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Abstract. An outline of numerical path integral techniques which allows one to treat the rotational
component of molecular motion is given in a unified framework. Special attention is paid to the
particular aspects of this treatment depending on the dimension of the subspace for rotations, which
leads to optimized methods for one-, two- and three-dimensional rigid rotors. The implications
of the coupling between rotational and nuclear spin degrees of freedom, due to the symmetry
requirement of the total wave function under exchange of identical particles, are discussed. Several
recent applications of path integral simulations of rigid rotors are presented. These examples include
both strongly simplified and very realistic models for investigating the properties of molecular
impurities and clusters, rotors physisorbed on surfaces, and condensed molecular phases. Where
available, the results of approximate calculations based on quasi-classical, quasi-harmonic and
mean-field theories are compared to the path integral simulations.
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1. Preliminary remarks

The investigation of quantum many-body systems at finite temperatures is a notoriously
difficult task. A powerful arsenal of sophisticated methods exist to tackle quantum many-body
problems in an approximate way, e.g., mean-field, quasi-classical, infinite-dimension, reduced-
dimensionality, etc theories. Another approach is to start out by using simplified models
which can be solved exactly. The philosophy of quantum simulations is a third route [19]. The
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fundamental idea of computer simulations is to ‘solve’ a well-defined many-body Hamiltonian
that is ‘numerically exact’. In this context, to ‘solve’ means that any (equilibrium) observable
can be calculated in principle. ‘Numerically exact’ means that observables are calculated within
statistical error bars and no uncontrollable approximations are employed. Ideally, statistical
error bars can be determined in the simulation and controllable errors such as finite-size
corrections or finite (imaginary) time steps are kept arbitrarily small. Specifically, the purpose
of path integral methods is to include the quantum fluctuationsrigorously in the computer
simulation. Pioneering path integral Monte Carlo work dates back to the sixties [41, 42, 69],
and the basic philosophy is still valid today: ‘This technique involves first, an approximation
of the Wiener integral by ann-dimensional integral and, second, a Monte Carlo estimation of
the value of then-dimensional integral’ [41]. The major breakthrough of path integral methods
started, however, only in the early eighties [3,6,26,104,149,151].

Path integral simulations are now recognized as very powerful tools in investigating off-
lattice many-body quantum systems at finite temperatures. Here, ‘many’ means of the order
of 100 or in some cases even 1000 atoms or molecules [76, 88], and ‘finite temperatures’
encompasses the range from the order of 105 K [82, 122] down to the nK regime [76]. Most of
the numerical applications of path integrals are based on discretizing the full kinetic energy in
Cartesian coordinates. In the case of rotating molecules, however, it can be very advantageous
to keep the vibrations frozen and to treat the molecules as rigid entities. This allows for
the separation of the rotational kinetic energy from that associated with the centre-of-mass
motion. The physical reason for this is that intramolecular vibrations are in many cases
sufficiently decoupled from translations and rotations. In addition, intramolecular vibrations
are not always of central interest, in particular when it comes to condensed phase phenomena.
On the contrary, it is often desired to decouple the effects of rotations from those of the
translations and vibrations. This allows one to separate the influence of different degrees of
freedom and thus different contributions to a physical phenomenon in complex systems such
as molecular crystals. It should also be mentioned that accurate flexible molecular models
which include vibrations are still quite rare, so rigid models are often the only possibility
for dealing with molecules. In some cases, one can useab initio path integral techniques to
solve this dilemma by computing the interactions directly from concurrent electronic structure
calculations [5,95,96,99,159].

The main advantages of treating molecules as rigid units, however, are of a technical nature.
Using rigid-molecule models, systematic and statistical errors may be reduced by orders of
magnitude for given CPU time and memory. Rotational motion of molecules typically becomes
quantum mechanical at much lower temperatures than intramolecular vibrations. Hence much
smaller Trotter numbers are needed in simulations of rigid-molecule models than in simulations
of fully flexible models typically carried out in Cartesian coordinates. In addition, considerably
larger Monte Carlo displacements or longer molecular dynamics time steps are possible, which
further improves the sampling. Lastly, the number of active degrees of freedom is reduced,
which gives an additional speeding up of the simulation. These advantages of rigid-molecule
models are particularly important for many-rotor systems. Studying few rotors in a bath of
point atoms makes the aforementioned advantages of fixed-rotor models less striking. Along
these lines, studying phase transitions in molecular crystals or molecular adsorbates including
finite-size scaling became possible; see section 3 for examples.

The development of numerical path integral techniques for rigid rotors started in the mid-
eighties, shortly after an explosion of path integral simulation work at the beginning of the
eighties. More recently, this field received a renewed impetus driven mainly by questions
revolving around orientational phase transitions in solid molecular hydrogen and in molecular
adsorbates. The path integral methods for rigid rotors have much in common with those
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for translational motion, but they are nevertheless sufficiently different to call for separate
attention. The purpose of the present review is to discuss path integral techniques for rigid
rotors with one, two, and three rotational degrees of freedom in a unified framework. The
usefulness of these methods is demonstrated by including some selected applications.

The present review focuses on the generic aspects of treating rigid-body quantum
rotation within the path integral approach numerically. Thus, we have to rely on basic
knowledge of path integral theory [39,40,75,137], standard path integral simulation techniques
[21, 25, 35, 52, 135, 160], and Monte Carlo and molecular dynamics sampling [1, 9, 10].
Approximate treatments of rotational motion are not among the central issues covered. An
extensive review on how to compute small quantum corrections to rotational motion can be
found in [47]. Quantum localization phenomena in orientation space are discussed in [129].

The remainder of this review is organized as follows. We present in section 2 the
theory required for solving the path integrals for rotational motion numerically. The first
subsection sets the stage for what follows by showing how to decompose the density matrix
into translational, rotational, and interaction contributions. Subsections 2.2, 2.3, and 2.4
deal with the specifics of one-, two-, and three-dimensional rotational degrees of freedom,
respectively. The theory section is closed in subsection 2.5 by a discussion of the influence
of the nuclear spin statistics on the symmetry of the rotational density matrix. A few selected
applications of path integral simulations of rigid rotors are compiled in section 3. We proceed
from molecular impurities and clusters presented in subsection 3.1, via rotors physisorbed on
surfaces in subsection 3.2, finally to condensed molecular phases in subsection 3.3. We are well
aware that this choice is biased by our own research interests. But rather than exhaustively cover
all available studies, we prefer to discuss just a few showcase examples, in order to highlight
some interesting aspects of path integral simulations performed in the space of rotations.

The following abbreviations are frequently used: DMC: diffusion Monte Carlo; EQQ:
electric quadrupole–quadrupole; MFT: mean-field theory; PIMC: path integral Monte Carlo;
PIMD: path integral molecular dynamics; QAPR: quantum anisotropic planar rotor.

2. Path integral techniques for rotations

2.1. General remarks

Throughout this review we considerN -particle systems that can be described by Hamiltonians
Ĥ of the form

Ĥ = T̂ tra + T̂ rot + V̂ (2.1)

whereV̂ establishes among other couplings the coupling between translational and orient-
ational degrees of freedom. In addition, we assume that the molecules are strictly approximated
as rotatingrigid bodies. Thus, two effects induced by flexibility of the rotor are neglected [164]:
(i) centrifugal distortion, i.e., the variation of the molecular moment of inertia2with rotational
quantum number due to a deformation of the molecule for high rotational excitations; and
(ii) Coriolis interactions or rotational–vibrational coupling, i.e., the change of2 as a function
of the vibrational quantum number. These neglected effects are usually small in condensed
phase environments, which is the main application field of the PIMC technique for rotations and
is thus the focus of this review. Here, we merely refer the reader to [36,121] for early approaches
to treating non-rigid (vibrating) rotors by means of path integrals in polar coordinates, to [18]
for a corresponding PIMC simulation technique, and to [75] for a thorough discussion of the
implications of the singularities involved .

For the sake of simplicity we assume for a moment that the system consists of one molecule
only. In (2.1), the termT̂ tra denotes the operator of the kinetic energy associated with the
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molecule’s centre-of-mass motion in ad-dimensional space,̂V is the potential energy of the
molecule, andT̂ rot is the operator of the kinetic energy associated with thed rot rotational
degrees of freedom. The operatorT rot can generally be expressed as

T rot =
d rot∑
i=1

L̂2
i

22ii

(2.2)

with theL̂i the components of the angular momentum operator and2ii the moment(s) of inertia
of the rigid molecule. Fordrot = 3, equation (2.2) usually has to be taken in the molecule-fixed
principal-axis system.

The dimensiond rot also corresponds to the number of coordinates needed to specify the
orientation of a molecule. For a linear molecule or a flat large molecule confined to rotating
in a plane, we haved rot = 1. Experimental realizations of such a situation are physisorbed N2

or benzene C6H6 on a smooth substrate such as graphite or boron nitride, BN; see [98]. This
type of motion will subsequently be referred to as one-dimensional rotation. The rotation of a
linear molecule ind = 3 spatial dimensions and of an arbitrary molecule ind = 3 dimensions
will be called two-dimensionald rot = 2 rotation and three-dimensionald rot = 3 rotation,
respectively. Examples showingd rot = 2 rotation include various phases of solid H2 [139],
whereas solid methane CH4 [66,128] is a prototype system for showingd rot = 3 rotation. In
the case of two-dimensional rotation, the two moments of inertia are identical, whereas in the
case of three-dimensional rotation the various values for2ii may differ.

The quantum mechanical partition functionZ(β) at inverse temperatureβ = 1/kBT is
given as usual as the trace of the density operatorρ̂(β) = exp[−βĤ ]:

Z(β) = Tr ρ̂(β) (2.3)

and thermal expectation values of the observablesÔ can be calculated using

〈Ô〉 = 1

Z(β)
Tr
{
Ôρ̂(β)

}
. (2.4)

Unlike the classical density function,ρ̂(β) is not diagonal in coordinate space, because position
and momentum operators, and thus the potential energy and kinetic energy, do not commute.
Using the semi-group property of the density matrix

ρ̂(β) =
P∏
t=1

ρ̂(β/P ) (2.5)

and the Trotter product formula [150, 153, 157] (see also [75, 137]) applied to the high-
temperature density matrix̂ρ(β/P ):

ρ̂(β/P ) = exp
[
−βV̂ /2P

]
exp

[
−β(T̂ kin + T̂ rot)/P

]
exp

[
−βV̂ /2P

]
+O

{
(β/P )3

}
(2.6)

it is possible to map the quantum mechanical problem onto an equivalent higher-dimensional
classical problem. This mapping is free of systematic errors, since the underlying Trotter
theorem ensures that

ρ̂(β) = exp
[
−β(T̂ tra + T̂ rot + V̂ )

]
(2.7)

= lim
P→∞

{
exp

[
−βV̂ /2P

]
exp

[
−β(T̂ kin + T̂ rot)/P

]
exp

[
−βV̂ /2P

]}P
(2.8)

for well-behaved potentials [75]. The mapping is achieved by substituting (2.6) into (2.5) and
inserting identities1t in the coordinate representation at each Trotter slice or imaginary time
t = 1, 2, . . . , P :

1t =
∫

drt

∫
dωt |rtωt 〉〈rtωt |. (2.9)
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Here,rt denotes the molecule’s centre-of-mass coordinates in thed-dimensional space of the
translations andωt stands for the orientation of the molecule in thed rot-dimensional space of
the rotations. These manipulations finally yield in the limitP → ∞ the exact path integral
decomposition of the partition function (2.3):

Z(β) = lim
P→∞

∫
drP

∫
dωP

∫
drP−1

∫
dωP−1 · · ·

∫
dr2

∫
dω2

∫
dr1

∫
dω1 ρ1P (β/P )

× ρPP−1(β/P ) · · · ρ32(β/P )ρ21(β/P ) (2.10)

corresponding to the Hamiltonian (2.1), whereρtt+1(β/P ) denotes the high-temperature
density matrix elements in the(r, ω) representation.

The required Trotter limitP →∞ in (2.8) and thus also in (2.10) cannot be achieved in
numerical path integration methods. However, the use of large Trotter numbersP allows one
to neglect theO{(β/P )3} terms on the right-hand side of (2.6) in practice. In the following,
we assume sufficiently largeP and refer the reader to [30, 49–51, 108, 152] for methods that
extrapolate from finiteP to the Trotter limit. This procedure is sometimes called Trotter
scaling or Trotter extrapolation.

In order to evaluate the discretized path integral (2.10), we are left with the task of eval-
uating the elements of the Trotter approximant of the high-temperature density matrix

ρtt+1(β/P ) = 〈rtωt | exp
[
−βV̂ /2P

]
exp

[
−β(T̂ kin + T̂ rot)/P

]
exp

[
−βV̂ /2P

]
|rt+1ωt+1〉

(2.11)

that connects two succeeding Trotter slicest andt + 1. As a result of the additive structure of
the Hamiltonian (2.1) and the Trotter decomposition, the kernelρtt+1(β/P ) can be factorized
into three contributions. BecauseV̂ is diagonal in coordinate space and becauseT̂ kin andT̂ rot

commute in the rigid-rotor approximation, one obtains

ρtt+1(β/P ) = ρpot
t t+1(β/P )ρ

tra
t t+1(β/P )ρ

rot
t t+1(β/P ) (2.12)

with

ρ
pot
t t+1(β/P ) = exp

[
− β

2P
{V (rtωt ) + V (rt+1ωt+1)}

]
(2.13)

ρ tra
t t+1(β/P ) = 〈rt | exp

[
−βT̂ tra/P

]
|rt+1〉 (2.14)

ρrot
t t+1(β/P ) = 〈ωt | exp

[
−βT̂ rot/P

]
|ωt+1〉. (2.15)

The translational contributionρ tra
t t+1(β/P ) can be calculated analytically for general dimension

d by inserting an identity operator in the momentum representation, resulting in

ρ tra
t t+1(β/P ) =

(
mP

2πh̄2β

)d/2
exp

[
− mP

2h̄2β
(rt − rt+1)

2

]
(2.16)

with m the mass of the molecule. There is no such closed expression forρrot
t t+1(β/P ). This is

what makes the simulation of rotational degrees of freedom a more difficult task than the
simulation of translational degrees of freedom. The evaluation of the right-hand side of
(2.15) is conveniently carried out separately for one-, two-, and three-dimensional rotation;
see subsections 2.2, 2.3, and 2.4.

Given (2.1)–(2.16) and assuming thatρrot
t t+1(β/P ) is known and strictly positive, it is

possible to calculate thermal expectation values of the observables (2.4) depending exclusively
on the spatial coordinateŝO(r̂ω̂) via the sum

〈Ô〉 = 1

P

P∑
t=1

〈O(rtωt )〉 (2.17)
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with
∏P
t=1 ρtt+1(β/P ) being the probability measure〈· · ·〉 on the right-hand side of (2.17).

The trace operation in (2.3) or (2.4) leads to periodic boundary conditions in imaginary time
|rP+1ωP+1〉 ≡ |r1ω1〉, which allows for the interpretation of the isomorphic classical system
as a ring polymer or as a cyclic chain [21, 26, 27]. Once a positive probability measure
and estimators for observables such as (2.17) are derived, it is possible to apply standard
classical Monte Carlo, molecular dynamics, or Langevin dynamics techniques [1,9,10]. Such
a simulation is then called path integral Monte Carlo or path integral molecular dynamics,
because the variables{r1ω1, . . . , rtωt , . . . , rPωP } define a path in a discretized ‘imaginary
time’ t with a time step ¯hβ/P . In [39, 40, 75, 137], a more general discussion of the
path integral formulation of quantum statistical mechanics and path integrals can be found,
whereas [21,25,35,52,135,160] focus on reviewing simulation methods and their applications.

Not all of the techniques which have been developed for path integral simulations of
translational degrees of freedom can be applied to the path integral treatment of rotational
degrees of freedom in a straightforward manner. Important examples are pair density
matrices [3, 21, 123], staging methods [68, 123, 142, 158, 160], and the use of virial
estimators [38, 57, 119]. So far, staging and virial techniques have only been applied
successfully to one-dimensional rotation [18]. Higher-order approximants for the high-
temperature density matrix [33,154] have only been applied to two-dimensional rotation [109],
but their use is easily generalized to one-dimensional rotation. One of the most frequently used
forms of higher-order approximants is the one proposed by Takahashi and Imada [79, 154],
which is based on representing the partition function as

Z(β) = lim
P→∞

Tr
{
exp

[
−βT̂ /P

]
exp

[
−β(V̂ + V̂ corr)/P

]}P
(2.18)

with

V̂ corr = β2

24P 2

[
V̂ ,
[
T̂ , V̂

]]
(2.19)

andT̂ = T̂ tra + T̂ rot. Thus, the Trotter numberP can be reduced at the expense of evaluating
a temperature-dependent correction operatorV̂ corr to the potential.

How exchange effects are included into the simulation is an additional difference between
the simulation of translational and rotational degrees of freedom. The best-known example for
exchange effects influencing the rotational wave function is the hydrogen molecule that exists
either as para-H2, with even angular momentum, or as ortho-H2, with odd angular momentum,
depending on its total nuclear spin. The latter case is computationally difficult to treat, because
the anti-symmetrized high-temperature density matrix has negative contributions, and the
usual interpretation of

∏P
t=1 ρtt+1(β/P ) as a probability measure is no longer possible. An

approximate way to deal with this problem is described in section 2.5.2. How to generate
symmetrized high-temperature density matrices in general is dealt with in section 2.5.

We mention in passing that there is an alternative path integral approach for the simulation
of quantum rotor impurities in classical environments [56,107,115]. In this approach the trace
over an effective density matrix is taken in a reduced Hilbert space of the rotational degrees of
freedom. This allows for the definition of a rotational free energy, which enters the relevant
Boltzmann factor. Although the rotational degrees of freedom are practically treated in the
quantum limit, we do not pursue this approach further here, because the method is tailored only
for one single rotor in complex environments. Therigorouscoupling of several rotors would
require computer memory and computation time increasing exponentially with the number of
directly coupled rotational degrees of freedom. The same arguments apply to a similar method
proposed in references [12,13], where the environment is allowed to be quantum mechanical;
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see section 3.1.2. This method could nevertheless be extended to treat a few interacting rotors
at the expense of invoking several assumptions and approximations [14].

2.2. One-dimensional rotation

In the case of one-dimensional rotation, the orientation of a molecule is defined by only one
angle 06 ϕ < 2π and the operator of the kinetic energy (2.2) has the form

T̂rot = −B ∂2

∂ϕ2
(2.20)

B = h̄2

22
(2.21)

with B the rotational constant and2 the molecule’s moment of inertia. The elements of the
free-rotor density matrix in the representation of this coordinateϕ can be calculated using
(2.15) and inserting an identity operator composed ofd rot = 1 free-rotor wave functions|mt 〉
with mt the angular momentum at time slicet :

ρrot
t t+1(β/P ;ϕt , ϕt+1) =

(
P

4πβB

)1/2 ∞∑
nt=−∞

exp

[
− P

4βB
(ϕt − ϕt+1 + 2πnt)

2

]
. (2.22)

Use has been made of a Poisson summation formula [4]; see [15] for the first derivation in
the framework of real-time path integrals and quantum dynamics. This leads to the following
rotational part of the partition function:

Zrot = lim
P→∞

(
P

4πβB

)P/2 P∏
t=1

[ ∞∑
nt=−∞

∫ 2π

0
dϕt

]
exp

[
−β

P∑
t=1

P

4β2B
(ϕt − ϕt+1 + 2πnt)

2

]
(2.23)

for one single free rotor. The set of variables{ϕ1, . . . , ϕP ; n1, . . . , nP } is necessary to fully
specify a path in imaginary time. This{nt }-number representation is the most straightforward
formulation of the partition function, allowing one to simulate one-dimensional rotational
motion by path integral Monte Carlo methods. The earliest discussion of this formula for
numerical path integral simulations known to the authors can be found in [2].

2.2.1. Winding number representation.Instead of carrying out theP -independent sum-
mations over−∞ 6 nt 6 ∞ in (2.23) explicitly by Monte Carlo sampling, it is possible to
transform to a less redundant set of variables. For invoking analogous ideas in connection
with evaluating the propagator of one particle in a box, see [67]. It is convenient to define the
following set of variables [18]:

ϕ̃1 = ϕ1

ϕ̃2 = ϕ2 − 2πn1

ϕ̃3 = ϕ3− 2πn1− 2πn2

...

ϕ̃t = ϕt − 2π
t−1∑
t ′=1

nt ′

(2.24)

where all of the 2πnt -terms cancel:

(ϕt − ϕt+1 + 2πnt)
2 −→ (ϕ̃t − ϕ̃t+1)

2 for t = 1, . . . , P − 1 (2.25)
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but for the last contribution

(ϕP − ϕP+1 + 2πnP )
2 −→

(
ϕ̃P − ϕ̃P+1 + 2π

P∑
t=1

nt︸ ︷︷ ︸
n

)2

(2.26)

where allP contributions sum up. This sumn = ∑P
t=1 nt denotes the winding number of

the path. The winding number essentially counts how often a path leaves the basic angular
interval [0, 2π) taking into account the cancellation of positive and negative excursions
since−∞ 6 nt 6 ∞. Thus, the reduced set of variables{ϕ̃1, . . . , ϕ̃P ; n} defines in this
representation a path in imaginary time.

The peculiarity that one-dimensional rotational paths are only closed modulo 2π is a
consequence of the paths being restricted to theS1 topology of the circle [137]. These
manipulations yield the winding number representation [18,87,89]

Zrot = lim
P→∞

(
P

4πβB

)P/2 ∞∑
n=−∞

∫ 2π

0
dϕ̃1

P∏
t=2

[∫ ∞
−∞

dϕ̃t

]

× exp

[
−β

P∑
t=1

P

4β2B
(ϕ̃t − ϕ̃t+1 + 2πnδt,P )

2

]
(2.27)

of the rotational contribution to the total partition function of a free rotor. The total partition
function is obtained by multiplication with the translational and potential contributions
according to (2.12)–(2.15). It should be mentioned that the underlying Poisson summation
leads in fact to a duality transformation [134]{mt → nt }, which implies that the discrete
variablesnt and thus the winding numbern do not have the properties of angular momentum
quantum numbersmt . As a consequence, the classical limit is obtained in the quantum number
representation (2.23) as usual by integration overmt in addition to settingP = 1. In the winding
number representation (2.27), however, the classical approximation is realized by taking into
account only then = 0 term of the full winding number spectrum (in addition to setting
P = 1) [89]. Thus, the proper inclusion of the winding number leads in general to broader
angular distributions such as the one obtained with then = 0 restriction, which was explicitly
demonstrated for model systems in [18].

The original anglesϕt are only defined on the interval [0, 2π), whereas the transformed
variablesϕ̃t are defined on [−∞,∞] except forϕ̃1 which is still restricted to [0, 2π). We refer
the reader to section II B of [89] for a more detailed discussion of these aspects including the
concept of homotopy classes as indexed byn and a more general mathematical justification
of the transformation of (2.23) to the winding number representation (2.27). Exhaustive
discussions of homotopy concepts in path integration and path integrals in multiply connected
and curved spaces can be found in [75,137].

Finally, a technical aspect connected to the Monte Carlo sampling with respect to the
Boltzmann factor (2.27) needs to be mentioned. Since the winding number is a topological
property of a given path, its value cannot be altered by small (local) displacements of a few
angular degrees of freedom̃ϕt . To illustrate, one may imagine the path as a rope woundn

times around an infinitely long stick. The rope’s two ends are knotted together. Changingn to
n′ is only possible after cutting the rope, changing the number of loops around the stick, and
re-knotting it again. Thus, the sampling of the sum over winding numbers−∞ 6 n 6∞ in
the representation (2.27) calls for truly non-local Monte Carlo moves that include allP angles
(ϕ̃1, . . . , ϕ̃P ) as introduced in [89]. This is similar to the permutation moves that are necessary
to sample bosonic exchange in translational path integration [21].
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An illustration of representative paths that were generated by this algorithm are shown
in figures 1 and 2 for high (200 K) and low temperatures (5 K) and for an isolated light (H2)
and heavy (N2) homonuclear molecule. Each molecule is physisorbed on graphite and feels
a static external potential (crystal field) due to the so-called herringbone ordering [98] of the
surrounding molecules and the molecule–graphite interaction. In addition, the molecule is
forced to rotate in the surface plane. This yields a distorted cosine potential with twofold
rotational symmetry with minima at about 135◦ and 315◦ and correspondingly with maxima at
about 45◦ and 225◦. Since the particular model is not of interest here, we refer the interested
reader to [89] for complete information.

The paths of the heavy molecule, N2, at high temperatures—see figure 1(b)—are essen-
tially straight lines, i.e., only weakly dependent on imaginary time. However, the angular
density distribution function (not presented here, but see figure 8(b) in [89]) shows that a
significant fraction of the paths are located on themaximaof the potential. Thus, the paths
sweep like rigid sticks over the potential landscape, which is the signature of classical behaviour
and thermally activated barrier crossing. In addition, the average angular spread (angular radius
of gyration) of the paths amounts to less than 5◦ and the average winding numbern is zero,

Figure 1. Three representative snapshots of angular pathsϕ(τ) from PIMC simulations of one
rotating linear molecule (d rot = 1; external potential of twofold symmetry with minima at about
135◦ and 315◦ and maxima at about 45◦ and 225◦) at 200 K as a function of the dimensionless
imaginary timeτ = t/P with P = 20. (a) H2 (annealed simulation), (b) N2 (no-spin simulation).
Dotted and dashed lines mark the basicπ - and 2π -periodicity, respectively. Adapted from [89].
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which proves that quantum dispersion and thus zero-point motion is negligible. Thus, the path
integral simulation generates quantitatively the expected picture of N2 behaving like a classical
rotor at high temperature.

This situation changes qualitatively for N2 at 5 K; see figure 2(b). Here the paths stay in
the potential wells ‘most of the (imaginary) time’ (as is also reflected by the angular density
distribution; see figure 7(b) in [89]). However, inspection of the paths reveals that different
parts of a given path are sitting in different potential wells. These barrier-crossing events have
a kink-like shape as they occur typically on short (imaginary) timescales (and not gradually,
involving the whole path), which is a signature of instanton-like tunnelling through the rotation
barrier. Kinks and anti-kinks do not have to occur in pairs (as in translational tunnelling),
because the winding number can account for such a mismatch. Furthermore, it can be seen
that the paths do not have to be closed in the basic angular [0, 2π) interval, but only moduloπ ,
since the influence of the quantum exchange statistics of the bosonic nuclei on the rotational
levels was included in this simulation (in the so-called quenched average; see section 2.5 and
in particular section 2.5.1 for a discussion of various averaging concepts).

Figure 2. Three representative snapshots of angular pathsϕ(τ) from PIMC simulations of one
rotating linear molecule (d rot = 1; external potential of twofold symmetry with minima at about
135◦ and 315◦ and maxima at about 45◦ and 225◦) at 5 K as afunction of the dimensionless
imaginary timeτ = t/P withP = 540. (a) H2 (annealed simulation), (b) N2 (quenched simulation
with high-temperature composition). Dotted and dashed lines mark the basicπ - and 2π -periodicity,
respectively. Adapted from [89].
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The high- and low-temperature behaviours of H2 are in stark contrast to those of N2.
The modulation of the external potential is much weaker for H2 than it is for N2 [89]. The
light molecule already shows at 200 K a spreading of individual paths over potential maxima;
see figure 1(a). But in this case, the spreading results from a continuous deformation of
entire paths taking place over the full imaginary time intervalτ ∈ [0, 1). Thus, this situation
corresponds more to a quantum dispersion broadening than to abrupt tunnelling events. At
200 K the quantum angular distribution function is essentially identical to the corresponding
classical behaviour where thermal delocalization of the molecular axis occurs. Only a slight
twofold density modulation remains as a signature of the weak external potential, which is
free-rotor-like behaviour (see figure 8(a) in [89]).

At low temperatures, the H2 paths are no longer very smooth and in particular they span
several times over the basic [0, π) interval without ‘feeling’ the underlying potential much.
Therefore, they accumulate very large winding numbers; see figure 2(a). This leads to an
enormous average angular spread of the paths of about 135◦. Furthermore, the corresponding
classical angular distribution at 5 K is tightly localized in the potential minima with basically
no weight at the maxima, whereas the quantum system at 5 K shares the characteristics of
the high-temperature situation at 200 K (see figure 7(a) in [89]). Thus, the reason for the
free-rotor-like behaviour of H2 at low temperatures is quantum delocalization by dispersion or
zero-point effects. In conclusion, the proper treatment of the winding number is essential to
simulate the correct quantum behaviour. This discussion also demonstrates how much can be
learned about the mechanism of quantum processes by just analysing the geometric behaviour
of the Trotter paths.

2.2.2. Decoupled winding number representation.The partition function in the winding
number representation (2.27) can be simplified further such that it is better suited for numerical
simulations [18]. This is achieved by making an additional variable transformation:

ϕ̄t = ϕ̃t − 2πn

(
t − 1

P

)
t = 1, . . . , P (2.28)

with ϕ̄P+1 = ϕ̄1 = ϕ̃1. This transformation was used in [87, 89] to generate trial paths for
winding number changes in the Monte Carlo procedure. This change of variables yields the
following expression:

Zrot = lim
P→∞

(
P

4πβB

)P/2 ∞∑
n=−∞

∫ 2π

0
dϕ̄1

P∏
t=2

[∫ ∞
−∞

dϕ̄t

]

× exp

[
−β

{
P∑
t=1

P

4β2B
(ϕ̄t − ϕ̄t+1)

2 +
(2πn)2

4β2B

}]
(2.29)

for the rotational contribution to the partition function. It should be noted that the variable
transformation has also to be applied in the evaluation of the potential

V (rt ϕ̃t )
(2.28)−→ V (rt ϕ̃t + 2πn(t − 1)/P ) (2.30)

in the separated potential energy propagator (2.13) according to the factorization (2.12). This
means that the sum over all winding numbers cannot be taken before the angular integration
and hence cannot be performed explicitly. But the winding number can be sampled as a random
variable directly from a Gaussian distribution.

The net result of this transformation is a decoupling of the winding number from
the angular degrees of freedom [18]. In particular, the angular term is now identical to
the kinetic energy of standard translational path integrals and one can immediately see
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that the second contribution gives paths with non-zero winding number a weight that falls
off exponentially∼ exp

[−constant× n2
]

with increasing winding number. Given a fixed
temperature and a fixed molecular moment of inertia2, this means that only those paths
that satisfy(2πn)2/2λ2 . 1 contribute significantly; here,λ2 = h̄2β/2 denotes anangular
thermal wavelength in radians. Paths with large winding numbers in the sensen/λ � 1 do
not contribute.

An advantage of the decoupled winding number representation (2.29) consists in it leaving
one more freedom to construct efficient Monte Carlo sampling schemes separately for the
winding number and in{ϕ̄t }-space as introduced in [18]. On the basis of the observation that
paths withn/λ� 1 are not important, one can generate angular configurations by the Monte
Carlo technique according to then = 0 contribution

∼ exp

[
−β

P∑
t=1

P

4β2B
(ϕ̄t − ϕ̄t+1)

2

]
(2.31)

as for standard translational path integrals. Subsequently every configuration has to be re-
weighted by the explicit sum

∑nmax

n=−nmax that is taken up to a preset maximum winding number
nmax such thatn2/βB � 1 is satisfied up to desired accuracy. Note that the potential has to be
re-evaluated for every term in the sum according to (2.30), which makes this approach efficient
for high temperatures wherenmax is small. In the opposite limit, one could sample the winding
number as a Gaussian random number instead of carrying out then-summation explicitly. This
sampling is similar to what is done in the winding number representation (2.27). This scheme
leads effectively to fewer evaluations of the potential.

2.2.3. Alternative representations.In this section, alternative representations of the free-rotor
kernel are introduced that are easy to implement and nevertheless exact in the limitP →∞.

The quadratic term in the{nt }-number representation of the rotational partition function
(2.23) is reminiscent of a small-φ expansion of cosφ ∼ (1− φ2/2). In addition, cos(−φ) =
cos(φ) and the phase vanishes since cos(φ + 2πnt) = cosφ, which suggests

(ϕt − ϕt+1 + 2πnt)
2 ≈ 2[1− cos(ϕt − ϕt+1)] for |ϕt − ϕt+1 + 2πnt | → 0 (2.32)

as an approximation to the action. This kind of inverse Villain transformation of the classical
XY -spin model [70,161] leads to the following representation of (2.23):

Zrot = lim
P→∞

(
P

4πβB

)P/2 P∏
t=1

[∫ 2π

0
dϕt

]
exp

[
−β

P∑
t=1

P

4β2B
2[1− cos(ϕt − ϕt+1)]

]
.

(2.33)

This was used in [63–65] to perform path integral simulations ofd = 2 periodic arrays of ultra-
small Josephson junctions. In this system, thed rot = 1 rotor contribution (2.23) represents the
kinetic energy of the system due to the charging energy in the limit of no Josephson coupling.

For the particular application the angular degrees of freedom (havingU(1) symmetry)
were not treated as continuous variables but were discretized in order to speed up the
algorithm. This leads to aZ(N) symmetry for a representation ofϕt ∈ [0, 2π) using{ϕ(i)t }with
i = 1, . . . ,N ≈ 5000 points on the angular mesh. This kind of discretization does not lead to
any significant systematic error in the calculation of observables as long the angular thermal
wavelength at temperaturePT is large compared to the discretization.

Given well-behaved potentials and finiteP , the error in (2.33) vanishes withP−2 for
constant temperature and moment of inertia. The deviation is not only due to the fact that
kinetic and potential energy do not commute but also due to an approximate expression of the
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free-rotor kernel. However, the representation is exact in the limitP → ∞; see the analysis
carried out in section II A in [70] and section III A in [65]. This is also physically intuitive,
since the finer the discretization of the path the smaller〈|ϕt − ϕt+1|〉 becomes and thus the
better (2.32) is satisfied.

It is possible even to simplify (2.33) by using

Zrot = lim
P→∞

(
P

4πβB

)P/2 P∏
t=1

[∫ 2π

0
dϕt

]
exp

[
−β

P∑
t=1

P

4β2B
(ϕt − ϕt+1 + 2πit )

2

]
(2.34)

where 06 ϕt < 2π and whereit is chosen to be either−1, 0, or 1 such that it minimizes the
action. The sum overit would correspond to an effective winding number. Theit do not have
to be sampled separately, but they are functions of the coordinates of the path. This property
makes the simulations based on (2.33) or (2.34) easier to implement than methods which are
based on a winding number representation.

It is unclear whether or not the simplified approach has been used in a study of orientational
phase transitions in high-pressure solid molecular hydrogen [72]. The two-dimensional
character of the H2 rotor was reduced to ad rot = 1 problem by confining all molecules
to rotate in symmetry planes of the crystal. The authors did not comment on how paths
were closed and whether the winding number summation was performed, i.e., whether or
not the term 2πit in (2.34) was included in the simulation. Omitting this term and allowing
−∞ 6 ϕt 6 ∞ corresponds to neglecting the winding number altogether and yields too-
narrow angular distribution functions; see section 2.2.1 or [18].

Using either representation, (2.33) or (2.34), care has to be taken with equilibration.
Allowing only small displacements might have similar consequences to neglecting the winding
number altogether. The algorithm is still exact in principle, but correlation times of the winding
number run the risk of becoming huge. Therefore moves by of the order of±2π might be
helpful to sample the winding number efficiently. Otherwise angular quantum fluctuations are
suppressed, which leads to systematic errors in the observables. That is, estimates of phase
transition temperatures in the low-temperature regime can be expected to be systematically
too high. The magnitude of such an error seems difficult to assess without doing explicit
calculations.

2.2.4. Approximate representations.Apart from the numerical evaluations of the exact path
integral, it is also possible to apply the idea of quasi-classical approximations [37, 74, 103,
113, 138, 144, 145, 155, 163] to rotational degrees of freedom [47, 48, 88, 89, 97]. The central
advantage of these methods is that they greatly reduce the computational effort of evaluating
the full path integral. This is achieved by taking quantum fluctuations only approximately
into account, thereby reducing the path integral to a standard Riemann integral. The latter can
be evaluated by classical Monte Carlo or molecular dynamics simulation methods. One such
approach is based on the Feynman–Hibbs effective potential that is particularly well suited for
simulations, because it analytically approximates the path integral; see section 10-3 in [39].
The basic idea is to expand the full quantum paths in powers of the deviation from the path
centroid, i.e., the average or mean path serves as the reference path. This is different from
an expansion around the classical path as defined by the minimum of the action, which leads
to WKB-like approximations. If truncated at second order in these fluctuations, the explicit
kinetic energy contributions can be integrated out at the expense of introducing an additional
term in the interaction potential. This term is temperature and mass dependent and vanishes in
the classical limit. Given a certain ‘bare’ pair potentialV for aN -rotor system withd rot = 1
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rotational degrees of freedom per particle of the form

V =
N∑
i=1

V (1)(ϕi) +
∑
〈i,j〉

V (2)(ϕi, ϕj ) (2.35)

the resulting partition function reads [89]

ZFH =
(

1

4πβB

)N/2 N∏
i=1

[∫ 2π

0
dϕi

]
exp[−βVFH(β)] (2.36)

where

VFH(β) = V +
βB

12

{ N∑
i=1

∂2

∂ϕ2
i

V (1)(ϕi) + 2
∑
〈i,j〉

∂2

∂ϕ2
j

V (2)(ϕi, ϕj )

}
(2.37)

denotes the Feynman–Hibbs effective potential. The explicit temperature dependence of
VFH(β) leads to additional terms in quantities obtained from temperature derivatives of the
partition function, such as energy or heat capacity. The main advantage of the Feynman–
Hibbs partition function (2.36)–(2.37) is that it can be evaluated by standard Monte Carlo
methods at essentially the same cost as for a completely classical simulation [37, 138, 155].
The full path integral simulation is of course significantly more demanding. The price to
be paid for this simplification is that such quasi-classical approximations are only useful for
molecules with large moments of inertia and/or systems in the high-temperature limit. This is
demonstrated in section 3.2.2 and in particular in figure 8 (see later).

2.3. Two-dimensional rotation

In the case of two-dimensional rotation the orientation of a molecule is defined by two angles
� = (ϑ, ϕ), and the operator of the kinetic energy (2.2) can be written as

T̂rot = −B
(
∂2

∂ϑ2
+ cotϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
(2.38)

using the usual definition (2.21) of the rotational constantB = h̄2/22 with 2 the
molecule’s moment of inertia. The elements of the free-rotor density matrix in the coordinate
representation� can be obtained as for one-dimensional rotation by inserting an identity
operator in momentum representation into the right-hand side of (2.15). Using the addition
theorem of spherical harmonics [166] leads to [94,109]

ρrot
t t+1(β/P ;�t,�t+1) =

∞∑
J=0

2J + 1

4π
PJ (et · et+1) exp

[
− β
P
J (J + 1)B

]
(2.39)

whereet = (sinϑt cosϕt , sinϑt sinϕt , cosϑt) denotes the normalized vector indicating the
molecule’s orientation at Trotter slicet andPJ (cosαt,t+1) stands for the Legendre polynomial
of degreeJ .

Unfortunately, equation (2.39) cannot be further simplified analytically. It has been
shown [94] that it is not convenient to treatJ as a random variable in the way the winding
number is used as a random variable in the case of one-dimensional rotation. This is due to
the so-called sign problem [80,141] that occurs as soon as an element of the high-temperature
density matrix can become negative [34]. Here, the elements ofρrot(β/P ) can become negative
due to the Legendre polynomials and diverge where a sign change occurs; see in particular
figure 1 in [94].

This sign problem is remedied if the summation overJ in (2.39) is carried out
explicitly [31,109,133,148]. For finite temperatures,β > 0, the sum obviously converges. In
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order to avoid long computation times in a simulation while evaluatingρrot
t t+1, it is advantageous

to tabulateρrot(β/P ) on a grid. Sinceβ/P is fixed in a simulation,ρrot(β/P ) depends only on
the scalar product−16 et ·et+1 6 1. Note that the grid has to be made finer asβ/P decreases.
A severe sign problem occurs if the fermionic nature of rotors has to be taken into account. This
situation is encountered for ortho-H2 or para-D2 molecules, where the summation in (2.39) is
correspondingly restricted to oddJ -values. A fixed-node treatment was introduced in [124] in
order to cope with this problem in an approximate manner; see section 2.5.2 for a discussion.

It is also convenient to tabulate the estimator for the kinetic energy of the rotational degrees
of freedomT est if one wants to compute the rotational contribution to the internal energyU(β).
The primitive estimator can be obtained by exploiting the standard thermodynamic relation [3]
U(β) = −∂ lnZ(β)/∂β, which gives [109]

T est= 1

P

P∑
t=1

T est
t

T est
t =

B

4πρrot
t t+1

∑
J

(2J + 1)J (J + 1)PJ (et · et+1) exp

[
− β
P
J (J + 1)B

]
.

(2.40)

Staging methods [123, 142, 158], improving the sampling efficiency for large Trotter
numbersP , have not yet been derived for two-dimensional rotation. Thus, it is particularly
rewarding to use higher-order approximants for the density matrix such as the one introduced
in (2.18). This allows one to use smallerP -values while preserving the accuracy of the path
integration. If only rotational degrees of freedom are present, the correction potential (2.19)
reads [109]

V̂ corr = β2B

12P 2

{
(∇V̂ )2 −

[
e · (∇V̂ )

]2
}

(2.41)

with ∇ = (∂/∂e1, ∂/∂e2, ∂/∂e3). The internal energyU(β) can be obtained as usual in the
Takahashi–Imada form [79,154] as

U(β) = 1

P

P∑
t=1

〈
T est
t + Vt + 3V corr

t

〉
(2.42)

with Vt = V (�t) andV corr
t = V corr(�t). Thermal averages of observablesÔ that are diagonal

in the coordinate representation are obtained as [109]

〈Ô〉 = 1

P

P∑
t=1

〈
Ot +

β2B

6P 2
(∇Vt − et · ∇Vt)(∇Ot − et · ∇Ot)

〉
(2.43)

with Ot = O(�t).

2.4. Three-dimensional rotation

In the case of three-dimensional rotation the orientation of a molecule is defined by its three
Euler anglesω = (ϕ, ϑ, χ) that relate the molecule-fixed frame to the laboratory-fixed frame.
Depending on the value of its three principal moments of inertia (2aa,2bb,2cc), a (non-linear)
molecule is called asymmetric top if2aa < 2bb < 2cc, spherical top if2aa = 2bb = 2cc,
oblate symmetric top for2aa = 2bb < 2cc, or prolate symmetric top in the case where
2aa < 2bb = 2cc. Associated with the three moments of inertia are rotational constants
Ba = h̄2/22aa, etc. For more details on three-dimensional rotation; see chapter 6.3 in [166]
and references therein. In the following, we will content ourselves with providing the formulae
necessary to calculate the free-rotor density matrix.
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First, the general case, namely the asymmetric top, will be considered; see section I.4
in [58] for a pictorial discussion of this motion. As in the case of one- and two-dimensional
rotation, an exact expression for the free-rotor kernel can be obtained by inserting an identity
operator in momentum representation into the right-hand side of (2.15). This yields [110]

ρrot
t t+1(β/P ;ωt, ωt+1) =

∞∑
J=0

2J + 1

8π2

J∑
M=−J

J∑
K̃=−J

dJMM(ϑ̃tt+1) cos[M(ϕ̃tt+1 + χ̃tt+1)]

×
∣∣∣A(JM)

K̃M

∣∣∣2 exp
[
−βE(JM)

K̃
/P
]

(2.44)

with ω̃tt+1 denoting the Euler anglesωt+1 expressed in the molecule-fixed frame ofωt ,
dJMM(ϑ) the Wigner functions, andE(JM)

K̃
the eigenenergies of the asymmetric top [166].

The coefficientsA(JM)
K̃M

can be obtained by solving the secular equation

T̂rot

∑
K

A
(JM)

K̃K
9JMK = E(JM)

K̃

∑
K

A
(JM)

K̃K
9JMK (2.45)

where9JMK denote the eigenstates of a symmetric top for which at least two moments of inertia
are identical. To be specific, the non-zeroT̂ rot-matrix elements in the prolate symmetric top
basis set are given by

〈JKM|T̂rot|JKM〉 = 1
2(Bb +Bc)[J (J + 1)−K2] + BaK

2 (2.46)

〈JKM|T̂rotJK ± 2〉 = 1
4(Bb− Bc)[J (J + 1)−K(K ± 1)]1/2

× [J (J + 1)− (K ± 1)(K ± 2)]1/2. (2.47)

As for the two-dimensional rotation, it is recommended that the free-rotor high-temperature
density matrix is tabulated in a PIMC simulation so that the expression (2.44) does not have
to be computed at each Monte Carlo trial move.

An alternative way to evaluateρrot
t t+1(β/P ;ωt, ωt+1) and thus the full path integral for

general rotating rigid bodies is to compute the high-temperature (or ‘short-time’) density
matrix in the semi-classical approximation. In this approximation, the orientation density
matrix for a rigid body is given by [136]

ρrot
t t+1(β/P ;ωt, ωt+1) = CD1/2(β/P ;ωt, ωt+1) exp

[
−1

h̄
Scl(β/P ;ωt, ωt+1)

]
(2.48)

whereC is a constant,D(β/P ;ωt, ωt+1) is the Van Vleck determinant associated with the
rotation fromωt toωt+1 in a time period ofβh̄/P , andScl(β/P ;ωt, ωt+1) is the action along the
least-action classical path between the end-points in the given time interval. The determinantD

includes rigorously quadratic fluctuations around the classical path; see [75,137] for thorough
discussions of the semi-classical approximation in the framework of path integrals. The exact
evaluation of this fluctuation determinant for a general asymmetric top molecule is a non-
trivial task of classical mechanics, because there is no special internal axis of rotation; see
section I.4 in [58] for a discussion. However, for short time intervals it is consistent to evaluate
the action corresponding to the rotation connectingωt andωt+1 around afixed axisat constant
angular velocity [77, 78]. The resulting Van Vleck determinant in this so-called fixed-axis
approximation is given by [77,78]

D(β/P ;ωt, ωt+1) ≈ DFA(β/P ;ωt, ωt+1) = 2aa2bb2cc

(βh̄/P )3

(
0t,t+1

2 sin(0t,t+1/2)

)2

(2.49)

where0t,t+1 is the associated arc length of the rotation. This expression can be substituted in
(2.48) together with the associated actionSFA(β/P ;ωt, ωt+1). The overall error of the fixed-
axis semi-classical approximation can be shown to beO{(β/P )2}. Thus, the full path integral
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according to the decomposition outlined in section 2.1 is numerically exact for sufficiently fine
Trotter discretizations of the paths. This approach was used in order to investigate light and
heavy liquid water at room temperature using both PIMC [77, 78] and PIMD [32] sampling
techniques; see section 3.3.3 for a presentation of this study.

2.5. Coupling to nuclear spins

The spins of the nuclei involved in the rotation of a molecule implicitly constrain the symmetry
of the rotational state even in the absence of a direct coupling between nuclear spins and
rotational degrees of freedom [102,156]. The absence of this direct coupling will be assumed
in the following presentation. The symmetry conservation of the rotational wave function is
a direct consequence of the symmetry requirement concerning thetotal wave function under
exchange of identical particles, i.e., anti-symmetry for fermions and symmetry for bosons. It
can be argued that in the limit of a weak coupling between electronic, vibrational, rotational,
translational, and nuclear degrees of freedom, it is the combined rotational–nuclear wave
function that determines the overall symmetry of an isolated molecule in its electronic ground
state [102, 128]. While for heteronuclear polyatomic molecules the combined rotational–
nuclear partition functionZnuc−rot = Znuc⊗ Zrot simply factors asZnucZrot, the partition
function of homonuclear polyatomic molecules instead decomposes as [89,102]

Znuc−rot =
∑
µ

gµZ
rot
µ (2.50)

whereµ labels the representation, e.g., even (g) and odd (u) parity for diatomic homonuclear
molecules.Zrot

µ denotes the rotational partition function in representationµ andgµ is the
associated nuclear spin multiplicity (stemming from the nuclear partition function together
with the fact that nuclear excitations can be neglected at the relevant temperatures). Thus, the
summation over rotational levels that leads toZrot

µ has to be performed separately under the
constraint of a fixed symmetry. These subtleties vanish of course in the classical limit, where
the summation over rotational levels is replaced by an integration and only the multiplicative
‘symmetry number’ remains.

Once the effects due to exchange of identical nuclei are realized, several possible ways of
performing thermodynamic averages are seen to exist. There are two types of experimental set-
up for investigating homonuclear diatomic molecules; see [139] for a lucid presentation for the
case of hydrogen molecules. First of all, one can prepare a sample with an arbitrary composition
of the differentµ-species (such as ortho- and para-species in the case of homonuclear
diatomics). Since onlyµ ↔ µ and notµ ↔ µ′ transitions are phonon induced [128],
the thermal spin conversion is a slow process, and an assembly of molecules with an athermal
non-equilibrium composition is approximately stable on typical experimental timescales. In
such a sample, only the rotational degrees of freedom are changing fast enough to equilibrate.
Thus, the differentµ-species can be considered to be different species of the same chemical
molecule. Consequently, a sample prepared and completely equilibrated at a given inverse
temperatureβ? can be cooled down or heated up to another temperature,β, while keeping
theµ-composition constant. This leads to a thermal population of the rotational levels at
temperatureβ, whereas the nuclei preserve the composition according to the thermal mixture
at temperatureβ?. Another experimental realization would be to enrich the sample arbitrarily
with someµ-species, thus producing any desired composition [139]. In statistical mechanics
these schemes correspond to quenched averages where only a subset of all degrees of freedom
(here the rotations but not the nuclear spins) is assumed to be in thermal equilibrium at some
temperature, whereas the other degrees of freedom are frozen.
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An alternative way to conduct experiments is to add a suitable catalyst [60] that accelerates
the nuclear spin interconversionµ↔ µ′ so that molecules that are in thermal equilibrium with
both the nuclear spins and the rotations can be studied. This corresponds to the concept of
an annealed average, where all degrees of freedom equilibrate at a given temperature. As an
additional theoretical tool, a no-spin average can also be defined, where nuclear exchange and
thus the symmetry restriction is neglected. It serves as a tool for separating the quantum effects
due to indistinguishability of the nuclei from the dispersion effects due to the discrete spacing
of the rotational levels. The three different quantum statistical averages were introduced and
discussed for rotational motion in [56,87,89].

Finally, we note again that the coupling of the rotational motion to the nuclear spin
state becomes irrelevant in the limit of high temperatures and/or large moments of inertia;
see [73,101] for explicit demonstrations based on calculating restricted partition functions.

2.5.1. Diatomic molecules. The simplest and best-known examples are the homonuclear
diatomics H2 and D2, where the rotational state only depends on the symmetry of the nuclear
wave function and the nuclear spinI ; see [102, 156] for a discussion. Fermionic diatomic
H2 with I = 1/2 has three symmetric combinations and one anti-symmetric combination
of the two nuclear spin functions. Since the overall symmetry with respect to exchange of
the two nuclei must be anti-symmetric, the symmetric spin combinations allow only for odd
rotational quantum numbersZrot

odd; this species is called ortho-H2, andgodd = 3. Conversely,
the anti-symmetric spin function forces the rotational levels to be even and couples toZrot

even
(para-H2, geven = 1). For D2 with I = 1, the result is that the three anti-symmetric (six
symmetric) nuclear spin functions couple with only odd (even) rotational levels, leading to
the para-D2 (ortho-D2) species. In the case of the heteronuclear diatomic molecule HD with
its two distinguishable nuclei, all rotational levels are populated according to their Boltzmann
weight, which is formally equivalent toI = 0 with equal weights,gµ, of the even and odd
rotational partition functions.

The concept of the three different quantum statistical averaging procedures is now
explicitly formulated for one homonuclear diatomic molecule confined to rotate in a plane,
i.e. d rot = 1. This is achieved by applying a generalized Poisson summation separately to
the even and odd rotational levels [87, 89]; see [2] for an early discussion of some aspects
connected to this procedure. The partition function for annealed averaging reads

Zrot
annealed= lim

P→∞

(
P

4πβB

)P/2 ∞∑
n=−∞

∫ π

0
dϕ̃1

P∏
t=2

[∫ ∞
−∞

dϕ̃t

]

× exp

[
−β

P∑
t=1

P

4β2B
(ϕ̃t − ϕ̃t+1 + πnδt,P )

2 + ln(|gg + gu exp[iπn]|) + iσ

]
(2.51)

where the phaseσ is a result of the generalized Poisson transformation and depends on the
nuclear spin:σ = πn for fermionic nuclei (e.g., H2 with I = 1/2) andσ = 0 for bosonic
nuclei (e.g., D2 with I = 1). Quenched averages are obtained by weighting the free energies
of the different symmetry classes or representations{µ} separately as

F rot
quenched(β) = −

1

β

∑
µ

qµ ln(gµZ
rot
µ (β)) (2.52)

where the quench coefficientsqµ that weight the contributions of the variousµ-species in the
sample have only to satisfy the restriction

∑
µ qµ = 1. Finally, the no-spin case (which is exact

only for heteronuclear molecules) is obtained using the partition function (2.27). Again, the
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corresponding total partition functions are obtained after multiplication with the translational
and potential contributions according to (2.12)–(2.15).

Comparison of the partition function which includes the exchange statistics (2.51) with the
one that neglects this constraint (2.27) reveals an interesting topological aspect of rotational
motion in one dimension. The basic interval for the rotation is no longer [0, 2π) as in the
unconstrained case but is now [0, π), since the paths are closed moduloπ instead of modulo
2π . Thus, the paths are now defined on a ‘circle withπ -periodicity’. In addition, the last
term iσ in the Boltzmann factor of (2.51) assigns for fermions like H2 a negative weightto
paths with odd winding numbers. Thus, one has to separate the sign of the integrand and to
determine its average separately [80,89,141], which is currently intractable for many-fermion
systems due to statistics problems. Finally, it should be pointed out that the last two terms
in the exponential of (2.51) can be considered as the real and imaginary parts of a complex
chemical potential (in the sense of grand canonical formulation), similarly to the case of the
translational partition function of fermions [26,27]. The real part is only a trivial constant for a
given winding number, whereas the imaginary part carries the non-trivial sign in the fermionic
case. Thus, the (in)famous fermionic sign problem has to be faced for pure rotations too.
See [22] for an in-depth discussion of the state-of-the-art sampling concerning translational
path integrals with fermionic exchange.

The type of the averaging procedure can have profound effects on thermodynamic
properties of the system. This is demonstrated again with a single heavy (N2 with bosonic
exchange) and a light (H2 with fermionic exchange)d rot = 1 rotor in an external potential
with twofold symmetry [87,89]. In figures 3 and 4, the three path integral quantum statistical
averages are also compared to the numerically exact variational solution of the one-dimensional
Schr̈odinger equation [115] with subsequent explicit restricted summation over the energy
levels. We note in passing that the excellent agreement demonstrates the validity of the

Figure 3. The heat capacityCv and energyE (inset) from PIMC simulations of a single rotating N2
molecule withd rot = 1 as a function of temperature in an external potential of twofold symmetry.
The curves are numerically exact variational results (solid: classical average; dotted: no-spin;
dashed: quenched with high-temperature composition; dashed–dotted: annealed) and the symbols
are PIMC results (diamonds: classical average; triangles: no-spin; squares: quenched with high-
temperature composition; circles: annealed). For clarity, only representative error bars are shown
for Cv . Adapted from [89].
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simulation technique.
For N2 the three quantum statistical averages for the total energy and heat capacity collapse

onto just one curve down to the lowest temperature investigated and approach the classical
curve with increasing temperature; see figure 3. The situation is totally different for H2, where
the three quantum statistical averages already deviate below about 100 K from each other and
show a distinctly different behaviour in the low-temperature regime; see figure 4. In the high-
temperature limit all curves approach each other and nuclear spin coupling is observed to not
play a r̂ole. See [73] for an early treatment based on the Euler–MacLaurin expansion technique
for high temperatures and/or large moments of inertia. These differences are discussed and
rationalized in [89]. Here we mention only that the differences between the no-spin and the
classical curves are entirely due to the discrete level spacing whereas the difference between the
three quantum averages is due to coupling to the nuclear spins and thus to exchange symmetry.
In conclusion, this confirms the expectation that the coupling of the rotations to nuclear spin
is only important for molecules with large rotational constants at low temperatures.

2.5.2. The restricted path integral method.As mentioned above, there are various situations
where wave functions have to be symmetrized or anti-symmetrized in order to take into
consideration nuclear spins and the fermionic or bosonic nature of particles. Instead of (anti-)
symmetrizing the wave functions or high-temperature matrices themselves, it is also possible
to restrict paths or to consider new paths. To restrict a path usually means to forbid the rotors to
cross certain nodes, which is why we will use ‘restricted path integral method’ and ‘fixed-node
approximation’ as synonyms.

Let us first consider even angular momentum and one-dimensional rotation. Instead of
symmetrizing the free-rotor kernel, one could take the non-symmetrized kernel and allow the

Figure 4. The heat capacityCv and energyE (inset) from PIMC simulations of a single rotating H2
molecule withd rot = 1 as a function of temperature in an external potential of twofold symmetry.
The curves are numerically exact variational results (solid: classical average; dotted: no-spin;
dashed: quenched with high-temperature composition; dashed–dotted: annealed) and the symbols
are PIMC results (diamonds: classical average; triangles: no-spin; squares: quenched with high-
temperature composition; circles: annealed). For clarity, only representative error bars are shown
for Cv . Adapted from [89].
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path to close after integer multiples ofπ . Hence, the periodic boundary condition in imaginary
time readsϕ(τ) = ϕ(τ + β) + nπ . This is nothing but the well-known concept of the winding
number; see section 2.2.1. The difference between the symmetrized and non-symmetrized
kernel is that, in the latter case, paths are closed after 2π . In the case of two-dimensional
rotation, a symmetrized path would be allowed to close not only at the initial point(ϑ, ϕ) but
also at(π − ϑ, π + ϕ). This method is exact and corresponds to the way exchange is realized
in the context of translational degrees of freedom and bosonic species [21].

The procedure is a little more complex for anti-symmetric rotational states. The anti-
symmetrized kernel has negative contributions and consequently there are nodal surfaces
where the density matrix vanishes. A nodal surface can never be crossed using infinitely small
imaginary time steps. It has been shown that restricting the path integral to be only over node-
avoiding walks is equivalent to demanding that the density matrix vanishes on the surface [22].
This means for one- and two-dimensional rotation that restricted paths are limited to be on
a semi-circle or on a half-sphere only. This restriction only applies to moves in imaginary
time. However, the orientation of the nodal surface can change from one Monte Carlo step to
another [124]. In practice, the following procedure seems convenient. A random rotation is
applied to the orientation of the nodal surface as well as to the orientation of every bead in the
chain representing the rotor’s trajectory in imaginary time. The acceptance criterion for such
a trial move would then be a classical Metropolis algorithm.

It is easy to see that this algorithm leads to the right free-particle behaviour for one-
dimensional rotation. For a given orientation of the nodal surface, e.g.,α = π/2, the Hilbert
space spanned by the fixed-node approximation consists of wave functions that satisfy the
boundary condition, namelyψn ∝ sin[(2n + 1)ϕ]. These wave functions can be generated
by combinations of wave functions exp(±i(2n + 1)ϕ], which span the full space ofd rot = 1
anti-symmetric wave functions. Moving the orientation of the nodal surface makes the Hilbert
space of the odd angular states complete and reinstalls rotational invariance. Hence, the
Hilbert space of one-dimensional rotation is spanned properly. The idea of fixed nodes has
been applied to the PIMC simulation of solid ortho-H2 [124]; see section 3.3.1 for a discussion
of this application.

The fixed-node approximation is supposed to be exact if the nodes are known exactly [20,
22]. However, it has been argued that the free-rotor nodes will not always be exact in
many-particle systems, because the potential field from other rotors may break the spherical
symmetry [124]. Unfortunately, we are not aware of any published systematic study that
focuses on the deviation between an exact and a fixed-node treatment of rotors with odd
angular momentum.

If a fixed-node approximation is used, one should not rely on the primitive propagator
and impose the constraints by brute force. In the case of fixed walls, it has been shown that
the convergence behaviour is as slow asP−1/2 [111]. Propagators based on so-called periodic
images, such as the ones introduced in references [3] and [17], show much faster convergence to
the quantum limit, e.g., using two images makes the corrections to the free-particle propagator
vanish as fast asP−8 [111].

The fixed-node approximation cannot be applied in the case of an annealed average,
because there is no longer symmetry in the wave function between the negative and the positive
contribution. Finally, we point out that the sign problem is only present ifgu > gg. A further
discussion of the fixed-node approximation for rotors can be found in [20] and more recently
in chapter 16.6 of [22].

2.5.3. Polyatomic molecules.Other well-studied examples where the symmetry restriction
of the rotational partition function is crucial are rotating methyl groups (–CH3) in solids [128].
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These groups possess anintrinsic threefold rotation axis due to the nuclear exchange symmetry.
Another example is CH4, for which rotational spectra and thermodynamic properties depend
on the symmetry of the rotational wave function [55, 165]; see section 3.3.2 for a discussion
of solid methane.

In these more complicated situations, it is advantageous to use group theory to find,
classify, and project out the relevant symmetry classes. It is generally possible to generate
states belonging to representationµ with the help of projection operators [62,156]

P̂µ = dµ

g

∑
R

χ
(µ)

R D̂(R) (2.53)

where the sum goes over all symmetry operationsR. In (2.53),D̂(R) generates the symmetry
operation,χ(µ)R denotes the character ofR in the representationµ, g is the order of the group,
anddµ is the dimension of the representationµ. Since the potential energy is invariant under
a symmetry operation, it is convenient to exploit the projection-operator properties ofPµ and
to symmetrize the elements of the high-temperature density matrix rather than to symmetrize
the states themselves [110]:

ρrot
µ (β/P ;ωt, ωt+1) = dµ

g

∑
R

χ
(µ)∗
R ρrot(β/P ; 0, ω̃tt+1(R)) (2.54)

with |ω̃(R)〉 = D̂+(ω)D̂(R)|ω〉. In the case of one-dimensional and two-dimensional rotation,
the symmetrization procedure (2.54) just consists of symmetrizing or anti-symmetrizingρrot

with respect to a rotation by an angleπ . Alternatively, identity operators in the subspace of
even angular momentum and odd angular momentum may be inserted into (2.15) in order to
symmetrize or anti-symmetrizeρrot, respectively.
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Figure 5. The free-rotor density matrixρ(β/P ; 0, 0, ϑ, ϕ + χ) for CH4 at (β/P )−1 = 64 kBK in
the T representation which is one of the four symmetry classes of the tetrahedral group. Adapted
from [110].

An example for a symmetrized kernel is shown in figure 5, namely the free-particle
propagator in imaginary time for an individual CH4 molecule in the T representation. The
T representation is one of the four symmetry classes of the tetrahedral group, but it is not the
identity representation. Note the negative contributions of the propagator in this representation.
See figure 1 in [110] for the no-spin kernel and the kernel in the identity representation that
are both strictly positive.
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As in the case of diatomics, each representation for the rotation of polyatomic molecules
has its own contribution to the total partition function. In the case of annealed averages, each
representation enters the density matrixρ̂rot

annealedwith an effective weightgµ:

ρ̂nuc−rot
annealed(β) =

∑
µ

gµρ̂
rot
µ (β). (2.55)

However,ρ̂rot
annealed(β) cannot be expressed as the product ofP factorsρ̂rot

annealed(β/P ) but is
instead given by

ρ̂nuc−rot
annealed(β) =

P∏
t=1

[∑
µt

g1/P
µt
ρ̂rot
µt
(β/P )

]
. (2.56)

Depending on the factorsgµ, the sign problem may be present or absent. A large degeneracy
factor of the nuclear spins in the identity representation favours the absence of the sign problem.

In the no-spin case the path integral probability measure is always positive as it is for
the identity representation. Other representations always have negative contributions in the
associated path integral probability measure [110]. In this case the sign problem might be
partially remedied by employing a fixed-node approximation; see section 2.5.2.

3. Selected applications

The investigation of quantum mechanical rotational motion of molecules in condensed
phases is a topic of long-standing interest which dates back to the early days of quantum
mechanics [120, 143]. One of the reasons for this is that quantum fluctuations of rotational
degrees of freedom often lead to a considerable renormalization of classical behaviour. As
an example, one can consider the temperature-driven orientational disordering transition in
solid N2. The transition temperatureTc for a simple classical model (B = 0) of solid N2

is Tc = 42.5 K, while the quantum model (usingBN2 = 2.8 kBK) with the same potential
energy surface shows a similar transition from an orientationally ordered to a plastic crystal at
Tc = 38(±0.5) K [125]. The experimental transition temperature is found to be atTc = 35 K.
A more striking correction is found in the sublimation energyES, which experimentally is
E

exp
S = 833 kBK, while classical and quantum mechanical simulations yield approximately

Ecl
S = 1025kBK andEqu

S = 830kBK.
Sometimes, however, quantum effects can be so strong that phenomena occur which have

no classical analogue. Those phenomena are often related to tunnelling or coherence. A
well-known example is the ground state of solid H2, which is an orientationally disordered hcp
crystal in the case of para-H2 and a fully ordered fcc crystal in the case of ortho-H2 [139].

The purpose of path integral simulations is to include the quantum fluctuationsrigorously
in the computer simulation. Thus, given a well-defined model and Hamiltonian, PIMC
simulation for rotational degrees of freedom leads to anumerically exactquantification of
rotational quantum effects without further approximations. This is the main distinguishing
feature of PIMC simulation compared to approximate treatments of rotational degrees of
freedom, such as mean-field [43, 86, 146, 147], quasi-classical [47, 48, 71, 88, 89, 97, 147], or
quasi-harmonic [16,53,54,88,89,97] approximations. However, the quasi-analytical methods
can lead to more easily gained and deeper insight into the physics that governs a particular
system [146, 147]. In the following subsections, a few selected examples of using PIMC
methods in condensed matter physics will be discussed. In addition, these applications serve
as demonstrations of various aspects of the theory outlined in section 2.
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3.1. Rotor impurities

3.1.1. The Devonshire model.Simple systems such as one-particle systems are usually best
suited for studying the prospects and limitations of a given numerical method. At the same
time, understanding the physics of one-particle models often helps in interpreting the behaviour
of more complex systems. A simple generic model potential for describing two-dimensional
rotor impurities (d rot = 2) in solids, e.g., the solid mixture of cubic Ar1−x(N2)x with x � 1,
has been proposed by Devonshire [128]. The interaction potential with strength∝ J reads

V = 3

2
J (1− e4

1 − e4
2 − e4

3) (3.1)

where(e1, e2, e3) denotes the normalized vector indicating the molecule’s orientation. The
Devonshire model focuses on the coupling of the orientational degrees of freedom to the crystal
fieldVCF, which stems from atoms sitting at cubic lattice sites. It neglects translation–rotation
couplingVTR [81], which quantifies the change of energy due to centre-of-mass displacements
away from cubic lattice sites. The coupling between orientational degrees of freedom—the
so-called rotation–rotation couplingVRR [81]—is not considered either, due to the absence of
direct rotor–rotor interactions in the limitx � 1. It is worth mentioning that MFT of diluted
and undiluted molecular solids mapsVRR ontoVCF, whose parameters are then obtained self-
consistently as a function of temperature. Therefore, single-particle models may even be
interpreted as effectively describing many-rotor interactions. This is the case in particular in
an ordered phase far away from the critical point, where MFT often turns out to be a reasonable
approximation.

A feature incorporated in the Devonshire model is tunnelling, which becomes important
at low temperatures in nearly all molecular solids. Tunnelling can occur if the corresponding
classical system has a ground state that is at least twofold degenerate [39,75,137]. The quantum
mechanical system removes the degeneracy by allowing for coherent angular motion between
the wells in which the classical ground states can be found. In analogy to the case for other
multi-well potentials [39, 75, 137], one may expect that the smaller the ratioJ /B of energy
barriersJ to the rotational constantB (2.21) the larger the tunnelling splitting ¯hωT. Simulating
this motion between the various wells with PIMC simulation is often CPU time consuming,
because a typical realization of a path has to explore all wells. This may only be possible
if a time step1τ = h̄β/P in the order of—or small compared to—the barrierJ is chosen.
Sufficiently small values for1τ therefore have to be much smaller at low temperatures than
at temperatures where the system may already be strongly quantum mechanical but does not
yet show coherent tunnelling.

An interesting property of the Devonshire model is that for rotational constantsB? =
B/J < 1/40, two anomalies in the specific heat can be observed. One maximum occurs
when the rotor crosses over from librations within the wells to the free-rotor regime. The latter
regime can be found at thermal energies similar to or larger than the barrier. Another maximum
in the specific heat occurs due to the onset of quantum mechanical coherence atT ? ≈ 0.007
for B? = 1/40; see figure 4 in [109]. Between these two maxima, two regimes might be
expected: one regime in which the rotor behaves like a classical oscillator and another one
in which the rotor is quantum mechanically frozen in. However,B? = 1/40 is not yet small
enough to allow for the above-mentioned classical regime, even though it appears to be a small
value. Hence, extreme care has to be taken when rotors are meant to behave classically. For
example, Ar1−x(N2)x is often referred to as a classical system. However, realistic simulations
at zero pressure show an energy barrier of 70kBK [107], which translates toB? ≈ 1/20 if
mapped onto the Devonshire model. Thus, quantum fluctuations cannot be neglected if the
aim of the simulation is aquantitativeinvestigation of this and related systems.
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Figure 6. The internal energyU and expectation values〈V 〉 and〈T rot〉 of the potential and kinetic
energy, respectively, for the Devonshire model as defined in (3.1) using a barrier height ofJ = 40B.
All energies are expressed in units of the rotational constantB. Adapted from [109].

An important property of the Devonshire model as well as of most multi-well models is
that in the regime 0< kBT < O{h̄ωT} the average potential energy〈V 〉 may decrease as the
temperature increases, in contrast to the kinetic energy and total energy which both increase.
This behaviour is shown in figure 6 for the same Devonshire model as was discussed above,
namely that withJ = 40B. This means thatthermal fluctuations can lead to localization
by destroying quantum coherence. This mechanism may be responsible for some interesting
characteristics of the so-called QAPR model; see section 3.2.1. In the QAPR model the
order parameterincreaseswith temperature in a certain regime of rotational constants and
temperatures; see section 3.2.1.

3.1.2. Hydrogen molecules on ice.Simulations of realistic models include PIMC studies of
H2 on amorphous ice clusters [12,13]. Restricting the angular momentum toJ = 0 (and thus
M = 0) for para-H2 and toJ = 1 (and thusM = −1, 0, 1) for ortho-H2, a PIMC approach was
chosen that is similar in spirit to the one introduced in [56]. It was found that ortho-H2 couples
more strongly to the ice cluster than para-H2 [12]. This can again be understood in terms of
coherence. If the Hilbert space of the rotor can be decomposed into at least two symmetry
classes, the quantum mechanical ground state will be found in the identity representation. To
be specific, para-H2 and ortho-D2 are in the identity representation while ortho-H2 and para-D2
are not. As shown as an example in section 3.1.1, the ground-state energy is minimized due
to coherent tunnelling between equivalent potential energy wells, which reduces the kinetic
energy. However, the quantum mechanical ground state does not have the lowest possible
potential energy! Other representations have nodes in their wave functions. Hence they are
more localized, and the coupling to external potentials is stronger. Using a self-consistent field
approximation together with an adiabatic approximation, it is possible to extend the Hilbert
space of the rotational degrees of freedom and to obtain a semi-quantitative agreement with
an experimentally observed rotational spectrum of H2 on amorphous ice; see figure 1 in [13].
These results are certainly encouraging given the complexity of the system, in particular the
H2–H2O and H2O–H2O interactions. However, the approach used to simulate the rotational
degrees of freedom can hardly be extended rigorously if many rotors interact directly, for the
reasons mentioned in the last paragraph of section 2.1.
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Nevertheless, it was possible to generalize this approach to several interacting rotors
in the limit of sufficiently weak anisotropic potentials in conjunction with an approximate
diagonalization scheme in a truncated rotational Hilbert space. See [14] for the detailed
formulation of this method. The aforementioned allows the simulation of mixed para-D2/ortho-
D2 clusters consisting of up to 13 molecules based on using electric quadrupole–quadrupole
interactions (3.6) to represent the anisotropic interactions. An exact diagonalization was still
possible for up to five odd-J para-D2 molecules. An interesting result was that at 1 K
the three odd-J molecules of the (para-D2)3(ortho-D2)10 cluster ‘form a cluster within the
cluster’. At 3 K, however, they are ‘dissolved’ throughout the entire cluster. The three
central molecules are found to be held together by the EQQ interactions. A similar phase
separation at low temperatures was discovered for mixed para-H2/ortho-D2 clusters consisting
of 18 spherically symmetric even-J molecules modelled by a fused-atom Lennard-Jones
interaction [23, 24]. In this case, the segregation is induced by the mass difference that leads
to stronger delocalization of the lighter para-H2 molecules. Therefore they concentrate at the
cluster ‘surface’ where the potential is the shallowest and the zero-point energy is minimal.
The (para-D2)13 cluster consisting of only odd-J molecules shows some local orientational
order at 1 K due to the quadrupolar interactions that favour T-shaped arrangements for linear
molecules [14]. However, a perfectly ordered ground state cannot be reached because of a
geometrical frustration effect.

3.2. Rotors on surfaces

3.2.1. The QAPR model and quantum melting.A generic model for the description of
rotational ordering of linear molecules in bulk phases, or physisorbed on surfaces [98], is
the anisotropic planar rotor (APR) model [117, 118]. It focuses on the description of one-
dimensional rotors,d rot = 1, pinned onto a triangular lattice and constrained to rotate in a
common plane. Next-neighbour rotors within the plane interact through the corresponding
anisotropic part of their electric quadrupoles. The APR model is ideally suited to describe
the transition from the so-called herringbone phase to an orientationally disordered phase on
a triangular lattice [98]. However, it can easily be modified or generalized, and applied to
the description of a large variety of problems such as coupled Josephson junctions [63–65],
polymers on surfaces [29], and spherical impurities in an extended array of rotors [28,54,114].

In this review we focus on the quantum mechanical generalization of the APR model, the
quantum anisotropic planar rotor (QAPR) model introduced in [92,97]. The parameters of its
HamiltonianĤQAPR are the rotational constantB and the coupling strengthJ :

ĤQAPR= −B
N∑
i=1

∂2

∂ϕ2
i

+ J
∑
〈i,j〉

cos(2ϕi + 2ϕj − 4φi,j ) (3.2)

with ϕi = ϕ(Ri ) the angle of theith molecule pinned at lattice siteRi , andφi,j the six phases
that measure the angle relative to the vector that connects the neighbouring sitesRi andRj ;
all angles are defined relative to a given space-fixed axis. The discrete positionsRi are the
vertices of a periodically replicated rigid triangular lattice. The QAPR model reduces to the
classical APR in the limitB = 0. The order parameter that is sensitive to the herringbone
structure [106] follows from the three-component order parameter(81,82,83) and is given
by

8 =
[

3∑
α=1

82
α

]1/2

(3.3)



Path integral simulations of rotors R143

with

8α = 1

N

N∑
i=1

sin(2ϕi − 2ηα) exp(iQα ·Ri ) (3.4)

and

Q1 = 2π(0, 2/
√

3) η1 = 0

Q2 = 2π(−1,−1/
√

3) η2 = 2π/3

Q3 = 2π(1,−1/
√

3) η3 = 4π/3.

(3.5)

Figure 7. Phase diagram of the QAPR model (3.2) as a function of the reduced temperature
T ? = kBT/J and the reduced rotational constantB? = B/J . Mean-field theory (MFT): solid
curve; path integral Monte Carlo simulations (PIMC): open circles (the dashed line connects the
data linearly); diffusion Monte Carlo simulations (DMC): filled square. Adapted from [86,112].

One of the interesting features of the QAPR model is that MFT predicts a re-entrant
behaviour in theB–T plane [86]; see the solid curve in figure 7. Similarly, re-entrance was
predicted by MFT for related molecular solids [11,43–46]. It is still under debate whether an
approximation-free treatment of the QAPR model would lead to re-entrance or not.

In theB?–T ? phase diagram (B? = B/J , T ? = kBT/J ) depicted in figure 7, several
distinct regimes can be found as revealed by various simulation studies [59, 86, 92, 97]; see
the key. For all values ofB? the system is disordered at high temperatures. However, the
transition temperaturesT ?(B?) are reduced compared to the classical transition temperature
T ?cl = T ?(B? = 0) = 0.76 [93, 116]. For valuesB? . 0.69 a temperature-driven transition
from the high-temperature disordered phase to an orientationally ordered phase can be found
with T ?(B? = 0.69) ≈ 0.3. The order parameter (3.3) can reach its maximum value of
unity only in the classical zero-temperature limit, i.e., exactly forB? = 0, whereas quantum
fluctuations always reduce the maximum value—in particular8(T ? = 0) < 1 for every
B? > 0; see figure 3 of [97]. A similar behaviour, which is mainly induced by zero-point motion
in the potential wells, was observed for realistic models of N2 [88,89] and CO [90,91] molecules
physisorbed on graphite. See section 3.2.2 for a deeper discussion of this phenomenon. No
long-range orientational order seems possible forB? & 0.69 at any temperature [86,97], i.e.,
8(T ? & 0.69) = 0. In the vicinity ofB? = 0.69, a sharp drop inT ?(B?) as a function of
increasingB? has been observed [97]. First, finite-size studies did not provide indications of
re-entrance and were inconclusive [86]. However, more recent PIMC studies [59] based on
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Cao’s method [18]—see section 2.2.2—in conjunction with finite-size scaling show evidence
for re-entrance atB? = 0.6364. The system orders upon cooling atT ? ≈ 0.25. Upon further
cooling, the Binder cumulant [7] (i.e., the reduced fourth moment of the order parameter,
which is an indicator for phase transitions) suddenly drops atT ? ≈ 0.09 for all system sizes
studied, indicating a disordered phase forT ? . 0.09. Re-entrance also receives support from
a ground-stateT ? = 0 diffusion Monte Carlo study [112], in which the zero-temperature
quantum melting is roughly located atB? ≈ 0.4, which is substantially lower thanB? ≈ 0.69
atT ?(B? = 0.69) ≈ 0.3 (compare the square (DMC) to the circles (PIMC) in figure 7).

Given the present data, it may be convenient to distinguish between the following regimes
as a function of the reduced rotational constantB? (see also figure 3 of [97]):

(i) The ‘classical regime’,B? = 0, in which the orientational order parameter8 (3.3) is
unity at zero temperature,8(T ? = 0) = 1, and a monotonically decreasing function of
increasing temperature.

(ii) The ‘quasi-classical regime’, 0< B? . 0.4, with an ordered ground state, 0< 8(T ? =
0) < 1, and the possibility of an order parameter growing withincreasingtemperature
in a certain temperature interval before the order parameter decays to zero for high
temperatures.

(iii) The ‘re-entrance regime’, 0.4 . B? . 0.69, for which the ground state is disordered,
8(T ? = 0) = 0, whereas thermal destruction of quantum coherence leads to ordering in
a finite temperature interval1T ?, 0< 8(1T ?) < 1, before further heating produces the
high-temperature disordered phase with8(T ?→∞) = 0.

(iv) The ‘quantum regime’B? & 0.69 in which the system is a quantum orientational liquid,
i.e., disordered at all temperatures with8(T ? > 0) = 0.

Note that the present classification differs slightly from that proposed in [97].
Unfortunately, the experimental realizations of the QAPR model can only be found in

either the quasi-classical regime (N2 or CO on graphite; see section 3.2.2) or in the quantum
mechanical regime (H2 on graphite, where, however, thed rot = 1 approximation for diatomic
molecules is no longer satisfactory). However, the QAPR model might nevertheless be helpful
in understanding why there is re-entrance in solid HD under pressure, but not in solid H2 and
D2 [105]. In addition, over the years the APR model acquired the status of the ‘Ising model
for rotations’ and thus merits a thorough quantum statistical investigation of its phase diagram
in its own right.

3.2.2. N2 and CO on graphite. The investigation of the phases and associated phase trans-
itions of diatomics physisorbed on surfaces is a vast field of research [98]. In a series of
publications, the impact of quantum effects on the orientational ordering of diatomics on
graphite was investigated by PIMC methods [87–92]. The aim was to provide a model that
is as realistic as possible, but still efficient enough to allow for the study of quantum effects
on phase transitions. To this end, the rigid rotors were pinned with their centres of mass on a
triangular lattice corresponding to the so-called(

√
3×√3)R30◦ commensurate superstructure

on the graphite basal plane. The molecule–molecule and molecule–surface interactions were
both treated in microscopic detail using atomistic site–site models in conjunction with point
charges in order to represent multipole–multipole electrostatic interactions. This allowed us
to treat 900 interacting quantum molecules, which is a sufficiently large system to lead to
meaningful conclusions for collective phenomena.

In the case of N2 on graphite, the ground state is known to possess so-called ‘2-in’
herringbone orientational order, where the molecular axes are coplanar with the surface with
only minor out-of-plane fluctuations [98]. Thus, a one-dimensionald rot = 1 approximation
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for this diatomic rotor is realistic. In addition, the rotational constant of N2 is small enough
to allow for an unconstrained (no-spin) summation over all rotational levels according to
(2.27)—compare the no-spin approximation to the quenched or annealed averages in figure 3.
This would be a less satisfactory approximation for H2 as demonstrated in figure 4, where
the different averaging procedures (annealed, quenched, and no-spin; see section 2.5 and in
particular section 2.5.1) affect the physics.

Figure 8. The herringbone order parameter8 (3.3) and total energyE (inset) from PIMC
simulations of 900-rigid-rotord rot = 1 N2 molecules physisorbed on graphite at a function of
temperature. Solid curve: PIMC simulation; dotted curve: classical simulation; dashed curve:
quasi-harmonic approximation; triangles: quasi-classical Feynman–Hibbs approximation; the
curves are linear connections of the data. Adapted from [88].

One of the main results of the study of N2 on graphite is that quantum fluctuations lead to
‘10% effects’ on physical properties [88,89]. In particular, it is found that temperature of the
transition to the herringbone phase is shifted by about 10% to lower temperatures as a result of
zero-point motion. This means that a quantitative agreement between experiment and theory
cannot be expected if quantum effects are neglected in the theoretical modelling. The order
parameter (3.3) in the ground state is also reduced by about 10% due to quantum librations of
the rotors in the potential wells—compare the solid (quantum) to the dotted (classical) curve
in the main panel of figure 8. Thus, the order parameter does not reach its classical value of
unity atT = 0 K, but only about8(T = 0 K) ≈ 0.9.

It is instructive to compare this order parameter reduction to the behaviour of a model that
is related in spirit, namely the spin-1/2 quantum Heisenberg model on a two-dimensional rigid
lattice. In the ferromagnetic case, the quantum order parameter is known to reach its classical
Curie value of unity in the ground state. This is qualitatively different for the antiferromagnetic
case where the staggered order parameter is reduced from its classical Néel value by about
40% on a square lattice [130]. The reduction on the honeycomb lattice is even as large as
approximately 60% [131]. Despite this unusual behaviour of the quantumantiferromagnetic
Heisenberg model, it was shown that the nature of the order parameter and the scenario
of ordering by spontaneous symmetry breaking is the same as for the analogous classical
model [132]. The reason for the fundamentally different behaviour of the ferromagnetic and
antiferromagnetic cases is that for the former the order parameter operator commutes with
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the Hamiltonian, whereas this is not true for antiferromagnetic interactions. The situation
for the herringbone ordering is similar to that of the antiferromagnetic model because the
order parameter (3.3) does not commute with the Hamiltonian, even for the simplified QAPR
model (3.2). The difference is of course that the non-commutativity in the antiferromagnetic
Heisenberg model stems exclusively from the interaction term, whereas it is the kinetic energy
term that leads to this phenomenon in the rotor models. Thus, the order parameter reduction
in the Heisenberg case is a constant for a given lattice symmetry, but it is a mass-dependent
effect for rotors.

Monolayers of the heteropolar CO molecules physisorbed on graphite have one additional
degree of freedom compared to homopolar N2. Their molecular dipole moments lead to
head–tail order (within a quadrupolar ordered structure of the herringbone type) at very low
temperatures [61,162], which isnotfound in the bulk phase. It was shown experimentally [162]
and theoretically [90,91] that the head–tail ordering transition belongs to the two-dimensional
Ising universality class. The lowering of the head–tail transition temperature due to quantum
fluctuations was again found to amount to roughly 10%, whereas the depression of the ground
state head–tail order parameter is quite small [90, 91]. Incidentally, the herringbone order
parameter reduction in the ground state was found to be less pronounced for CO than for
N2 on graphite, although the rotational constants are very similar (BCO = 2.8 kBK versus
BN2 = 2.9 kBK).

With the realistic example of heavy diatomics on graphite at hand, it was also checked
how well approximate methods such as quasi-harmonic theory or quasi-classical approaches
of the Feynman–Hibbs type (see section 2.2.4) work [88]; see [89] for further details. It
was confirmed that they work very well in the low- and high-temperature limits, respectively,
as demonstrated in figure 8 for the N2 herringbone order parameter and the total energy.
However, there is an intermediate temperature window wereboth methods start to fail. In
addition, these methods are shown to break down for lighter molecules, even at quite low and
high temperatures, respectively [97]. Furthermore, because MFT grossly overestimates the
transition temperature by a factor ofat leasttwo (see, e.g., figure 7), the numerical PIMC
method is the only reliable and quantitative technique left for studying orientational ordering
of interacting quantum rotors at finite temperatures.

3.3. Rotors in the bulk

3.3.1. Solid molecular hydrogen.Investigating the structure of solid molecular hydrogen
as a function of pressure and temperature has been an active field of research for many
decades [139]. More recently, the focus of attention, both experimentally and theoretically,
has shifted from the low-pressure regime to higher pressures, i.e., up to the order of 1 Mbar or
100 GPa [85]. Among the interesting phenomena is a pressure-induced orientational ordering
phase transition of the even-J species, which occur for ortho-D2 and para-H2 in the low-
temperature limit at approximately 30 GPa and 110 GPa, respectively. The orientationally
disordered low-pressure phase is called the symmetric phase (SP) or phase I, whereas the
ordered high-pressure phase is dubbed the broken-symmetry phase (BSP) or phase II. A phase
transition to a third phase, the H-A phase or phase III, occurs at even higher pressure of
approximately 150 GPa for low temperatures. A model approach that can be used to rationalize
these orientational transitions can be found in [45, 46, 100]. The odd-J species, i.e., para-D2
and ortho-H2, have an ordered ground state already at zero applied pressure.

A pioneering PIMC rotor simulation of the pressure-induced order–disorder transition
between phases I and II was based on ad rot = 2 rigid-rotor model of even-J homopolar
diatomics that were pinned with their centres of mass on a rigid fcc lattice [133, 148]. Thus,
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lattice vibrations (phonons) and intramolecular vibrations (vibrons) were neglected from the
outset. In a more realistic PIMC simulation along the same lines, phonons were taken into
account, pressure was an observable in the constant-pressure ensemble employed, and the
interactions were adjusted to reproduce the experimental equation of state [31]. In [133], the
expression (2.39) was evaluated numerically, taking into account only the even-J contributions
with J 6 50, and tabulated on a grid as a function of the relative angleα between the rotors. An
effective anisotropic pair potential was determined by fitting to energies obtained by density
functional electronic structure calculations performed in the local density approximation.
Furthermore, the realistic assumption was made that the nuclear spin state of the molecules
does not change, i.e., the quenched averaging procedure for a pure even-J sample was used;
see section 2.5 and (2.52).

Figure 9. The phase diagram from PIMC simulations ofd rot = 2 rigid-rotor even-J homopolar
hydrogen isotopomers on a rigid fcc lattice as a function of temperature and pressure. Filled circles:
para-H2; filled squares: ortho-D2; open diamonds: para-T2; open circles: classical molecules; the
curves are to guide the eye. Adapted from [133].

The resulting phase diagrams [133] for various isotopomers are reproduced in figure 9. In
the zero-temperature limit the order–disorder transitions are located at aroundp0 ≈ 75.0 GPa
for para-H2, 26.4 GPa for ortho-D2, and 12.3 GPa for para-T2. Classical rotors with the
same interaction potential are, of course, orientationally ordered already at zero applied
pressure. Thus, quantum fluctuations in the orientational degrees of freedom destroy long-
range orientational order if no external pressure is applied. The lighter the nuclei, the higher
the external pressure has to be in order to induce orientational ordering, as one can see from
the increasing transition pressurep0 with increasing rotational constant. This is in agreement
with experimental trends. In addition, the transition pressure is found to depend sensitively on
the symmetry of the underlying rigid lattice. A hcp lattice leads to much higher order–disorder
transition pressures ofp0 ≈ 120 GPa for para-H2 and 49 GPa for ortho-D2.

Orientational ordering was also investigated using a simplifiedd rot = 1 rigid-rotor model
for H2 molecules with centres of mass fixed on a rigid hcp lattice [72]. Because the one-
dimensional rotors were constrained to in-plane rotation, the resulting phases were called
azimuthally ordered and disordered phases. This is also why the associated phase transition
cannot be unambiguously related to either the I–II or the II–III orientational transition. It is
argued that releasing the constraint on the second rotational degree of freedom would lead to
a shift of the order–disorder transition to higher pressures and lower temperatures. Nuclear
spin was not taken into account, i.e. the no-spin approximation as discussed in section 2.5 and
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in particular in section 2.5.1 was invoked. It is, however, unclear how the path integration
of the one-dimensional rotational degrees of freedom was performed—in particular, whether
the summation over winding numbers was included (explicitly or implicitly). Taking into
account only then = 0 term would lead to an artificial suppression of quantum effects; see our
discussion at the end of section 2.2.3. In the present case it would result in an underestimation
of transition pressures.

The markedly different orientational ordering scenarios of the odd-J fermionic diatomic
homopolar para- and ortho-species were investigated on the basis of a model consisting of
N = 108 electric quadrupoles on a rigid fcc lattice [124]. The corresponding Hamiltonian can
be written symbolically as

ĤEQQ= −B
N∑
i=1

(
∂2

∂ϑ2
i

+ cotϑi
∂

∂ϑi
+

1

sin2 ϑi

∂2

∂ϕ2
i

)
+
Q2

r2
0

∑
〈i,j〉

VEQQ(�i,�j ) (3.6)

whereQ denotes the electric quadrupole moment,r0 is nearest-neighbour distance on the fcc
lattice,B = h̄2/22 is the rotational constant, and�i = (ϑi, ϕi). The explicit definition of the
angular dependence of the EQQ interactionsVEQQ is given, e.g., in equation (2.1) in [84]. The
fixed-node approximation was used to treat the odd-J fermionic case; see section 2.5.2 for a
presentation of this method.

The ground state for the even-J species is the spherically symmetricJ = 0 state. Thus,
theJ = 2 or higher levels have to be populated in order to destroy spherical symmetry and to
produce orientational ordering. In the limit of weak quadrupolar interactions the system can
stay in theJ = 0 state. For strong quadrupolar interactions, however, the potential energy
can only be lowered at the expense of increasing the kinetic energy by populatingJ > 0
levels, which leads to orientational ordering. Because the strength of quadrupolar interactions
increases with decreasing intermolecular distance,∝Q2/r5

0, orientational ordering of even-J
species can be achieved by compressing the system, i.e., by increasing the external pressure;
see the discussion of figure 9 above. For odd-J species, in contrast, theJ = 1 ground state
has a threefold-degenerate anisotropy that can always be broken independently of pressure by
lowering the temperature.

In addition to temperature, there are two parameters present: the strength of EQQ
interactions∝ Q2/r5

0 and the magnitude of the rotational constantB. Thus, two variables that
are reduced by the strength of the quadrupolar interactions can be defined: the dimensionless
temperatureT ? = kBT r

5
0/Q

2 and the dimensionless rotational constantB? = Br5
0/Q

2; for
H2 and D2 at zero pressure,B? ≈ 5 and 2, respectively. The resulting phase diagram of
(3.6) is shown in figure 10. In the classical limit (i.e., forB? = 0) there is no difference
between the para- and ortho-species, and their order–disorder transitions occur at the same
temperature of aboutT ? ≈ 0.72, which is of course overestimated by MFT (T ? ≈ 1.18). The
ground state (i.e., forT ? = 0) of the even-J species is only orientationally ordered in the
limit of sufficiently small quantum fluctuations, more precisely ifB? < 0.30± 0.01 (with
MFT predictingB? < 0.40). Contrary to that, the phase transition line for the odd-J species is
almost independent of the rotational constant forB? > 1 and its ground state is always ordered,
independently ofB?. In particular, the odd-J system is ordered in the regimeT ? . 0.14 in
the limitB?→∞ (with MFT predictingT ? . 0.45).

Interestingly, a re-entrant phase boundary is found ifall rotationalJ -levels are included in
the determination of the density matrix within MFT [124]; see also [45,46]. This can serve as a
model for HD molecules where both nuclei are distinguishable and thus no symmetry restriction
for the rotational density matrix applies. The re-entrance can be rationalizedqualitativelyby
the fact that the ground state of the rotor is again the isotropicJ = 0 state, but the first excited
(anisotropic) level isJ = 1 and thus much closer to the ground state than theJ = 2 state,
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Figure 10. The phase diagram ofd rot = 2 rigid quadrupoles on a rigid fcc lattice as a function
of the dimensionless temperatureT ? = kBT r

5
0/Q

2 and the dimensionless rotational constant
B? = Br5

0/Q
2. Solid curve: odd-J species MFT; dashed curve: even-J species MFT. Filled

circles: odd-J species PIMC simulation; open circles: even-J species PIMC simulation; here the
connecting thin curves are to guide the eye. The orientationally ordered phases are found on the
lower left-hand side of the various separating curves. Adapted from [124].

which is the first excited state for even-J species. Thus, it is possible that for certain values
of the rotational constantB? the system is orientationally disordered in the ground state at
T ? = 0, orders upon increasing temperature because of mixing in theJ = 1 state, and finally
disorders again as thermal fluctuations become dominant. This all-J behaviour would result
in a bump in the curve for the even-J case in figure 10 similar to the case for the MFT curve
shown in figure 7. Note that re-entrance is, in principle, also possible for even-J species as
the same arguments apply, which means that re-entrance is the result of a delicate balance
between the magnitude of the rotational constant and the strength and possibly the symmetry
of the interactions. As discussed in section 3.2.1, MFT also predicts for the QAPR model
a re-entrant regime in the phase diagram for heteronucleard rot = 1 diatomics (or in general
within the no-spin approximation), but a final consensus as regards what happens beyond
MFT is not yet reached, although it seems that more recent simulations support the idea of
re-entrance. Finally, we mention again that re-entrance is also found in experiments with HD
at high pressures [105].

3.3.2. Solid methane.Cubic solid methane (CH4) at atmospheric pressures is an interesting
system due to its peculiar ground state and its strong isotope effects [128]. The ground-
state lattice can be decomposed into two sublattices, one of which is orientationally ordered,
while the other is orientationally disordered [66]. The transition from the plastic phase to the
partially orientationally ordered phase is a first-order transition taking place at a temperature
T1(CH4) = 20.4 K [127]. A similar transition takes place in cubic CD4 at a higher temperature
T1(CD4) = 27.4 K [126]. In addition, CD4 transforms into a fully ordered solid upon further
cooling [83].
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Using a model potential based onab initio results and a no-spin free-particle kernel,
transition temperaturesT1(CH4) = 16 K andT1(CD4) = 23 K were found within a PIMC
study [110]. It is worth noting that near the transition pointT1, CH4 is almost quantum
mechanically frozen and a small shift in the potential invokes a large shift in the thermal
properties. This effect might be responsible for the relatively large discrepancy between
simulation and experiment. However, the relative shift inT1, due to the use of different
isotopes, has been reproduced satisfactorily.

The effects of the rotational wave function’s symmetry on the transition temperature were
investigated in this study as well. Two different kernels were used in the simulations. The
no-spin kernel, which neglects exchange effects stemming from the nuclei, and the kernel in
the identity representation, which contains, among other states, the ground state. Using the
identity representation, a reduction of1T1 = 6 K was found with respect to the no-spin result.
This effect may make possible the observation of an inverse hysteresis at a first-order phase
transition. If CH4 were cooled down from high temperatures to well belowT1 fast enough to
prevent the nuclear degrees of freedom from thermalizing, it would be appropriate to mimic
this experiment by using an annealed kernel or alternatively a no-spin kernel. In this case, a
transition temperatureT no−spin

1 (CH4) = 16 K would be expected. If the system were tempered
at low temperatures long enough to thermalize the nuclear degrees of freedom, practically all
molecules would convert and occupy the ground state in the identity representation. This
coherent state is more delocalized than a ground state in any other representations [165].
Upon a fast re-heating, the transition to a disordered state can then be expected to be found at
T

no−spin
1 (CH4) = 10 K, which is lower thanT no−spin

1 (CH4). This scenario corresponds to an
inverse hysteresis.

3.3.3. Liquid water. The definite determination of the structure of liquid water as
characterized by, e.g., radial distribution functions, is still controversial [140]. Among many
questions are those related to the quantum nature of the molecules in the condensed phase. This
is of particular interest because one important technique for extracting partial (i.e., atom–atom)
radial distribution functions from the measured total structure factor is the so-called isotopic
substitution technique. This approach relies on the assumption that different isotopomers (in
the case of water H2O, HDO, and D2O) have a very similar (or even an identical) microscopic
structure. In order to shed light on this issue, several computer simulations of ‘quantum’ liquid
water were carried out, beginning in the mid-eighties. In most cases, flexible water models
were used. Here, we focus on rigid models where the rotations are treated explicitly using
path integrals.

A method for coping withrigid models representing water molecules was developed and
used in [32,77,78] to study liquid water at ambient conditions. The rotations of the rigid bodies
were quantized using the approach presented in (2.48) and (2.49). The influence of treating
the centre-of-mass motion classically or quantum mechanically in conjunction with quantum
rotations was also assessed. Simulations for light (H2O) and heavy (D2O) liquid water were
initially carried out with the so-called ST2 model of water [77, 78] and later complemented
with calculations based on the SPC and TIP4P models [32]; see the original articles for details
and references. A discretization parameter as small asP = 3 or 5 was judged to be satisfactory
for quantizing the rotations for a small test case, an isolated water dimer at room temperature.
The simulations were carried out with 125 or 100 water molecules subject to periodic boundary
conditions.

The observables of prime interest in such simulations are radial distribution functions. A
general result is, as expected, that the classical liquid is the most structured, light water is the
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least structured, and heavy water is in between. Thus, the maxima decrease and the minima
increase in height, and both shift to larger distances as the system becomes more quantum
mechanical. These effects are even manifest in the oxygen–oxygen radial distribution function,
and not only in the partial radial distribution functions that involve the much lighter H or D
atoms. In addition, the heavier the nuclei the smaller the librational motion. This leads to
more linear hydrogen bonds (HO–H· · ·OH2) between the water molecules for classical water
compared to light water. The structural quantum effects could be attributed mainly to the
orientational degrees of freedom rather than the centre-of-mass motion of the rigid bodies.
Furthermore, it was found that changes in structural properties in going from classical to
quantum water were roughly comparable to the changes which accompany a 50 K temperature
increase of the liquid [78]. Viewed this way, one can conclude that the quantum effects on the
structure of liquid water at ambient conditions are not that small.

4. Concluding remarks

What has been achieved? We started this journey by decomposing the partition function of a
many-rigid-body system into centre-of-mass translation, rigid-body rotation, and interaction
contributions by making use of Trotter’s theorem. Thereby, the problem was reduced to a
well-known one, the path integral treatment of interacting point particles, and the evaluation of
a high-temperature rotational density matrix. Depending on the number of rotational degrees
of freedom involved, different strategies for the computation of the rotational contribution
can be chosen. For two- or three-dimensional rotation the density matrix is best evaluated in
advance by performing the summations over rotational quantum numbers explicitly. The result
is tabulated as a function of relative angle for later use in the simulation. The one-dimensional
case is somewhat special, since the summation over the rotational levels has to be done by
Monte Carlo sampling. These techniques not only work in principle, but also in practice. Most
PIMC and related simulations carried out in the framework of rotational degrees of freedom
deal with the question by how much the results of classical simulations have to be corrected if
quantum fluctuations are taken into account. These corrections often reduce the discrepancy
between simulation and experiment by an order of magnitude. Impressive examples can be
found in particular for adsorbed monolayers, clusters, and solids. Thus, the path integral
simulation technique of rigid molecules is a mature field.

What remains to be done? A problem that deserves further attention is the inclusion
of anti-symmetry or intramolecular exchange of indistinguishable nuclei. This manifests
itself most prominently in the coupling of nuclear spins to rotations, which is the basis for
the distinct behaviour of the ortho- and para-species of diatomics at low temperatures. No
systematic study is known to us that shows how accurate the fixed-node approximation is.
Another problem to be solved is how to apply efficient sampling algorithms such as staging
to two- and three-dimensional rotation. This is particularly important for simulations at low
temperatures, where the use of large Trotter numbers easily leads to a critical slowing down.
Molecular systems at thermal energies well below the rotational constant, however, often
reveal interesting physical phenomena due to the crossover from de-coherence to coherence.
These phenomena are purely quantum mechanical and do not have classical analogues. One
of the distinctly challenging problems in this context is certainly the simulation of the low-
temperature specific heat anomaly in disordered molecular crystals. The simulation of those
systems may shed light on the microscopic mechanisms of collective tunnelling in disordered
media at low temperatures. Thus, despite impressive progress, there is ample room for future
developments!
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