**Modeling adhesive hysteresis**

Anle Wang, Yunong Zhou, and Martin H. Müser

Lubricants **9**, 17 (2021)

preprint submitted to Lubricants

DOI: 10.3390/lubricants9020017 (open access)

# Tag: Simulation Methods

## A new function for local structure characterization

**A mixed radial, angular, three-body distribution function as a tool for local structure characterization: Application to single-component structures**

Sergey V. Sukhomlinov and Martin H. Müser,

J. Chem. Phys. **152**, 07964 (2020)

DOI: 10.1063/5.0007964

accepted version, supplementary material

g3.tar (tar ball with code, readme file, and example)

## GFDD

Syam P. Venugopalan, Martin H. Müser and Lucia Nicola

**Green’s function molecular dynamics meets discrete dislocation plasticity**

Model. Simul. Mater. Sc. Eng. **25**, 065018 (2017). (submitted version)

DOI: 10.1088/1361-651X/aa7e0e

## GFMD – finite height and shear

S. P. Venugopalan, Martin H. Müser and Lucia Nicola

**Green’s function molecular dynamics: Including finite heights, shear, and body fields**

Model. Simul. Mater. Sc. Eng. **25**, 034001 (2017)

DOI: 10.1088/1361-651X/aa606b

(accepted version)

## Determination of bond lengths

S. V. Sukhomlinov and M. H. Müser,

**Determination of accurate, mean bond lengths from radial distribution functions**

J. Chem. Phys. **146**, 024506 (2017).

## High-order Gaussian chain simulations

Martin H. Müser and Marcus Müller,

**High-order sampling schemes for path integrals and Gaussian chain simulations of polymers**,

J. Chem. Phys. **142**, 174105 (2015)

DOI: 10.1063/1.4919311

(submitted version).

## Atomistic battery discharge simulations

W. B. Dapp and M. H. Müser,

**Redox reactions with empirical potentials: Atomistic battery discharge simulations,**

J. Chem. Phys. **139**, 064106 (2013); (accepted version).

DOI: 10.1063/1.4817772, arXiv: http://arxiv.org/abs/1308.3424

## Simulating contact electrification

W. Dapp and M. H. Müser,

**Towards time-dependent, non-equilibrium charge-transfer force fields,**

Eur. Phys. J. B **86**, 337 (2013); (accepted version).

DOI: 10.1140/epjb/e2013-40047-x

## Dielectric properties of solids in the regular and split-charge equilibration formalisms

R. A. Nistor and M. H. Müser,

** Dielectric properties of solids in the regular and split-charge equilibration formalisms, **

Phys. Rev. B **79** 104303 (2009); submitted version.

DOI information: 10.1103/PhysRevB.79.104303.

## A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators

A. Jones, A. Thomas, J. Crain, M. H. Müser, and G. J. Martyna,

** A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators: Application to solid xenon, **

Phys. Rev. B **79**, 144119 (2009); submitted version.

DOI information: 10.1103/PhysRevB.79.144119.

## Implementation of Green’s function molecular dynamics: an extension to LAMMPS

L. T. Kong, G. Bartels, C. Campana, C. Denniston, and M. H. Müser,

** Implementation of Green’s function molecular dynamics: an extension to LAMMPS, **

Comput. Phys. Comm. **180**, 1004-1010 (2009); ( submitted version),

DOI information: 10.1016/j.cpc.2008.12.035.

## Elucidating the contact mechanics of aluminum silicon surfaces with Green’s function molecular dynamics

C. Campana, M. H. Müser, C. Denniston, Y. Qi, and T. A. Perry,

**Elucidating the contact mechanics of aluminum silicon surfaces with Green’s function molecular dynamics, **

J. Appl. Phys. **102**, 113511 (2007) accepted version.

## A generalization of the charge equilibration method for non-metallic materials

R. A. Nistor, J. G. Polihronov, M. H. Müser, and N. J. Mosey,

**A generalization of the charge equilibration method for non-metallic materials,**

J. Chem. Phys. **125**, 094108 (2006). (accepted version); (auxiliary electronic material).

## Practical Green’s function approach to the simulation of elastic, semi-infinite solids

C. Campana and M. H. Müser,

** Practical Green’s function approach to the simulation of elastic, semi-infinite solids, **

Phys. Rev. B **74**, 075420 (2006) (accepted version).

selected for VJ Nanoscale Sci. & Technol., Vol. **14**, Issue 10, 2006.

## Piezoelectric coefficients by molecular dynamics simulations in the constant stress ensemble: A case study of quartz

D. Herzbach and M. H. Müser,

** Piezoelectric coefficients by molecular dynamics simulations in the constant stress ensemble: A case study of quartz, **

Comput. Phys. Comm. ** 174 **, 17-23 (2006).

( web-article from CPC, preprint.)

## Atomistic computer simulations of friction between solids

M. H. Müser and M. O. Robbins,

** Atomistic computer simulations of friction between solids,**

in * Nanotechnology Handbook *, pp. 717-738

Ed. B. Bhushan (Springer, Berlin, 2004).

## On new efficient algorithms for PIMC and PIMD

M. H. Müser,

** On new efficient algorithms for PIMC and PIMD,**

Comput. Phys. Comm. ** 147**, 83-86 (2002).

## Path-integral simulations for rotors: Theory and applications

D. Marx and M. H. Müser,

** Path-integral simulations for rotors: Theory and applications,**

invited review article in J. Phys.: Condens. Matter **11**, R117-R155 (1999).

## Circumventing the pathological behavior of path-integral Monte Carlo for systems with Coulomb potentials

M. H. Müser and B. J. Berne,

** Circumventing the pathological behavior of path-integral Monte Carlo for systems with Coulomb potentials,**

J. Chem. Phys. **107**, 571 (1997).

## The path-integral Monte Carlo of rigid linear molecules in three dimensions

M. H. Müser,

** The path-integral Monte Carlo of rigid linear molecules in three dimensions,**

Molecular Simulation **17**, 131 (1996). (preprint)

## The path-integral Monte Carlo scheme for rigid tops

M. H. Müser and B. J. Berne,

** The path-integral Monte Carlo scheme for rigid tops: Application to quantum rotator phase transition in solid methane,**

Phys. Rev. Lett. **77**, 2638 (1996).

## Two-dimensional motion as a multichannel reaction by computer simulation

M. H. Müser and G. Ciccotti,

**Two-dimensional motion as a multichannel reaction by computer simulation,**

J. Chem. Phys. **51**, 4273 (1995)