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Abstract

The properties of various algorithms, estimators, and high-temperature density matrix (HTDM) decompositions relevant
for path integral simulations are discussed. It is shown that Fourier accelerated path integral molecular dynamics (PIMD)
completely eliminates slowing down with increasing Trotter numbeA new primitive estimator of the kinetic energy for use
in PIMD simulations is found to behave less pathologically than the original virial estimator. In particular, its variance does
not increase significantly witl®. Two non-primitive HTDM decompositions are compared as well: one decomposition used
in the Takahashi Imada algorithm and another one based on an effective propagator. In the latter case, effective potentials are
constructed between two particles such that two-particle propagators are reflected exactly—evenratfir@02 Elsevier
Science B.V. All rights reserved.
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1. Introduction (iii) Good decompositions of the high-temperature
density matrix (HTDM) underlying the PI simu-
Path integral (PI) techniques are widely used to lation: Convergence to the quantum limit should

be fast and/or the amplitude of finite correc-

simulate condensed matter systems at low tempera- X
tions should be small.

tures where the quantum mechanical nature of ionic
motion becomes relevant. Monte Carlo used to be the
method of choice to treat such systems [1], but re-
cently new ideas made path integral molecular dynam-
ics (PIMD) [2] an attractive alternative. In order to ren-
der PI simulation into a powerful tool several require-
ments need to be satisfied.

These three issues will be discussed here. The focus
will be on recent developments in PIMD although
most results are relevant for PIMC as well.

2. Methodsand results

(i) Good sampling: The correlation time of observ-
ables should scale linearly with Trotter numiger
(as measured in CPU time).

(i) Good estimators. The variance of an estimator
should not increase withR.

An important step in making PI simulations acces-
sible to molecular dynamics (MD) was the realization
that thedynamic masses of the beads constituting the
chain (which represents the quantum mechanical point
particle) can be chosen arbitrarily [2]. This is because
the physical masa of the particle is already reflected
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of the chain and MD is merely used to generate the w1307 apoq ]
proper canonical distribution of the beads’ positions. 15686 - g\;; +550 oP=2
An efficient choice for quantum solids is to attribute — M ey 11 2P=16 4
; ; : X 15684 [ Cony ¥y [HIT oP=32 -

dynamic masses:, to the eigenmodesg instead of e N |
attributing them to individual beads. By doing so, it ~ 15682 - {Mﬂ%a Pt
is possible to collapse all time scales (except for long & s TTCo, 5e85e50
wavelength vibrations and diffusion) in simple solids 15680 |- &jjﬁﬂﬂ%ﬁmﬂ 1
with the choice I e ]

1678 e e e
my = (kg +kg)m/kg, 1) t [ps]

wherek g reflects the harmonic coupling of an atom to
its lattice site within the Einstein picture of solids and - : ) )

. . . . . . of liquid neon as a function of timefor various Trotter numberg.
kq Is thQ stlff_ne_ss assoc_:lated with the eigenmode in a The arrows indicate by how much tiRe= 1 and P = 2 curve have
free chain. Similam,s will also be useful for quantum (o pe shifted upwards.
fluids. Here | want to show that such a treatment

satisfies_ the requirement (_i) from_ the introduction ifg were used. Simulations are carried out at a tempera-
Langevin thermostat (LT) is applied. The treatmentis e 7 — 26.8 K and with a fixed atomic volume of
similar to the pioneering work by Singer and Smith [3] 57 556 8. It can be seen thaV')? (the plateau value
except for the crucial choice of dynamic masses. Their ¢ Cvv (1) at large times) differs between smalP
paper can yet serve as an ?ntroduction to the presentyq large P reflecting the role of quantum effects.
rather condensed presentation. _ However, the shape afy v (¢) is relatively indepen-
The reason why the LT (Singer and Smith call the 4ot of p ingicating the optimum elimination of slow-
_resultmg_dynamlcs Br_ownlan ) is a good thermostat ing down with increasingP: eigenfrequencies and
in the given gontext is due to the fact that most required time step\s independent of?, generation
elgenfrequenmeED of the model c_ollaps_e and hence of neighbor lists basically independent 8% evalu-
the quality @ = y/w of each oscillator is the same ation of forces and propagation of coordinates linear

v.vhereg denr?tis the dfrlc'ﬂon t(?‘;m in the L-L Hen(.:e.th? in P (large prefactor, simultaneous/parallel update of
tlmea_ er_w_llc fmohes ha\_/e, (_Jrgotteln t 3”0”9'36_‘ Fourier modes), and Fourier transforms of forces into
state is similar for the chain’s internal modes and its reciprocal space log P (small prefactor).

center of mass mode. It is not clear whether different Fig. 1 also shows that requirement (ii) is satisfied

thermostating, e.g., in terms of Nosé—Hoover chains for the potential energy. This behavior cannot be

?terarcr\;ve%itct)riia;hnbe?d [4|],V\ili|?1(t) tpr?]dttjc?rs] a S|rri1r|llarly guaranteed for observables that are not orthogonal
arro stribution of@s. | want to note in passing in coordinate space like the kinetic energy. This

th&:: sventhett'énf iﬁal(ﬁ ?f ﬂie,’sttir;un tenlsorz motilsn discussion goes back to Herman et al. [6] who pointed
can be adjusted 1o the -atomic € Scales by USINg  \+ the failure of the so-called primitive estimator

appropriate inertia associated with the box geometry. ..~ I
This makes the use of the Parrinello—Rahman method *kin-prim for the kinetic energy
very efficient for the evaluation of elastic properties of Ty, prim = 1.5kgT2P? — (Vehain /N , 3)
quantum solids likéHe [5].

In Fig. 1 the time autocorrelation functiafy v (¢)
of the potential energy per particle, namely

Fig. 1. Autocorrelation functiorCy y (¢) of the potential energy

where (Vehain denotes the expectation value of the
potential energy in the springs connecting adjacent
beads. The variance of the primitive estimator in-
Cvy () =(V(OV(0), (@) creases withP. At the time, efficient sampling algo-

is shown for various Trotter numbers. The test model rithms had not yet been devised, which made the situ-
is liqguid neon. Since I am not interested in pre- ation even worse.

cise thermodynamic values at this point, a simple Recently it was claimed that the primitive estimator
Lennard—Jones potential with standard parameters  can be significantly improved if the termSkg 72 P?
36.68 kgK ando = 2.787 A is chosen. The inter- is replaced with the actual dynamic kinetic energy of
actions are cut off atc =5 A and N = 256 atoms the PIMD simulation. This modified estimator will
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be denoted byK. The variance ofK is even larger  Table 1

than that Okain,prim- However, the final statistical Kinetic energy as obtained with (modified) primitive estimafor

properties are quite favorable owing to the dynamic and virial estimatorZ,;, for various atomic volumes at 7 =
huffli f the d ic kineti Wehai 26.8 K. The thermal expectation value &f is inserted as well.

reshuiting o ) € yn_amlc inetic e”ergy al¥ghain . Energies inkg K per atom. Errors0.1

and the resulting fortuitous but systematic cancellation 3 20,617 (sord 57 556 (furd s

of statistical fluctuations. This behavior is discussed _V[A7] 20617 (solid)  27.556 (fluid) _ 56.112 (gas)

by analyzing the time-dependent (squared) variance (K) 628 512 443
(Tvir) 62.7 489 355
L 2 (V) —1548 1252 6755
oﬁ(t)=<{;/dt’K(t’)—<K>} > (4)
0

ideal gas for which the virial estimator always gives
an average kinetic energy of zero while the primitive
estimator gives the correct answerbidgT. Some
representative results are presented in Table 1 for neon.
All simulations were run with the same code and same
set of parameters. Merely the volume per atomas
varied. (K) for the fluid system agrees well with the
experimental value of 58 kg K that was obtained for

a similar density and temperature [7].

which gives the expected deviation of a finite time
average of K with respect to an ideal, infinitely
long average. The fast relaxation @f is illustrated
for two different Ps in Fig. 2. It can be seen that
012< (t) decreases significantly after a typical inverse
vibrational frequency. The standard deviation in the
important limitz — oo falls off as usual proportionally
to 1/4/t at times larger than the largest inverse
frequency of a long wavelength vibration. For the X y : L
modified estimator the prefactor is rather insensitive | Will now turn to the discussion of criterion (iii),
to P while the prefactor for the original estimator N@mely the issue of good decompositions of the
increases linearly wittP. HT[_)I_\/I. It is well known that the regular .decom—
One may argue that the virial estimator, whose use Position of tr;e HTDM leads to systematic errors
for Pl simulations was suggested by Herman et al. [6], ©f order 1/ P= for well-behaved potentials. Taka-
has properties similar to the modified estimafor hashi and Imada proposed the use of higher-order
However, an additional advantage &f is that the =~ decompositions of the HTPM with resulting system-
ideas invoked here can be extended to higher moments21i¢ deviations of order /1P”. Another approach is to
of Venain Thus a guideline is given how to evaluate YS€ effective potentials th_at are derived _from an effec-
more efficiently the specific heat. Furthermore, it Ve propagator (EPr). This propagator is constructed
seems to us that the virial estimator deviates from the SUCh that it produces correctly one and two-particle
primitive estimator if the number of unbound quantum Imaginary time correlation functions in the limit of

states increases; the most extreme example being theSmall densities even for finite Trotter numbets[1].
A detailed description of the procedure is given in

T T T Ref. [8]. It is yet worth pointing out that the Taka-
10° £ & hashi Imada (TI) and the EPr approach are conceptu-
F ally different: In an EPr path integral simulation, one
O 10" ¢ tries to generate radial distribution functions that are
IS in the quantum limit (at least in a low-density approx-
-0 E imation). Evaluating observables such as the thermal
& 10" i expectation value of the potential enerd@yor) is done
E by simply evaluating the operator of the potential en-
L v v i ] ergy at the given distance. In a HOA path integral sim-
10" 10" 100 10° ulation, generalized estimators have to be defined even
t lps] for those observables that are orthogonal in real space.
Fig. 2. Time-dependent variance of primitive estimal@f, prim This I‘?‘St c.om.mept IS also_ relevanj[ for. the CalCUIaUPn
(data connected with broken lines) and modified estimatgsolid of radial distribution functions, which is discussed in

lines) for two different values of . more detail in Ref. [8].
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It was shown that a Fourier accelerated PIMD code
in which appropriate masses are given to the eigen-
modes satisfies criterion (i)—at least if thermostated
in terms of Brownian/Langevin dynamics. The use of
PIMD furthermore allows one to use a new primitive
kinetic energy estimator whose variance does not in-
crease withP. Moreover, the estimator can be used ad-
equately in the gas or fluid phase, where we observed
R TEET ‘}"‘1‘600 difficulties with the virial estimator. Generalizations of
P the invoked ideas are likely to make the calculation
Fig. 3. Relative error of the potential energy forsin=5 chain well of SpeCIfIC heat from f|UCtU<’:}tI0r.1 relfs_l_thns m.uc.h more
below the Debye temperature as a function of the Trotter nuriber feasible th_an at p_resent. Criterion (“_I) is satisfied best
for the regular primitive decomposition (PA), the Takahashi Imada PY €mploying the ideas of Takahashi and Imada. How-
(T1) approach and the effective propagator (EPr) method. ever, utmost care has to be taken when evaluating ther-
mal expectation values. Corrections have to be applied
The different approaches were applied to a linear t0 most observables including the radial distribution
chain of harmonically coupled atoms. Hence the function.
resulting path integral representation consists of a
(1+ 1)-dimensional harmonic solid and convergence
of thermal expectation values to the quantum limit Acknowledgements
P — oo can be analyzed analytically. The main
property to investigate is the deviation of the thermal  The author thanks F. Krajewski and K. Binder for
eXpeCtation value from the quantum limit as a function useful discussions. Support from the BMBF through
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is small. However, at sufficiently larg®, the TI
approach (which is easier to implement than EPr)
converges must faster. Similar results were obtained References
for less well-behaved potentials such as the Lennard—
Jones potential in a separate study [8].
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