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The applicability of the path-integral Monte Carlo (PIMC) method to the description of
quantized orientational degrees of freedom of rigid linear molecules in three dimensions is discussed.
Special attention is payed to the sign problem. It is shown that the sign problem is severe for
anti-symmetric rotational states at low temperatures, while it is completely absent in the case
of symmetric and non-symmetric rotational states. The presented PIMC method is applied to a
model potential. Using higher order correction terms according to the Takahashi Imada algorithm,
even tunneling anomalies in the specific heat could be computed to very high numerical precision.
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I. INTRODUCTION

The quantum mechanical description of orientational
motion becomes important at low temperatures where
the intra-molecular bond length of a huge class of
molecules are frozen in. A classical description of the ori-
entational degrees of freedom is not appropriate for sys-
tems such as H2-clusters [1] and H2-solids or D2-solids [2]
and even adsorbed layers of N2 on graphite show a 10%
lowering of the transition temperature Tc where an ori-
entationally disordered state transforms on cooling into
a state with long range orientational order [3]. Still more
interesting are the low temperature anomalies in the spe-
cific heat of orientational glasses [4]. These anomalies are
often attributed to the tunneling of orientational degrees
of freedom between different (meta-) stable states [5].

Tunneling of isolated molecular impurities in solids is
well understood [6, 7]. Especially if the average local po-
tential has a well defined symmetry, approximative meth-
ods such as numerical solutions of Langevin type equa-
tions [8] and memory function formalisms [9] are appro-
priate methods to describe qualitatively the temperature
dependence of rotational tunneling.

However, a detailed microscopic understanding of tun-
neling phenomena in strongly disordered media does not
yet exist beyond mean field approximations. There is a
need to fill this gap, e.g. by computer simulation. Fur-
ther, it is desirable to determine the amount of anhar-
monicity which arises from quantum fluctuations because
they strongly influence the thermo-mechanical properties
of solids.

Path-integral Monte Carlo (PIMC) techniques for
translational degrees of freedom have become standard
tools for studying finite-temperature many-body sys-
tems, for a recent review see Ref. [10]. This is not the
case for orientational degrees of freedom. The reason
is the so-called sign problem. Matrix elements of the
type < Φ | exp(−τH) | Ψ > can become negative and
quantities of interest are sums of negative and positive
contributions which may nearly cancel out [11]. It is im-
portant to mention that the sign problem depends on the

representation.
If the orientational degrees of freedom at Trotter slice

i are represented by the angles (ϑi, ϕi) and by the de-
gree l of a Legendre polynomial, then a PIMC simula-
tion suffers from an extremely severe sign problem for all
temperatures [12].

The sign problem of orientational motion may be
avoided by confining the degrees of the Legendre poly-
nomials to even values [2]. The PIMC simulation of
molecules such as CO or ortho-H2, however, remains
problematic.

Another possibility to avoid the sign problem is to use
Cartesian coordinates in order to represent the atoms
within a diatomic molecule and to integrate out the
stiff bond [1]. But this method requiers huge Trot-
ter numbers, and for practical purposes it can not be
applied at very low temperatures where tunneling phe-
nomena occur. Furthermore, the sign problem remains
severely for the simulation of ortho-H2, para-D2 and re-
lated molecules.

The density matrix can be integrated out in a re-
duced Hilbert space of dimension dH [13, 14] in order to
avoid the sign problem. Treating N (directly) interact-
ing molecules would blow up the dimension of the Hilbert
space according to dN

H so that this method does not apply
to many-particle systems.

Clearly, it is of interest to have a tool which facilitates
the determination of quantum mechanical effects arising
from orientational degrees of freedom which avoids the
sign problem without the use of huge Trotter numbers
and without the use of giant Hilbert space dimensions.
In the following, we present a general simulation scheme
for including orientational degrees of freedom into the
standard PIMC-approach. The algorithm does not suffer
from the sign problem in the even l case and in the mixed
l case. In the odd l case the sign problem is only severe
at low temperatures.

The details of the method are given in section II.
Higher order correction terms to the density matrix based
on the Takahashi-Imada-algorithm [15, 16] are given as
well. In section III, the method is applied to a posi-
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tionally fixed rotator in a static cubic potential. The
simulation results are compared to “exact” results. In
the last section, we summarize, and the applicability of
the presented method to the simulation of many-rotator
systems is discussed.

II. PIMC OF ORIENTATIONAL DEGREES OF

FREEDOM

A. General Remarks

We consider first the partition function Z(β) =

Tr{exp(−βĤ)} which can be expressed as

Z(β) = lim
P→∞

Tr

{

(

e−βT̂/P e−βV̂ /P
)P
}

, (1)

where T̂ and V̂ are the operators of the kinetic energy and
the potential energy respectively. P is called the Trot-
ter number. This decomposition of the density operators
leads to the PIMC approach in which one quantum me-
chanical point particle can be represented by a chain of
P “classical” beads [17]. Linear molecules would rather
have to be visualized by spillikin-sticks than by beads,
of course. The statistical weight of one configuration is
then given by the product of matrixes

K̃i i+1 =< φi | e−βT̂rot/P e−βT̂trans/P e−βV̂ /P | φi+1 >
(2)

with | φi > the state of the system at Trotter slice i.
Without any loss of generality, we consider a system that
consists of only one linear molecule. For details of the
PIMC method, see e.g. Ref. [18].

If the real space representation is chosen in order to
work out the trace in Equation (1), the only Boltzmann
factor in Equation (2) that can become negative is the
one that is associated with the rotational kinetic energy:

K
(rot)
i i+1 =< ni | exp(−βL̂

2
/2θP ) | ni+1 >, (3)

where L̂ is the operator of the angular momentum, ni

a normalized vector indicating the orientation of the
molecule at the Trotter slice i, and θ the moment of in-

ertia. K
(rot)
i i+1 can also be expressed as:

K
(rot)
i i+1 =

∑

l

l
∑

m=−l

< ni | Ylm >< Ylm | ni+1 >

× exp[−βl(l + 1)B/P ], (4)

where | Ylm > denotes a state of the standard represen-
tation and B = h̄2/2θ is the rotational constant. Using
the addition theorem for spherical harmonics, we get the

final form for K
(rot)
i i+1:

K
(rot)
i i+1 =

∑

l

2l + 1

4π
Pl(cos γi) exp[−βl(l + 1)B/P ], (5)

with Pl(cos γ) the Legendre polynomial of degree l and
cos(γi) = nini+1. For finite temperatures, β > 0, the
sum obviously converges. Note that the sum in Equa-
tion (5) corresponds to a Gaussian integral if the orien-
tational degrees of freedom are replaced by translational
ones.

The sum over l in Equation (5) can not be carried out
analytically. Hence, it seems convenient to introduce a
new variable li that characterizes the degree of the Leg-
endre polynomial of the molecule at Trotter slice i. Thus,
the internal energy U becomes

U =

〈

1

P

P
∑

i=1

[Θli(li + 1) + V (ϑi, ϕi)]

〉

(6)

and the specific heat can be calculated using the stan-
dard fluctuation formula [19]. However, a severe sign
problem is encountered, and even at high temperatures
the average sign is close to zero for non-symmetric rotator
states [12].

Although K
(rot)
i i+1 might not be accessible analytically, it

can be computed numerically to very high precision and
then be tabulated on a fine grid. Only one function needs
to be stored at each effective temperature PT in order to
compute the Boltzmann weight, while in the case where
the degree l of the Legendre polynomial is a “Monte Carlo
variable”, a large set of Legendre polynomials has to be
stored.

In Fig. 1, we show K
(rot)
i i+1 as a function of γ for

βB/P = 0.1 in the three different cases: (i) the sum
is confined to even l-values (symmetric rotational states)
as this would have to be done for the simulation of para-
H2. (ii) even and odd values of l are considered (non-
symmetrical rotational states). This is necessary in a
simulation of heteronuclear molecules such as CN. (iii)
the sum is restricted to odd l-values (anti-symmetric ro-
tational states) as in the case of ortho-H2.

For even l-values K
(rot)
i i+1 is symmetric at γ = π/2 and

in the odd l-case it is anti-symmetric which leads to the
sign problem for a Trotter number P > 2. In the even l
case and in the mixed l case, the Boltzman factor, Equa-
tion (5), always remains positive, and hence no sign prob-
lem exists. These characteristics do not depend on tem-
perature and Trotter number. For PT À B, the kernel

K
(rot)
i i+1 can even be approximated by the expression:

K
(rot)
i i+1 ∝ exp

(

−Pγ2
i /4βB

)

(7)

The difference between K
(rot)
i i+1 given in Equation (5) and

K
(rot)
i i+1 given in Equation (7) is so small that it could not

be visualized in Fig. 1. Even on a logarithmic scale they

differ so slightly when K
(rot)
i i+1 tends to zero that the dif-

ference seems to be of numerical nature. The even l case
and the odd l case can be approximated as well by such a
formular after implementation of the relevant symmetry

operations K
(rot,±)
i i+1 (γi) = K

(rot)
i i+1(γi) ± K

(rot)
i i+1(π − γi).
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FIG. 1: Unnormalized Boltzman factor K
(rot)
i i+1 for βB = 0.1

as a function of γ.

The internal energy can be calculated as the derivative
of −ln Z(β) with respect to β:

U =

〈

1

P

P
∑

i=1

[Ti + V (ϑi, ϕi)]

〉

with

Ti =
(

K
(rot)
i i+1

)−1∑

l

2l + 1

4π
l(l + 1)

×Pl(cos γi) exp[−βl(l + 1)B/P ]. (8)

Other observables can be obtained in analogy to the pro-
cedures which are applied for the PIMC treatment of
translational degrees of freedom.

B. The Odd l-Case

In the odd l case, the Boltzmann weight of the isomor-
phic classical picture can become negative and therefore
one has to separate the average of an observable O+ when
the sign σ of the Boltzman weight is positive from the av-
erage of O− when σ is negative [20, 21]. The expectation
value 〈O〉 of the observable is then

〈O〉 =
O+Z+ − O−Z−

Z+ − Z−

, (9)

where Z+ and Z− are the (positive valued) partition func-
tions of the system with σ constrained to positive and
negative values respectively.

In the “Monte Carlo language” this means

〈O〉 = lim
M→∞

M
∑

i=1

σiOi/

M
∑

i=1

σi, (10)

where i enumerates the Monte Carlo steps and σi denotes
the sign of the Boltzmann weight at Monte Carlo step i.

Clearly, the statistical treatment of a free anti-
symmetric rotator is trivial. In the context of the PIMC
simulation, however, it is important to know the average
sign 〈σ〉 of the free anti-symmetric rotator as a function of
temperature T and Trotter number P . Of course, 〈σ〉 = 1
for P = 1 and P = 2.

For very high Trotter numbers and very low temper-
atures, the following procedure seems to be reasonable:
the Markov chain which is generated for anti-symmetric
rotational states resembles the one generated for non-
symmetric rotational states if we disregard inversion op-
erations and if we only take into account configurations
with positive Boltzmann weight. Hence,

〈O+〉anti−symmetric ≈ 〈O〉non−symmetric. (11)

Let us take the internal energy as the quantity of in-
terest and let us make the ad-hoc assumption that
〈O−〉anti−symmetric ≈ −〈O〉non−symmetric. We can then
find an approximative expression for the average sign:

〈σ〉anti−symmetric ≈
Unon−symmetric

Uanti−symmetric
. (12)

In Fig. 2 we show σ obtained by simulation of the free
rotator in the limit P → ∞ as a function of tempera-
ture. σ as proposed in Equation (12) is inserted as well
and we already add some results for the case where a
strong symmetric but anisotropic potential is switched
on. Equation (12) describes qualitatively the disappear-
ance of the average sign and therefore ln〈σ〉 ≈ −B/kBT
at low temperatures. The existence of the potential al-
ters the sign-problem considerably, fortunately for the
better. This might be due to the effect that in symmet-
ric potentials the level splitting between the (symmetric)
groundstate and the (anti-symmetric) first exited state
decreases with increasing potential strenght [7].

C. Higher Order Corrections

It is well known that a faster convergence to the quan-
tum limit is obtained if the Trotter formula, Equation (1)
is replaced by higher order approximants for the density
matrix [22]. Very easy to implement is the approximant
proposed by Imada and Takahashi [15, 16]:

Z(β) = lim
P→∞

Tr

{

(

e−βT̂/P e−β(V̂ +V̂c)/P
)P
}

,

V̂c =
β2

24P 2
[V̂ , [T̂ , V̂ ]]. (13)

The convergence of expectation values such as internal
energy U to the quantum limit is now proportional to
(β/P )4 instead of the slow convergence proportional to
(β/P )2. Apart from terms that do not contribute to the
partition function, the correction potential Vc defined in
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FIG. 2: 〈σ〉 as a function of temperature; circles are numerical
results for the free rotator, lines correspond to Equation (12).

Equation (13) becomes for orientational degrees of free-
dom

V̂c =
β2B

12P 2

{

(

∇V̂
)2

−
[

n
(

∇V̂
) ]2

}

, (14)

whith (x, y, z) = n and ∇ = (∂/∂x, ∂/∂y, ∂/∂z).
Again the internal energy can be calculated as the

derivative of −ln Z(β) with respect to β, and the same
result is obtained as for translational degrees of freedom:

U =

〈

1

P

P
∑

i=1

[Ti + V (ϑi, ϕi) + 3Vc(ϑi, ϕi)]

〉

(15)

The averages of observables O which are diagonal in
the real space representation have to be computed ac-
cording to:

〈O〉 = 〈
1

P

P
∑

i=1

O(ϑi, ϕi) 〉 +

β2B

P 2
〈 (∇V − n∇V ) (∇O − n∇O ) 〉 .(16)

Note that extrapolation from averages obtained with fi-
nite Trotter number to the quantum limit further reduces
the necessary Trotter number to be taken into account.

III. APPLICATION OF THE METHOD TO A

MODEL HAMILTONIAN

A. Model Hamiltonian

The algorithm presented above has been applied to a
single-particle potential which may be used to model a H2

or a N2 impurity in a fcc Ar-crystal [12, 23]. For the local
potential we therefore chose the Devonshire potential [7]:

V =
3

2
C
(

1 − x4 − y4 − z4
)

, (17)

where C is the minimal barrier height separating the clas-
sical stable orientations and (x, y, z) = n [23]. The cor-
rection potential is then given by

Vc = 3B

(

βC

P

)2
[

(

x6 + y6 + z6
)

−
(

x4 + y4 + z4
)2
]

.

(18)
The following parameters were used in the simulations:

We chose for the rotational constant B = 1 and for the
barrier height C = 40. This is quite an extreme case as
long as small molecules are concerned, but the computa-
tional problem is the more challenging the more B and
C differ.

The exact partition function and other thermodynamic
quantities can easily be calculated for this single-particle
problem using Equation (1) and choosing a sufficiently
large Hilbert space spanned by the spherical harmonics
Ylm with −l ≤ m ≤ l and l ≤ lmax. For temperatures
kBT ≤ C, very good convergence of the specific heat
is obtained with lmax = 21. For higher temperatures,
larger l-numbers would be needed, but at such high tem-
peratures the rotator resembles a free rotator which is a
trivial problem.

B. Computational and Exact Results

We concentrate on the observables internal energy U
and specific heat c the latter of which is obtained by
performing the derivative of U with respect to the tem-
perature T .

The computational results have been obtained with
the following procedure. U is computed by perform-
ing a Trotter scaling plot. At each temperature at least
three different Trotter numbers P are investigated and
the quantum limit U = limP→∞U(T, P ) is obtained from
a fit of

U(T, P ) = U + α(T )P−4, (19)

with U , α(T ) as fit parameters and U(T, P ) the simula-
tion results. Note that because of tunneling phenomena
at very low temperatures, U is approached from above
with increasing P and not from below as for “simple”
anharmonic solids like a fcc-Ne-crystal [24]. The smallest
Trotter number Pmin in a scaling plot was chosen such
that PminT ≥ 20 K. The largest Trotter number Pmax

was chosen Pmax ≈ Pmin. The correction potential Vc is
already fairly small when the tunneling effects set in with
increasing P . Hence, the linearity of U(T, P ) with P−4

must be waited for before the extrapolation to P = ∞
can be carried out.
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FIG. 3: Internal energy U of a rotator in a Heaviside poten-
tial for the three cases: (i) odd l, (ii) mixed l and (iii) even
l. Lines are exact results, the symbols represent numerical
values obtained by PIMC.

The specific heat c was calculated indirectly by first
computing the internal energy at two different tempera-
tures T1 and T2 where the Trotter numbers in the two
runs were chosen such that the systematic errors re-
mained nearly constant, namely P1T1 = P2T2. Then
c was approximated according to c(T1+T2

2 ) ≈ [U(T1) −
U(T2)]/(T1 − T2).

One Monte Carlo (MC) step consists in making one
local move of each spillikin stick and one global move of
the whole chain. 192 rotators are set up in parallel in
order to obtain good vectorization. In this way, 108/P
MC steps of the total system can be performed within
10 hours of CPU time on a Cray YMP. It turned out
that only at thermal energies well below the rotational
constant B this numerical effort was necessary. At T ≈
4B, where Trotter numbers P = 5, 6, 7 are quite close
to the quantum limit, 105 MC steps for relaxation and
105 MC steps for measurements are already sufficient to
reduce the relative statistical error of U to 0.03%.

In Fig. 3, U is shown as a function of temperature for
the three cases of even l values, odd l values and mixed l
values. The numerical results are (nearly) identical with
the “exact” results. The differences between the three
above mentioned cases are clearly observed in the simu-
lation.

At very low temperatures tunneling occurs if the po-
tential barrier C is large in comparison with the rota-
tional constant B because in this limit the problem is
closely related to the one-dimensional Φ4 potential from
a statistical point of view. The tunneling should lead
to a level splitting of the three “ground states” being
smeared out orientations parallel to the x, y and z axis
respectively. The level splitting leads to a peak of c at
very low temperatures, while at intermediate tempera-
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B
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FIG. 4: Specific heat c as a function of temperature T for the
mixed l case.

tures the system appears to be frozen in. This behavior
is found in Fig. 4.

Note that the Debye anomaly of the classical simu-
lation at T ≈ 20 is strongly reduced through quantum
effects although B/C = 40 should be considered as quite
an extreme case. This might be an important result for
the interpretation of specific heat data of orientational
glasses [4].

IV. CONCLUSIONS AND DISCUSSION

A new PIMC method for linear molecules has been
presented in detail. It was shown that the sign prob-
lem has been absent for symmetric and non-symmetric
rotational states. For anti-symmetric rotational states,
evidence has been found that with increasing local poten-
tial the average sign gets shifted more and more to unity.
Nevertheless, many-particle problems presumably can no
more be adressed in the odd l case when the temperature
is smaller or in the order of the rotational constant B.
Isotope effects can therefore only be quantified by PIMC
simulation if they are mass-induced by a changed anhar-
monicity but not if they are induced by altered exchange
characteristics which presumably is only important for
H2 and D2 solids (differences in the phase diagram of
para-H2 and HD as reported in Ref. [25] should never-
theless be accessible by the presented PIMC method).
Note that often these anharmonic effects dominate the
exchange effects, and even the isotope shift of He melt-
ing pressure can only be explained by anharmonicity ef-
fects [26, 27].

The simulations reproduce very well the exact results
for the internal energy as a function of temperature, and
even tunneling anomalies in the specific heat are captured
for the given choice of B and barrier height C. The
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application of the method to N2-solids, ArN2 mixtures
and KBrKCN type mixtures will be suitable to determine
their thermomechanical properties at low temperatures.
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