured in CPU time).
(ii) Good estimators: The variance of an estimator

should not increase withP .
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(iii) Good decompositions of the high-temperature
density matrix (HTDM) underlying the PI simu-
lation: Convergence to the quantum limit should
be fast and/or the amplitude of finiteP correc-
tions should be small.

These three issues will be discussed here. The focus
will be on recent developments in PIMD although
most results are relevant for PIMC as well.

2. Methods and results

An important step in making PI simulations acces-
sible to molecular dynamics (MD) was the realization
that thedynamic masses of the beads constituting the
chain (which represents the quantum mechanical point
particle) can be chosen arbitrarily [2]. This is because
the physical massm of the particle is already reflected
in the harmonic spring connecting two adjacent beads

0010-4655/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(02)00221-7



84 M.H. Müser / Computer Physics Communications 147 (2002) 83–86

of the chain and MD is merely used to generate the
proper canonical distribution of the beads’ positions.
An efficient choice for quantum solids is to attribute
dynamic massesmq to the eigenmodesq instead of
attributing them to individual beads. By doing so, it
is possible to collapse all time scales (except for long
wavelength vibrations and diffusion) in simple solids
with the choice

mq = (kq + kE)m/kE, (1)

wherekE reflects the harmonic coupling of an atom to
its lattice site within the Einstein picture of solids and
kq is the stiffness associated with the eigenmode in a
free chain. Similarmqs will also be useful for quantum
fluids. Here I want to show that such a treatment
satisfies the requirement (i) from the introduction if a
Langevin thermostat (LT) is applied. The treatment is
similar to the pioneering work by Singer and Smith [3]
except for the crucial choice of dynamic masses. Their
paper can yet serve as an introduction to the present
rather condensed presentation.

The reason why the LT (Singer and Smith call the
resulting dynamics “Brownian”) is a good thermostat
in the given context is due to the fact that most
eigenfrequenciesω of the model collapse and hence
the qualityQ = γ /ω of each oscillator is the same
whereγ denotes the friction term in the LT. Hence the
time after which modes have “forgotten” their original
state is similar for the chain’s internal modes and its
center of mass mode. It is not clear whether different
thermostating, e.g., in terms of Nosé–Hoover chains
attached to each bead [4], also produces a similarly
narrow distribution ofQs. I want to note in passing
that even the time scale of the strain tensor’s motion
can be adjusted to the “atomic” time scales by using
appropriate inertia associated with the box geometry.
This makes the use of the Parrinello–Rahman method
very efficient for the evaluation of elastic properties of
quantum solids like3He [5].

In Fig. 1 the time autocorrelation functionCV V (t)

of the potential energy per particleV , namely

CV V (t) = 〈
V (t)V (0)

〉
, (2)

is shown for various Trotter numbers. The test model
is liquid neon. Since I am not interested in pre-
cise thermodynamic values at this point, a simple
Lennard–Jones potential with standard parametersε =
36.68 kBK and σ = 2.787 Å is chosen. The inter-
actions are cut off atrc = 5 Å and N = 256 atoms

Fig. 1. Autocorrelation functionCV V (t) of the potential energyV
of liquid neon as a function of timet for various Trotter numbersP .
The arrows indicate by how much theP = 1 andP = 2 curve have
to be shifted upwards.

were used. Simulations are carried out at a tempera-
ture T = 26.8 K and with a fixed atomic volume of
27.556 Å3. It can be seen that〈V 〉2 (the plateau value
of CV V (t) at large timest) differs between smallP
and largeP reflecting the role of quantum effects.
However, the shape ofCV V (t) is relatively indepen-
dent ofP indicating the optimum elimination of slow-
ing down with increasingP : eigenfrequencies and
required time step�t independent ofP , generation
of neighbor lists basically independent ofP , evalu-
ation of forces and propagation of coordinates linear
in P (large prefactor, simultaneous/parallel update of
Fourier modes), and Fourier transforms of forces into
reciprocal spaceP logP (small prefactor).

Fig. 1 also shows that requirement (ii) is satisfied
for the potential energy. This behavior cannot be
guaranteed for observables that are not orthogonal
in coordinate space like the kinetic energy. This
discussion goes back to Herman et al. [6] who pointed
out the failure of the so-called primitive estimator
Tkin,prim for the kinetic energy

Tkin,prim = 1.5kBT 2P 2 − 〈Vchain〉/N , (3)

where 〈Vchain〉 denotes the expectation value of the
potential energy in the springs connecting adjacent
beads. The variance of the primitive estimator in-
creases withP . At the time, efficient sampling algo-
rithms had not yet been devised, which made the situ-
ation even worse.

Recently it was claimed that the primitive estimator
can be significantly improved if the term 1.5kBT 2P 2

is replaced with the actual dynamic kinetic energy of
the PIMD simulation. This modified estimator will
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be denoted byK. The variance ofK is even larger
than that ofTkin,prim. However, the final statistical
properties are quite favorable owing to the dynamic
reshuffling of the dynamic kinetic energy andVchain
and the resulting fortuitous but systematic cancellation
of statistical fluctuations. This behavior is discussed
by analyzing the time-dependent (squared) variance

σ 2
K(t) =

〈{
1

t

t∫
0

dt ′K(t ′) − 〈K〉
}2〉

, (4)

which gives the expected deviation of a finite time
average ofK with respect to an ideal, infinitely
long average. The fast relaxation ofσ 2

K is illustrated
for two different P s in Fig. 2. It can be seen that
σ 2

K(t) decreases significantly after a typical inverse
vibrational frequency. The standard deviation in the
important limitt → ∞ falls off as usual proportionally
to 1/

√
t at times larger than the largest inverse

frequency of a long wavelength vibration. For the
modified estimator the prefactor is rather insensitive
to P while the prefactor for the original estimator
increases linearly withP .

One may argue that the virial estimator, whose use
for PI simulations was suggested by Herman et al. [6],
has properties similar to the modified estimatorK.
However, an additional advantage ofK is that the
ideas invoked here can be extended to higher moments
of Vchain. Thus a guideline is given how to evaluate
more efficiently the specific heat. Furthermore, it
seems to us that the virial estimator deviates from the
primitive estimator if the number of unbound quantum
states increases; the most extreme example being the

Fig. 2. Time-dependent variance of primitive estimatorTkin,prim
(data connected with broken lines) and modified estimatorK (solid
lines) for two different values ofP .

Table 1
Kinetic energy as obtained with (modified) primitive estimatorK

and virial estimatorTvir for various atomic volumesv at T =
26.8 K. The thermal expectation value ofV is inserted as well.
Energies inkBK per atom. Errors±0.1

v [Å3] 20.617 (solid) 27.556 (fluid) 55.112 (gas)

〈K〉 62.8 51.2 44.3
〈Tvir 〉 62.7 48.9 35.5
〈V 〉 −154.8 −125.2 −67.55

ideal gas for which the virial estimator always gives
an average kinetic energy of zero while the primitive
estimator gives the correct answer 1.5kBT . Some
representative results are presented in Table 1 for neon.
All simulations were run with the same code and same
set of parameters. Merely the volume per atomv was
varied.〈K〉 for the fluid system agrees well with the
experimental value of 52.8 kBK that was obtained for
a similar density and temperature [7].

I will now turn to the discussion of criterion (iii),
namely the issue of good decompositions of the
HTDM. It is well known that the regular decom-
position of the HTDM leads to systematic errors
of order 1/P 2 for well-behaved potentials. Taka-
hashi and Imada proposed the use of higher-order
decompositions of the HTDM with resulting system-
atic deviations of order 1/P 4. Another approach is to
use effective potentials that are derived from an effec-
tive propagator (EPr). This propagator is constructed
such that it produces correctly one and two-particle
imaginary time correlation functions in the limit of
small densities even for finite Trotter numbersP [1].
A detailed description of the procedure is given in
Ref. [8]. It is yet worth pointing out that the Taka-
hashi Imada (TI) and the EPr approach are conceptu-
ally different: In an EPr path integral simulation, one
tries to generate radial distribution functions that are
in the quantum limit (at least in a low-density approx-
imation). Evaluating observables such as the thermal
expectation value of the potential energy〈Vpot〉 is done
by simply evaluating the operator of the potential en-
ergy at the given distance. In a HOA path integral sim-
ulation, generalized estimators have to be defined even
for those observables that are orthogonal in real space.
This last comment is also relevant for the calculation
of radial distribution functions, which is discussed in
more detail in Ref. [8].
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Fig. 3. Relative error of the potential energy for anN = 5 chain well
below the Debye temperature as a function of the Trotter numberP

for the regular primitive decomposition (PA), the Takahashi Imada
(TI) approach and the effective propagator (EPr) method.

The different approaches were applied to a linear
chain of harmonically coupled atoms. Hence the
resulting path integral representation consists of a
(1+ 1)-dimensional harmonic solid and convergence
of thermal expectation values to the quantum limit
P → ∞ can be analyzed analytically. The main
property to investigate is the deviation of the thermal
expectation value from the quantum limit as a function
of P . Such an analysis is shown in Fig. 3. It can be
seen that the EPr approach gives very good estimates,
in particular the prefactor of the 1/P 2 corrections
is small. However, at sufficiently largeP , the TI
approach (which is easier to implement than EPr)
converges must faster. Similar results were obtained
for less well-behaved potentials such as the Lennard–
Jones potential in a separate study [8].

3. Conclusions

In this paper three requirements were formulated
for an efficient path integral code:

(i) no slowing down withP ,
(ii) no increasing variance of estimators withP , and
(iii) fast convergence withP to the quantum limit.

It was shown that a Fourier accelerated PIMD code
in which appropriate masses are given to the eigen-
modes satisfies criterion (i)—at least if thermostated
in terms of Brownian/Langevin dynamics. The use of
PIMD furthermore allows one to use a new primitive
kinetic energy estimator whose variance does not in-
crease withP . Moreover, the estimator can be used ad-
equately in the gas or fluid phase, where we observed
difficulties with the virial estimator. Generalizations of
the invoked ideas are likely to make the calculation
of specific heat from fluctuation relations much more
feasible than at present. Criterion (iii) is satisfied best
by employing the ideas of Takahashi and Imada. How-
ever, utmost care has to be taken when evaluating ther-
mal expectation values. Corrections have to be applied
to most observables including the radial distribution
function.
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