Martin H. Müser
Dissipative split-charge formalism: Ohm’s law, Nyquist noise, and non-contact friction
J. Chem. Phys. 161, 184112 (2024)
DOI: 10.1063/5.0242185
preprint: https://arxiv.org/abs/2408.08791
Martin H. Müser
Dissipative split-charge formalism: Ohm’s law, Nyquist noise, and non-contact friction
J. Chem. Phys. 161, 184112 (2024)
DOI: 10.1063/5.0242185
preprint: https://arxiv.org/abs/2408.08791
Christian Müller, Martin H. Müser, Giuseppe Carbone, and Nicola Menga,
Significance of elastic coupling for stresses and leakage in frictional contacts
Phys. Rev. Lett. 131, 156201 (2023).
Jan Grießer, Lucas Frérot, Jonas A. Oldenstaedt, Martin H. Müser, Lars Pastewka
Analytic elastic constants in molecular calculations: Finite strain, non-affine displacements, and many-body interatomic potentials
Phys. Rev. Mater.
https://arxiv.org/abs/2302.08754
M. H. Müser and L. Nicola
Modeling the surface-topography dependence of friction, adhesion, and contact compliance
MRS Bulletin (in print).
DOI: 10.1557/s43577-022-00468-2 ([future] open access)
Local preprint
Martin H. Müser
Improved cutoff functions for short-range potentials and the Wolf summation
Mol. Phys. 48, 1393-1401 (2022)
DOI: 10.1080/08927022.2022.2094430
Preprint: arxiv.org/abs/2204.13639
Sergey Sukhomlinov and Martin H. Müser
On the viscous dissipation caused by randomly rough indenters in smooth sliding motion
Appl. Surf. Sci. Adv. 6, 100182 (2021)
DOI: 10.1016/j.apsadv.2021.100182
Preprint: http://arxiv.org/abs/2104.15056
Hongyu Gao, Tobias P. W. Menzel, Martin H. Müser, and Debashish Mukherji
Comparing simulated specific heat of liquid polymers and oligomers to experiments
Phys. Rev. Mat. 5, 065605 (2021)
https://doi.org/10.1103/PhysRevMaterials.5.065605
(preprint)
Anle Wang, Yunong Zhou, and Martin H. Müser
Modeling adhesive hysteresis
Lubricants 9, 17 (2021)
preprint submitted to Lubricants
DOI: 10.3390/lubricants9020017 (open access)
Sergey V. Sukhomlinov and Martin H. Müser
A mixed radial, angular, three-body distribution function as a tool for local structure characterization: Application to single-component structures
J. Chem. Phys. 152, 07964 (2020)
DOI: 10.1063/5.0007964
accepted version, supplementary material
g3.tar (tar ball with code, readme file, and example)
Syam P. Venugopalan, Martin H. Müser and Lucia Nicola
Green’s function molecular dynamics meets discrete dislocation plasticity
Model. Simul. Mater. Sc. Eng. 25, 065018 (2017). (submitted version)
DOI: 10.1088/1361-651X/aa7e0e
S. P. Venugopalan, Martin H. Müser and Lucia Nicola
Green’s function molecular dynamics: Including finite heights, shear, and body fields
Model. Simul. Mater. Sc. Eng. 25, 034001 (2017)
DOI: 10.1088/1361-651X/aa606b
(accepted version)
S. V. Sukhomlinov and M. H. Müser,
Determination of accurate, mean bond lengths from radial distribution functions
J. Chem. Phys. 146, 024506 (2017).
Martin H. Müser and Marcus Müller,
High-order sampling schemes for path integrals and Gaussian chain simulations of polymers,
J. Chem. Phys. 142, 174105 (2015)
DOI: 10.1063/1.4919311
(submitted version).
W. B. Dapp and M. H. Müser,
Redox reactions with empirical potentials: Atomistic battery discharge simulations,
J. Chem. Phys. 139, 064106 (2013); (accepted version).
DOI: 10.1063/1.4817772, arXiv: http://arxiv.org/abs/1308.3424
W. Dapp and M. H. Müser,
Towards time-dependent, non-equilibrium charge-transfer force fields,
Eur. Phys. J. B 86, 337 (2013); (accepted version).
DOI: 10.1140/epjb/e2013-40047-x
R. A. Nistor and M. H. Müser,
Dielectric properties of solids in the regular and split-charge equilibration formalisms,
Phys. Rev. B 79 104303 (2009); submitted version.
DOI information: 10.1103/PhysRevB.79.104303.
A. Jones, A. Thomas, J. Crain, M. H. Müser, and G. J. Martyna,
A norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators: Application to solid xenon,
Phys. Rev. B 79, 144119 (2009); submitted version.
DOI information: 10.1103/PhysRevB.79.144119.
L. T. Kong, G. Bartels, C. Campana, C. Denniston, and M. H. Müser,
Implementation of Green’s function molecular dynamics: an extension to LAMMPS,
Comput. Phys. Comm. 180, 1004-1010 (2009); ( submitted version),
DOI information: 10.1016/j.cpc.2008.12.035.
C. Campana, M. H. Müser, C. Denniston, Y. Qi, and T. A. Perry,
Elucidating the contact mechanics of aluminum silicon surfaces with Green’s function molecular dynamics,
J. Appl. Phys. 102, 113511 (2007) accepted version.
R. A. Nistor, J. G. Polihronov, M. H. Müser, and N. J. Mosey,
A generalization of the charge equilibration method for non-metallic materials,
J. Chem. Phys. 125, 094108 (2006). (accepted version); (auxiliary electronic material).
C. Campana and M. H. Müser,
Practical Green’s function approach to the simulation of elastic, semi-infinite solids,
Phys. Rev. B 74, 075420 (2006) (accepted version).
selected for VJ Nanoscale Sci. & Technol., Vol. 14, Issue 10, 2006.
D. Herzbach and M. H. Müser,
Piezoelectric coefficients by molecular dynamics simulations in the constant stress ensemble: A case study of quartz,
Comput. Phys. Comm. 174 , 17-23 (2006).
( web-article from CPC, preprint.)
M. H. Müser and M. O. Robbins,
Atomistic computer simulations of friction between solids,
in Nanotechnology Handbook , pp. 717-738
Ed. B. Bhushan (Springer, Berlin, 2004).
M. H. Müser,
On new efficient algorithms for PIMC and PIMD,
Comput. Phys. Comm. 147, 83-86 (2002).
D. Marx and M. H. Müser,
Path-integral simulations for rotors: Theory and applications,
invited review article in J. Phys.: Condens. Matter 11, R117-R155 (1999).
M. H. Müser and B. J. Berne,
Circumventing the pathological behavior of path-integral Monte Carlo for systems with Coulomb potentials,
J. Chem. Phys. 107, 571 (1997).
M. H. Müser,
The path-integral Monte Carlo of rigid linear molecules in three dimensions,
Molecular Simulation 17, 131 (1996). (preprint)
M. H. Müser and B. J. Berne,
The path-integral Monte Carlo scheme for rigid tops: Application to quantum rotator phase transition in solid methane,
Phys. Rev. Lett. 77, 2638 (1996).
M. H. Müser and G. Ciccotti,
Two-dimensional motion as a multichannel reaction by computer simulation,
J. Chem. Phys. 51, 4273 (1995)