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Path-Integral Monte Carlo Scheme for Rigid Tops: Application to the Quantum Rotator
Phase Transition in Solid Methane

M. H. Müser and B. J. Berne
Department of Chemistry, Columbia University, New York, New York 10027

(Received 18 March 1996; revised manuscript received 1 July 1996)

A new quantum propagator for asymmetric tops, exact for free tops, is applied to path-integral
Monte Carlo simulations of quantum rotors. The algorithm does not suffer from the sign problem if
the full density matrix is considered or if the identity representation for the density matrix is chosen.
The method is applied to simulation of crystalline CH4, where the influence of quantum fluctuations
in the lowering of the transition temperature from a plastic phase to an orientational ordered state is
investigated. The possibility of an inverse hysteresis occurring at that transition is predicted and related
to spin-statistical exchange effects. [S0031-9007(96)01147-7]

PACS numbers: 31.15.Kb, 64.70.Kb
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A quantum mechanical description of rotational d
grees of freedom (RDF) becomes important at low te
peratures where tunneling and ground state fluctuati
play an important role in orientational phase transitio
[1], e.g., solid methane CH4 undergoes a phase trans
tion from a plastic cubic phase to an orientationally o
dered phase at the temperatureT1sCH4d ­ 20.4 K while
its deuterated counterpart CH4 shows the same transitio
at T1sCH4d ­ 27.4 K [2]. Because of its larger rotationa
constantBrot, the ground state of solid CH4 has a certain
fraction of tunneling nonoriented molecules while in th
case of CD4 all molecules are oriented at zero temperatu
[2–4]. The computational treatment of this and r
lated low-temperature phenomena requires a path-inte
scheme for simulating RDF’s. The most general case
of course, the treatment of asymmetric-top molecules,
which all three principle moments of inertia0 , Ia ,

Ib , Ic differ from each other. Much attention has be
given to the development of path-integral methods
treating quantum translations [5,6] but not much has b
given to the treatment of RDF’s.

Kuharski and Rossky introduced a method for simul
ing rigid asymmetric-top molecules based on the fixe
axis approximation [7], an approach which is only exa
up to order1yP2 with P the Trotter number. Further
more, the action is calculated at constant angular veloc
Hence this approach omits the winding numbers [8] wh
applied to rotations in a plane, e.g., by taking the lim
its Ia ! 0, Ib ! Ic and thus contains systematic error
An approximation-free path-integral Monte Carlo (PIMC
method for simulating linear molecules has been propo
by Marx [9], which, however, suffers from the sign prob
lem [10] even at high temperatures and even angu
momental. This is due to the introduction of interme
diate free-rotator eigenstates in order to represent the s
of a molecule at each Trotter slice. For most cases i
possible to circumvate the sign problem in this approa
by summing over all intermediate free-rotator eigensta
[11]. The sign problem then only persists at low tempe
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tures and oddl, e.g., forortho-H2 (even total nuclear spin
I) and para-H2 (odd I). In these cases the free-rotat
kernels are antisymmetric and thus contain negative c
tributions invoking intrinsically the sign problem at lo
temperatures [12].

It is the purpose of this Letter to derive an exact fre
rotator kernel for simulating nonlinear rotators. Usi
group theory, it is shown how to include the spi
statistical exchange effects of identical particles. We a
apply our method to the quantum rotator phase transi
in solid methane.

First an accurate expression for the high-tempera
density matrixrsv, v0; byPd is derived. Here,v de-
notes the Euler anglessf, u, xd specifying the orien-
tation of the rigid body in the space fixed frame a
b ­ 1ykBT . P is the Trotter number. Once an acc
rate expression for the free-rotator kernel is known it i
simple matter to apply it to PIMC simulations of rotato
in the presence of an external potential or in multirota
systems. For details of the path-integral method in g
eral, see, e.g., Refs. [8,13,14], and for details of the PI
method we refer to Refs. [5,6,15].

The density matrix or kernel for the free top can
expressed as

r

µ
v, v0;

b

P

∂
­ kvj exp

µ
2

b

P
T̂rot

∂
jv0l , (1)

whereT̂rot is the operator of the rotational kinetic energ
If we now transform this equation into the molecu

fixed frame of the bra and insert the resolution of
identity operator̂1, where the eigenstates [16] of the fr
asymmetric top with the eigenenergiesE

sJMd
K̃ are used, we

obtain

rsv, v0; byPd ­
X

JMK̃K

exp

µ
2

b

P
E

sJMd
K̃

∂
jA

sJMd
K̃K j2

3 k0jJMKl kJMKjṽ0l , (2)
where ṽ0 are the Euler angles of the ket in th
coordinate system of the bra. The eigenfunctio
© 1996 The American Physical Society
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CJMK svd ­ kv j JMKl of the symmetric top (momen
of inertia Ia fi Ib ­ Ic) can be expressed in terms
the elements of thes2J 1 1d-dimensional irreducible
representationD

J
MK sf, u, xd of the rotation operato

exps2iĴzfd exps2iĴyud exps2iĴzxd,

CJMK svd ­

µ
2J 1 1

8p2

∂1y2

D Jp

MK sf, u, xd , (3)

which themselves can be calculated using the Wig
functionsdJ

MKsud:

D Jp

MK sf, u, xd ­ expsiMfddJ
MK sud expsiKxd . (4)

Furthermore, usingdJ
MK s0d ­ dMK, the final equation fo

the kernel of the asymmetric top is

rsv, v0; byPd ­
X

JMK̃

µ
2J 1 1

8p2

∂
dJ

MMsũ0d

3 cosfMsf̃0 1 x̃ 0dg jA
sJMd
K̃M j2

3 exp

µ
2

b

P
E

sJMd
K̃

∂
, (5)

where thedJ
MMsud can be calculated with the help

Wigner’s formula. In Eq. (5) the sum overM was implic-
itly symmetrized, resulting in a real valued function f
the kernel. This symmetrization of the sum is possible
cause ofdJ

MM sud ­ dJ
2M2Msud and because ofjA

sJMd
K̃M j ­

jA
sJMd
K̃2M j. Furthermore, the eigenenergyE

sJMd
K̃ does not de-

pend on the quantum numberM.
In order to obtain the coefficientsA

sJMd
K̃M and the

eigenenergiesE
sJMd
K̃ , the following secular equation ha

to be solved [16]:

T̂rot

X
K

A
sJMd
K̃K CJMK ­ E

sJMd
K̃

X
K

A
sJMd
K̃K CJMK . (6)

The necessary matrix elementskJMK 0jT̂rotjJMKl to solve
Eq. (6) are given in Ref. [16].

Once the temperature and the Trotter number
chosen for the system under consideration,rsv, v0; byPd
depends only on two quantities, namely, the Euler an
ũ0 and the sum of the Euler angles̃f0 and x̃ 0, where
ṽ0 are the Euler angles related tov0 in the frame of the
molecule with orientationv. Even thoughrsv, v0; byPd
might not be accessible analytically, it can be compu
numerically to very high precision and then be tabula
on a fine grid [17]. The sum overJ is clearly convergent
and hence all systematic errors can be kept controll
small.

Notice that the elements of the high-temperature d
sity matrix for the one-dimensional rotation (rotati
of a molecule around only one axis) and for the tw
dimensional rotation (rotation of a linear molecule in th
dimensions) follow straightforwardly from the kernel f
the three-dimensional rotation, Eq. (5).

Up to now, spin statistics have been neglected. H
ever, the spin configuration constrains the symmetry
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the rotational state even without direct coupling betwe
nuclear spins and the angular momentum due to the
change of indistinguishable particles. For given nucl
spins of the atoms composing the molecule, the sym
try of the rotational wave functions are predetermin
[1,18]. States belonging to different symmetry clas
or representations cannot be reached from one ano
for reasons of nuclear-spin conservation [1]. It is gen
ally possible to generate symmetrized orientational st
jvml ­ P̂mjvl, belonging to only one representation, sa
representationm, with the help of a projection operato
P̂m [18]

P̂m ­
dm

g

X
R

x
smdp
R D̂sRd , (7)

where we sum over all symmetry operations (rotatio
R. In Eq. (7), D̂sRd generates the symmetry operatio
x

smd
R denotes the character ofR in the representationm,

g is the order of the group, anddm the dimension of the
representationm.

The symmetrized orientationsjvml now replace the
nonsymmetrizedjvl states in Eq. (1) for the calculatio
of the kernelrmsv, v0; byPd belonging to representatio
m:

rmsv, v0; byPd ­ kvmj exp

µ
2

b

P
T̂rot

∂
jv0

ml . (8)

Using Eq. (5) and the projection-operator property ofPm,
rmsv, v0; byPd can be reexpressed as

rm

µ
v, v0;

b

P

∂
­

dm

g

X
R

x
smdp
R r

µ
0, ṽ0sRd;

b

P

∂
(9)

with jṽ0sRdl ­ D̂1svdD̂sRdjv0l. Notice that the compu
tation of jṽ0sRdl reduces to simple matrix multiplication
if jv0l is represented by a matrix.

We will now discuss the consequences of symmetr
tion of the kernel for methane. This molecule has te
hedral symmetry, and, consequently, the rotational w
function can be decomposed into states belonging to
identity representationA, the representationT , and the
representationE, which can be further decomposed in
the two complex conjugate representationsE1 and E2
[18]. The nuclear spinI in the case of CH4 is I ­ 2
for A-CH4, I ­ 1 for T-CH4, andI ­ 0 for E-CH4 [19].
In Fig. 1 the kernelrA belonging to representationA and
the full kernelr, in which no exchange effects are cons
ered, are shown forPT ­ 64 K. The maxima ofrA can
be attributed to symmetry operations, namely, the peak
u ­ p , f 1 x ­ 0, u ­ 0, f 1 x ­ p, and u ­ p,
f 1 x ­ p to rotations about the twofold symmet
axis, and the peaks atu ­ py4, f 1 x ­ py2, 3py2
to rotations about the threefold symmetry axis of the C4

molecules. In the case of theT representation, negativ
minima are found forrT at those points attributed to sym
metry operations about the twofold symmetry axis, a
2639
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FIG. 1. rsu, f 1 x; byPd for CH4 at sbyPd21 ­ 64kBT .
The full kernel shows only one maximum atu ­ 0,
f 1 x ­ 0.

for rE, negative minima are found at the points attribu
to symmetry operations around the threefold axis.
fully deuterated methane molecules CD4, the features o
the kernels are qualitatively the same as for CH4, but the
total nuclear spins are different; e.g.,I ­ 0 invokes the
identity representation. While there is a one-to-one r
tion of total nuclear spin with the symmetry of the ro
tional wave function for CH4, this is no longer the cas
for CD4 [19].

It is worth noting that, for all examples investigate
spherical, symmetric, and asymmetric tops, we alw
find positive valued density matrices for the iden
representation and for the full density matrix. All oth
representations also have negative contributions, w
intrinsically lead to the well known sign problem in
path-integral simulation [10,12]. The standard meth
to treat the sign problem must then be applied [9–11]

Before presenting some details of the simulatio
we want to point out two advantages of choosing
identity representation for the path-integral simulati
(i) Correlation times for many observables, e.g., kin
energyTkin, are smaller (see Fig. 2), and (ii) ground st
properties can be accessed at relatively high tempera
because the energetically low lying excited states
projected out. Remember that the ground state is
obtained in the identity representation.

In the application of Eqs. (5) and (9) to the quantu
rotator phase transition in cubic methane, we wan
investigate the dependence of the transition tempera
on the rotational constantBrot and on the symmetr
of the wave function. In the latter investigation w
concentrate on the nonsymmetrized case and the ide
representation.

It is well known that translation-rotation couplingVTR
is symmetry forbidden for the investigated transition
cubic CH4 [20]. Consequently, the relative volume jum
at the order-disorder transition is only about 1% due
higher order couplings such asVTTR. The translationa
2640
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FIG. 2. Kinetic energy estimatorTkin as a function of time in
Monte Carlo sweeps for solid CH4 at T ­ 16 K with Trotter
numberP ­ 4.

and orientational degrees of freedom can therefore
separated to a good approximation. In our simulati
the molecules are fixed to their lattice sites, and
the following we only concentrate on the rotation
degrees of freedom. The lattice constant is cho
such that it corresponds to the experimentally obser
lattice constant at the transition from a plastic to
orientationally ordered phase.

For the intermolecular model potential, which has be
fitted to theab initio data of the CH4 dimer [21], we chose
the exp-6 potential plus Coulomb-Coulomb interactio
At each temperature, runs with different Trotter numb
P were performed such that64 # PT # 128 K. The
quantum limit is obtained by performing a Trotter scali
plot. The particle numberN in the final runs was
chosen to beN ­ 864. For a given Trotter number, th
system is cooled down and reheated again. At ev
temperature,2000P Monte Carlo sweeps were used f
equilibration and3000P Monte Carlo sweeps were use
for observation. These experiments have been repe
four times with different initialization numbers for th
random number generator.

For the classical system we observe a transition atT1 ø
27 K, which is shifted toT1 ø 16 K for the quantum-
mechanical no-spin treatment (full kernel), see Fig.
where the potential energyVpot is shown for both systems
If the identity representation is chosen, the transit
temperature is furthermore lowered toT1 ø 10 K. In the
case of no-spin CH4 the transition temperature is close
the classical value, namely,T1 ø 23 K.

The strong dependence of the transition tempera
on the symmetry of the rotational states may invoke
inverse hysteresis effect. If the methane solid is coo
down at a rate so that spins can equilibrate, we exp
the transition to take place close to the no-spin case
T1 ­ 16 K. At temperatures considerably lower thanT1,
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FIG. 3. Potential energyVpot as a function of temperature fo
“classical” and “quantum” CH4.

the ground state, which is fully contained in the iden
representation, will dominate, thus the nuclear spinI of
each molecule will beI ­ 2. If the system is reheate
rapidly, the symmetry of the rotational states will rem
in the identity representation due to long spin convers
times, and the transition will be found atT1 ­ 10 K. The
numerical results may change slightly if the translatio
degrees of freedom are taken into account as well. T
however, would have required a much larger numer
effort.

The computed transition temperatures compare
with experimental data, whereT1sCH4d ­ 20.4 K and
T1sCD4d ­ 27.4 K. To achieve this agreement, ve
accurate potentials were needed because the specific
for CH4 is already very small due to quantum effects, a
thus the transition temperatures are extremely sens
to small variations of the potential. This sensitiven
can be seen in the considerable dependence of
transition temperature on the symmetry of the ther
wave function. Remember that at high temperatu
this dependence will vanish because exchange effec
longer play an important role.

The path-integral propagator introduced here prov
an efficient method for simulating the low-temperatu
thermodynamics of rigid nonlinear molecules. For exa
ple, it makes possible the study of quantum-rotator ph
transitions in solid methane, and will be useful in futu
studies of thermal properties arising from molecular lib
tions and tunneling in clusters and solids.
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