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Abstract

The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated
by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness
exponent ����� ), there is one regime in which the chain is pinned (large masses � of chain particles) and one in which it
is unpinned (small � ). If the embedding potential can be classified as a random walk on large length scales ( ��������� ), then
the chain is always pinned irrespective of the value of � . For ��������� , two phonon-like branches appear in the spectra.
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1. Introduction

The numerical treatment of many-particle quan-
tum systems is an important issue of theoretical
condensed matter physics. Quantum effects become
relevant when the typical thermal energy of the phys-
ical system ����� is smaller or of the same order as
the energy quanta of the microscopic system. Path
integral molecular dynamics (PIMD) is a powerful
method to calculate accurately static properties of
quantum mechanical many-body systems[1]. PIMD
has also been used to obtain dynamical information of
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quantum systems[2], however, it is discussed contro-
versially how precise real time correlation functions
can be when evaluated within (adiabatic) PIMD[3–5].
Recently, PIMD has been used by the present au-
thors to simulate the many-body quantum dynamics
of the Frenkel Kontorova (FK) model, which can be
described as a 1-dimensional elastic chain embed-
ded into a sinusoidal potential[6]. The interest in the
FK model and its continuum approximation called
the sine Gordon model is due to an abundance of
applications of these models arising in various trans-
port phenomena including one-dimensional electronic
transport (Luttinger liquids)[7].

The previous PIMD studies of the FK model were
mainly concerned with the commensurate case, for
which the equilibrium spacing of adjacent particles in
the chain equals the lattice constant of the embedding
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potential ������� . However, there is also interest in dis-
ordered systems, in particular in the interplay of dis-
order and quantum fluctuations [8]. Here, we want to
present results on disordered systems, where the dis-
ordered potentials are classified by the roughness ex-
ponent � , which is defined as�
	 ����������
���������
������������� ���� (1)

where ��� is the distance between two points at which�����
� is evaluated. The two cases that will be consid-
ered are �! #" , in which case there is a well-defined
second moment of the potential energy surface, and�$ &%('*) , which corresponds to a regular random
walk on long distances ��� . Since, we employ peri-
odic boundary conditions, Eq. 1 will only be satisfied
at distances that are distinctly smaller than half the
simulation cell.

2. Model, Method and Results

Model

The Hamiltonian in this study is specified by

+�! -,./1032
+4 �/)65 � %)87 ��� / �9� /1:;2 � � ���<��� / � � (2)

where
+4 /  =�?>A@B'6@
� / is the momentum of particleC

(Planck’s constant = unity). 7 is the stiffness of
the springs connecting two adjacent particles in the
chain. Periodic boundary conditions are employed af-
ter a length )6DFE�G , where G is the number of particles
and E is defined below.

For �H I" , �����
� is either zero on a length of DFE
or - with same probability - it takes the functional
form of �KJ 	 %L�NMPORQS����'*ES�T� on an interval of length�?DVUW��'�EYXZD . The disordered potential with �[ %('�) is constructed in the following way: Patches of
the functional form � J MPO\Q]���8'*EP� and of the length DFE
are added where the underlying domain is chosen ran-
domly to be either ^ " � DFE�_ or ^ DFE � )6DFET_ . The patches are
shifted by a constant in a way that no discontinuity
in the potential occurs. In the following, we will set� J and E to unity. 7 is chosen throughout to be 0.1.
Thus 7 is much smaller than the maximum curvature
( �`J6'*E � ) of the embedding potential so that the ‘phase’

� / �a)*D C E is not necessarily a smooth function of the
index

C
; hence one may call the chain very discrete. In

all simulations, we chose G large enough to be suffi-
ciently close to the thermodynamic limit (typically in
the order of 128), and the temperature � was chosen
so small that no changes in the density of states could
be detected when � was multiplied by a factor of two
( �V #"Kb "\c*d turned out to approximate the ground state
accurately). Thus, the spectra shown in the following,
effectively correspond to ground state spectra.

Method

In this work, we present dispersion relations which
are calculated within the centroid dynamics frame-
work. As an implementation adiabatic path integral
molecular dynamics is used, which is a special vari-
ant of PIMD. Here the ’kinetic’ masses of the centroid
variables are set to the physical values for the masses
and the ’kinetic’ masses associated to the internal de-
grees or freedom of the imaginary time paths are col-
lapsed at a frequency larger than the fastest centroid
mode. This allows to observe the motion of the cen-
troid variables on an effective potential surface given
by the restricted path integral over all imaginary time
paths with fixed center of mass. Because of the special
choice of the ’kinetic’ masses critical slowing down
with increasing Trotter number e is completely elimi-
nated. The spectra fY�hg ��i � are calculated from the the
velocity autocorrelation functions of the chain’s nor-
mal modes.

Results for �! j"
The numerical analysis of the results for the case�k j" suggests a finite gap for a mass 5!lm5on � 0 JTpq

and zero gap for 5rXs5an � 0 JTpq (see Fig. 1). The critical
value for the mass 5 � 0 Jq is larger than the value for
the commensurate discrete Frenkel Kontorova model
(CDFKM)[6]. For the model potential under consid-
eration, one phonon branch is observed. For masses
larger than but in the order of 5 q , it forms a broad
band. At 5!Xm5 q , the substrate potential becomes ir-
relevant and the system shows the same dispersion re-
lation as the CDFKM model in the gapless phase[6]:
there is only one relatively narrow branch, which can

2



be well described with the dispersion relation of a free
chain

g � i �� �)
� 7 5 Q���� � i ES'*)\��b (3)

Fig. 1. Quantum ground state spectra of the velocity autocorrela-
tion function for a system with disordered potential with roughness
exponent ���
	 , The results are averages over 12 different realiza-
tions of the potential. Top: ���
	� � , bottom: ���
	� 	 	 . For each
dispersion relation, the zero wave vector spectrum ����� ��� ��	��
is shown separately on the left. Here � �� � � ��	�� stands for the
classical excitation gap of the elastic chain, which is given by� �� � � ��	����! "$#&%'�)( " �*� .
It is worth mentioning that the behavior for chains with
random bond lengths embedded into a regular sinu-
soidal potential � J MSO\QS����'�EP� appear to be qualitatively
similar to the one discussed above.

Results for �k Z%6'*)
The spectra for quantum dispersion relations for�! W%6'*) are shown in Fig. 2 for a mass of 5  j"`b "`% .

In the CDFKM this value for the mass corresponds
to a model in the depinned phase. Despite the small
mass, the chain appears to be pinned, as evidenced
by the spectral density, which quickly vanishes as the
frequency g approaches zero. A finite-size analysis,
which is not shown explicitly, suggests that the fY�hgs " �1i  #"R� vanishes quickly with increasing system sizeG . The quantum spectra are compared to those ob-
tained in a classical simulation, in which the tempera-
ture � is chosen such that the classical kinetic energy
is equal to the expectation value for the kinetic en-
ergy of the corresponding quantum ground state ( �# �+-,/. +0/1&2 35476&8 ). For the classical system, fY��g  j" ��i  "\� does not change dramatically with increasing G , in
agreement with the predictions by Chauve et al. [10].

Fig. 2. Same as previous figure but for �9� � % 	 . The top figure
is a quantum mechanical calculation for a mass �:�;	� 	 � . The
bottom figure is a classical simulation in which the thermal kinetic
energy corresponds to the ���
	� 	 � quantum ground state kinetic
energy. The numerical results are the average over 12 different
disorder realizations. A single realization shows many individual
sharp lines in the quantum case. It appears that the system is not
self-averaging.
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It is found that the spectra are more complex for
disordered potentials with � lm" than for ordered po-
tentials or disordered potentials with �H I" . In par-
ticular, the (average) spectrum of the quantum system
shows two main phonon branches and a complicated
substructure for individual realizations of disorder. In
these individual realizations, one can even observe the
crossing of two individual (very narrow) branches.
The occurrence of the second ‘optical’ branch, which
is akin of the dispersion of a classical, commensurate
FK model showing a clear gap in the i  j" limit, can
be understood when considering the world lines. Due
to the random walk nature of �����
� , there are some
distinct local minima in the potential energy surface.
Many particles ‘collapse’ into those valleys and be-
have effectively in a classical fashion. In between the
areas of high concentration, the chain is stretched and
long-wavelength excitations with small, albeit non-
zero frequencies occur. A representative graph of the
world lines is shown in Fig. 3, confirming the inho-
mogeneity of the density in self-affine disordered po-
tentials.
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Fig. 3. Above: Snapshot of the imaginary-time trajectories of a
typical configuration, calculated with � � � 	�� , � � 	� 	���� ,� � 	�� � , � �;	� 	 � . Below: Realization of the disordered sub-
strate potential with roughness exponent �:� � % 	 belonging to
the configuration shown above.

Conclusions

In this study, we have investigated the motion of
one-dimensional, quantum mechanical and classical
elastic manifolds in disordered potentials. For a rough-
ness exponent �  W" , we could identify a regime in
which the chain appears to be pinned (large values of5 ) and one in which it appears to be unpinned (small
values of 5 ). This result supports the prediction of a
critical mass 5 q separating a pinned and an unpinned
regime [8].

Conversely, for a roughness exponent �  %('�) ,
the quantum mechanical chain seems always pinned,
even for values as small as 5& "`b "`% . The pinning
probably occurs due to the existence of distinct po-
tential energy minima which disable quantum fluc-
tuations to move the chain. Replacing the quantum
chains with classical, thermal chains in such a way that
both have the same amount of average kinetic energy
depins the chain, supporting a renormalization group
prediction for thermal, elastic manifolds in external
potentials [10]. The reason for this last observation
can be understood qualitatively as follows: The quan-
tum system has large local fluctuations as compared
to the classical chain. However, the classical chain has
the larger long wavelength fluctuations as compared
to the quantum system and these are the fluctuations
required to move the chain globally.

References

[1] M. E. Tuckerman, B. J. Berne, G. J. Martyna, M. L. Klein, J.
Chem. Phys. 99 (1993) 2796.

[2] J. Cao, G. A. Voth, J. Chem. Phys. 99 (1993) 10070.

[3] J. Cao, G. Martyna, J. Chem. Phys. 104 (1996) 2028.

[4] R. Giachetti, R. Maciocco, V. Tognetti, Phys. Lett. A 252
(1999) 157.

[5] G. Krilov, B. J. Berne, J. Chem. Phys. 111 (1999) 9140–9146.
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