A mixed radial, angular, three-body distribution function as a tool for local structure characterization: Application to single-component structures

Sergey V. Sukhomlinov1 and Martin H. Müser1

1Dept. of Materials Science and Engineering, Universität des Saarlandes, Saarbrücken, Germany

A mixed radial, angular three-body distribution function $g_{BC}(r_{BC}, \theta_{ABC})$ is introduced. It can be defined to be proportional to the probability of finding an atom of type C at a distance r_{BC} under an angle of θ_{ABC} given that an atom of type A and an atom of type B are nearest neighbors. This distribution function allows the local atomic order to be more easily characterized in a single graph than with conventional correlation functions. To demonstrate its use and usefulness, a visual library for many one-component crystals is produced first and then employed to characterize the local order in a diverse body of elemental condensed-matter systems. Case studies include the analysis of a grain boundary, several liquids (argon, copper and antimony), polyamorphism in crystalline and amorphous silicon including that obtained in a tribological interface.

PACS numbers:

I. INTRODUCTION

Computer simulations of condensed matter systems are often run with the goal to ascertain the degree with which the local structure of systems lacking long-range order resembles that of crystalline reference phases. Examples relate to the interpretation of liquid-liquid transitions in terms of a competition between different local structures1-6, or, the attempt to explain the contrast of electrical and mechanical properties between crystalline and amorphous materials in phase-change materials with a change of local order that occurs at the amorphous to crystalline transition7,8.

The most frequently studied observable allowing some conclusions on local structure to be drawn is the radial distribution function (RDF) $g(r)$. It plays an important role also because of its direct connection to x-ray diffraction patterns9. However, it is usually very difficult to distinguish between different local orders in disordered systems using the RDF alone, amongst other reasons, because its second peak may or may not include the third neighbor shell in addition to the second. Thus, while the coordination number of the sought-after reference crystal can be usually estimated from the first peak of the RDF, in particular when performing a skewed Gaussian analysis of it10, a similar, even rough estimate for the number of atoms in the second coordination shell cannot be deduced from the analysis of the RDF’s second peak. Finally, it is generally not possible to ascertain the main reason—potential candidates being thermal fluctuations, positional disorder, lattice defects, or collective displaceable modes—for why the first peak in the RDF is broadened or skewed from the RDF itself.

In order to acquire information on the local structure beyond the RDF with functions allowing for visualization, i.e., functions that depend at most on two variables, the three-body distribution function $g(r_{ij}, r_{ik})$9,11 can be investigated. This function, however, lacks direct information on bond angles. The latter can be obtained from the bond-angle distribution function and bond orientational order parameters deduced from it12. However, these are only sensitive to the nearest-neighbor shell. Even worse, in disordered systems, they are only meaningfully defined when augmented with non-trivial, Voronoi-analysis based weighting functions13. A mixed radial-angular distribution function (ARDF)14-16 has been introduced, which, like our distribution function introduced further below, depends on one distance and one angle. However, our distribution function is a three-body correlation function, while the ARDF is a six-point correlation function. Its definition requires knowledge of two molecular centers of mass, from which the intermolecular separation can be defined, and, in addition, two (end) points per molecules for the calculation of the molecular directors and the angle between them. Another powerful commonly used method for local structure characterization is the Voronoi tessellation. However, the results of a Voronoi analysis can be very susceptible to small (temporal) fluctuations. Moreover, it only senses the local order. Thus, while the just-mentioned common characterization methods are certainly useful, it would be beneficial to have an additional analysis tool in place that (a) is sensitive to bond angles, (b) can see past the nearest-neighbor shell, (c) requires no or very little biased input by the simulator, and (d) allows for simple visualization.

In this work, we propose that a mixed radial, angular three-body distribution function satisfies the just-mentioned demands. The arguably most significant added value of the proposed distribution function, compared to the other mentioned distribution functions, is that it allows angles between nearest-neighbor bonds and “bonds” between the central and a more distant atom to be readily deduced. We demonstrate the use of our correlation function as well its usefulness for a broad class of elementary condensed-matter systems ranging from small perturbation of perfect crystalline order to highly disordered, out-of-thermal-equilibrium structures. Although work on binary and ternary systems is in mature progress, it is not presented here to reduce the risk of making this publication unbearably extensive.

The remainder of this paper is organized as follows. We
define the distribution function in Sec. II, where we also construct a visual reference library for monoatomic crystals. A variety of applications are covered in Sec. III including monoatomic liquids, grain boundaries and tribological interfaces, the purpose being predominantly pedagogical in nature. Conclusions are drawn and an outlook is given in Sec. IV.

II. DEFINITION, METHODS, AND VISUAL REFERENCE LIBRARY

A. Definition

Although applications in this work focus on elementary systems, we provide a definition for the mixed radial, angular distribution function $g_3(r_{BC}, \theta_{ABC})$ that also holds for many-component systems. It is defined to be proportional to the probability of finding an atom of type C at a distance r_{BC} under an angle of θ_{ABC} given that the distance between a type-A atom and the (former) type B atom, r_{AB}, is within a meaningful margin of the average AB bond length or AB nearest-neighbor distance d_{AB}. It is normalized such that it would equal unity if the considered system were an ideal gas at the given density. The computation of g_3 requires the specification of two seemingly ad-hoc parameters, specifically, d_{AB} and how large of a deviation from d_{AB} is allowed for r_{AB} to qualify as a nearest-neighbor distance. Before discussing how to select these two parameters, we note that we found their precise definition not to matter in the overwhelming number of applications as long as choices are reasonable.

A characteristic bond length $d_{AB}(r)$ can be defined as the most likely nearest-neighbor distance between atom types A and B, which is the location of the first maximum of $r^2 g_{AB}(r)$, where $g_{AB}(r)$ is the AB radial distribution function. A slightly more accurate mean bond length can be obtained through a skewed normal distribution (SNMD) analysis of the first peak of $r^2 g_{AB}(r)$. For the margin, one might restrict r_{AB}, for example, to values less or equal $d_{AB} + \sigma_{AB}$, where σ_{AB} reflects a well-chosen deviation, e.g., the half width of the nearest-neighbor peak in $r^2 g_{AB}(r)$, which can again be deduced from a Gaussian or SNMD-fit to $r^2 g_{AB}(r)$. More elaborate partitioning schemes are possible. For example, first and second peak in $r^2 g(r)$ could be subjected to an SNMD analysis and a relative probability or weight be deduced for values of r lying between the first and second maximum of $g(r)$ which states the probability of a given value of r to belong to the first or to the second peak. A last, but computationally demanding possibility to judge if A and B are neighbors can be achieved through a Voronoi analysis, which would satisfy the definition of g_3 in the abstract. This latter approach could certainly be further refined with weighting schemes as those pursued in the construction of orientational bond-order parameters. However, the need to do so is reduced, because information on angles and distances is retained in our correlation function.

While a unique definition of g_3 for which atoms qualify as neighbors might be desirable, we believe that the used definition is best selected depending on the system of interest and the number of configurations that can be sampled over. In particular, when a system has short and long bonds, e.g., when a weak Peierls deformation or Jahn-Teller distortion is present, simulators might have to decide whether or not the long bonds should be treated as nearest-neighbor bonds.

Reasonable values of d_{AB} should be frequently known before the simulation is started so that $g_3(r_{BC}, \theta_{ABC})$ can be directly measured on the fly. Alternatively, the two-body RDF $g_{AB}(r)$ could be measured first, allowing an unbiased estimate of d_{AB}, and $g_3(r_{BC}, \theta_{ABC})$ could be determined in post-analysis as discussed above, or, on the fly, after d_{AB} has been determined to a desired accuracy.

1. A note on nomenclature and plotting

In the following text, we will “overload” the symbol g representing distribution functions and assume that the reader identifies the correct interpretation by analysis of arguments and context. For example, $g(r)$, $g_2(r)$, or $g_{AB}(r)$ are all meant to refer to the regular two-body distribution function. In contrast, $g(r, \theta)$ or $g_3(r, \theta)$ is meant to refer to our mixed radial, angular distribution function, while $g_3(r, r)$ would refer to the three-body distribution function introduced in Ref. 9. In a non-elemental system, $g_{ABC}(r, \theta)$ or $g(r_{BC}, \theta_{AC})$ would both indicate the same three-body function. If g_3 is mentioned without further explanation, we mean to refer by default to the mixed radial, angular distribution function, introduced in this work.

In this section, we also wish to provide our rationale for the choice of y-axis in figures showing g_3. We preferred the use of $\cos \theta$ over θ, because the a-priori probability density of finding another neighbor at a given value of $\cos \theta$ is constant, while the one for finding another neighbor under an angle θ changes proportionally with $\sin \theta$. At the same time, we chose to let the y-axis go from negative (-1) to positive (+1) numbers as this makes the values of θ go from 0 to π. However, that peaks in g_3 at $\cos \theta = \pm 1$ may not always be immediately visible.

Finally, we note that the term “max” in the color bar of g_3 graphs indicates any intensity exceeding the value being assigned the label “max”. However, the color coding between 0 and “max” is linear.

B. Numerical methods

For the specific examples introduced in the construction of the visual reference library, we ran brief simulations that were based on either DFT or simple model potentials. The purpose of running these simulations was not to produce highly accurate, numerical results but rather to provide a reference in which the ideal crystalline
peaks were broadened in a way that should be characteristic for the given system at special points in the phase diagram or simply at ambient conditions. Thus, the DFT methods and classical interaction potentials used for the applications are not necessarily the best on the market for the modeling of a given system either, although an attempt was made to pursue reasonable descriptions. As such, conclusions on liquid argon are rather conclusions for the modeling of a given system either, although applications are not necessarily the best on the market discussed with DFT. The calculations were based on the PBE exchange-correlation functional19, and the Gaussian Plane Waves (GPW) method20 as implemented in CP2K21. We used Goedecker-Teter-Hutter (GTH) pseudopotentials22,23, and sampled only Gamma point as the systems were reasonable large in size. Energy cutoffs, particle numbers, and box shapes were chosen to be as follows: (b) Mg (400 Ry, 36, 9.6 Å × 9.6 Å × 10.4 Å, hexagonal box with γ=120°), (c) Na (400 Ry, 54, 12.9 Å × 12.9 Å × 12.9 Å, cubic box), (g) In (400 Ry, 128, 13.0 Å × 13.0 Å × 19.8 Å, orthorhombic box), and (h) Sb (400 Ry, 192, 16.9 Å × 16.9 Å × 21.1 Å, hexagonal box with γ=120°).

The remaining structures were simulated with classical force fields, specifically: (a) Cu (Gupta potential17, as parametrized by Jalkanen et. al.18), (d) NaCl, used to simulate a pseudo-SC g3 (embedded-ion model by Zhou et. al.24), (e) Si diamond (Tersoff potential25, parametrized by Kumagai26), and (f) C graphite (Tersoff potential25). In the results section, we also provide results on Al, which was modeled with an EAM potential27.

All simulations were run either using CP2K21 or LAMMPS28 or were courtesy of Thomas Reichenbach29. All analysis was conducted as post processing of the configuration files. In all cases, Langevin30 thermostats acted on atoms, while Nose-Hoover chains31 were used as barostats whenever pressure was set constant.

C. Visual reference library for selected elemental crystals

The number of elemental crystalline structures is rather long. This is why we restrict our attention primarily to those monoatomic structures whose elementary cell is fully defined by a single parameter, i.e., the volume of the unit cell. These are (underlined chemical symbols denoting those elements serving as specific examples in the following):

(a) face-centered cubic (fcc), e.g., Al, Ca, Ni, Cu, Sr, Rh, Pd, Ag, Pt, Au, and noble gases except He. Allowed bond angles are 60°, 90°, 120° and 180°. Allowed secondary angles are 45°, 90°, 135° and 180°.

(b) hexagonal close packed (hcp), e.g., He, Be, Mg, Co, and Zn. Allowed bond angles 60°, 90°, 120° and 180°. Allowed secondary angles are 45°, 90°, 135° and 180°.

(c) body-centered cubic (bcc), e.g., Cr, Mn, Fe, Mo, W, and alkali metals including Na. Allowed bond angles satisfy cos θ = ±1/3 and cos θ = −1. Allowed secondary angles satisfy cos θ = ±1/√3.

(d) simple cubic (sc), e.g., Po. Allowed bond angles 90° and 180°. Allowed secondary angles are 45°, 90° and 135°.

(e) diamond cubic (dc), e.g., Si and Ge. Allowed bond angle satisfies cos θ = −1/3. Allowed secondary angles satisfy cos θ = ±√6/3 and cos θ = 0.

In this list, the term secondary angles refers to angles between a vector pointing from a central atom to a nearest neighbor and another vector pointing from a central atom to a next-nearest neighbor, assuming perfect crystalline order. From the list above we were not able to stabilize a simple cubic structure of As at pressures of up to 40 GPa, which was reported in the literature to be the high-pressure phase at p ≈ 25 GPa32. For this reason we produced the mixed radial, angular three-body distribution function for a simple cubic crystal by considering NaCl structure while treating all atoms in the post-analysis as being of the same type, even if only the (classical) T = 0 configuration would be strictly simple cubic. Broadening of the peaks differ between Na or Cl being the atom B in the general g3(TBC, θABC) expression.

We also include two selected single-component structures in which two parameters are needed to construct the unit cell, in addition to hcp, which requires the precise c/a ratio for non-ideal hcp. These are:

(f) hexagonal (hex), as in graphite. Allowed bond angles 120°. Allowed secondary angles are 30°, 90° and 150°.

(g) face-centered tetragonal (fct), specifically A6, as in In. Allowed bond angles and allowed secondary angles are close to but not identical to those of hcp.

Lastly, one structure is included, in which the Wyckoff position of at least one atom needs to be specified, in order to define the crystal. This structure is

(h) rhombohedral, specifically hexagonal A7, as an example for a solid with a weak Peierls deformation, e.g., As, Sb, Bi. Allowed primary bond angles are close to 90°, and 180°. Allowed secondary angles are 45°, 90°, and 135°, again within a few arc degrees.
A continuous transformation between two crystalline structures is also explored, namely the Bain’s path connecting fcc and bcc. It is discussed in a separate section II C.1.

In the following, we will discuss some selected pairs of g_3 patterns in Fig. 1 to address questions like: if a sample had crystallites — or local order in a glass or liquid — of a given local symmetry, how could we distinguish it from another one?

Two structures that can be difficult to discriminate from each other by analyzing the regular short-range, two-body RDF are fcc and hcp, in particular because they have the same number of nearest and next-nearest neighbors while having identical ratios of nearest and next-nearest neighbor distances. However, when using $g_3(r, \theta)$, fcc and hcp are readily distinguishable at small scales, because the fcc structure has only three peaks centered at the nearest-neighbor distance, while hcp has five, which reduce to four as the ideal c/a ratio of $\sqrt{8/3}$ is approached.

While hcp has more peaks than fcc, bcc has fewer. In particular, the $\theta = 90^\circ$ peak is missing, which makes it easy to distinguish bcc from fcc in a g_3 analysis. However, it is worth keeping in mind that bcc and fcc can be continuously transformed into each other, for example, through the Bain’s path. The corresponding deformation and the evolution of the g_3 pattern is presented in Sect. II C.1.

Although bcc and fcc are easily distinguishable, it is certainly difficult to detect a small average excursion from either structure onto the Bain’s path from a local structure analysis when thermal fluctuations are present. Tiny reductions of symmetry cannot be detected from a local analysis, e.g., in the immediate vicinity of a second-order phase transformation. A rigorous structure determination would necessitate a finite-size scaling analysis.

The question arises how far the symmetry reduction must have proceeded in order to be visible in a g_3 analysis and if “typical” symmetry reductions can be detected. Two such examples are presented in Fig. 1: first, the A6 structure, which can be obtained from fcc through a deformation of the fcc unit cell; second, the A7 structure, which can be reached from simple cubic through a Peierls deformation, in which not only the shape of the unit cell but also the relative atomic positions change continuously. In both cases, certain peaks appear elongated and less symmetric in the deformed structure than in the high-symmetry structure.

The A6 structure of In at room temperature is strained by 7.5% in one [100] direction relative to fcc. This leads to noticeably elongated nearest-neighbor peaks in A6. The first clear qualitative difference between A6 and fcc in this case study occurs in the fourth-neighbor-shell near $r/d_{nn} = 2$, where the $\cos \theta = \pm 0.5$ peaks break up into two peaks. In contrast, the corresponding radial distribution function (not shown explicitly) has no obviously broken up peaks for the shown distances. In the case of the fourth-neighbor peak, this is because the contributions from $\cos \theta = \pm 1$ conceal the relative minimum in the radial distribution functions that are visible under $\cos \theta = \pm 0.5$, see Fig. 1(e). One might argue that effects can be deduced indirectly also from the RDF by fitting the various peaks of $g_2(r)$ with an appropriate sum over Gaussians. However, the significance of such fits would be small as the individual peaks are not necessarily Gaussian themselves. An asymmetric broadening of the peaks induced by thermal fluctuations could be falsely attributed to be caused by a (collective) displaceable mode. For similar reasons, the distortion from fcc to A6 cannot be deduced from a (nearest-neighbor) bond-angle histogram $Pr(\theta)$ either. The skewness of the peaks in $Pr(\theta)$ is already non-negligible in the fcc phase. Thus, we would argue to have identified the first case, where a visual inspection of g_3 provides clearer evidence for the classification of symmetry from local analysis than a numerical post-analysis of the more common g_2 and nearest-neighbor bond-angle distribution function (BADF).

We next turn to the comparison between simple cubic and the A7 structure. Due to the Peierls distortion, the g_3 nearest-neighbor peak at $\cos \theta = 0$ develops a satellite along the radial direction, which reveals a deviation from local cubic symmetry as can be seen in Fig. 1(h). This time, the analysis of g_2 would have detected a double peak as well. However, an added bonus of the g_3 analysis is that long bonds can be detected at 90°, as revealed by the satellites, as well as at 180° (since the center of mass of the $\theta = 180^\circ$ peak is located above the satellite rather than above the main $\theta = 90^\circ$ peak). In contrast, short bonds are located only near $\theta = 90^\circ$.

The last comparison of single-element, crystalline g_3 fingerprints relates to the diamond and the graphite lattices. This time, both the RDF and the BADF would also reveal a clear distinction between the two crystalline structures. However, it appears as if the clearest qualitative difference relates to the g_3 peak positions in the third neighbor shell, as can be seen by comparing Figs. 1(f) and (g). This difference might prove useful to discriminate clearly between different in-silico generated diamond-like carbon structures and to estimate the relative amount of domains in which carbon atoms bond through sp2 and sp3 hybridization.

1. Bain’s path

In 1924, Bain suggested that bcc can transform continuously to fcc through a simple tetragonal deformation: starting from bcc, the crystal is expanded in the [001] direction and contracted isotropically within the xy plane such that the deformation is volume conserving. This yields a body-centered tetragonal (bct) structure between the two end-points of the Bain’s path. The density-conserving deformation to fcc is completed when the expansion in the [001] direction has reached a factor of $\sqrt{2}$ and thus a factor of $\sqrt{2}$ in the two orthogonal di-
rections. While real phase transformations between bcc and fcc do not necessarily proceed along the Bain’s path but through paths yielding smaller activation energies, e.g., those proposed by Nishiyama-Wassermann and Kurdjumov-Sachs, we chose the Bain’s paths for reasons of simplicity.

Fig. 2 reveals how a continuous phase transformation driven by a lattice-distortive strain shows up in the proposed distribution function: initial peaks in $g(r, \theta)$ break up into two or sometimes three peaks. All peaks move as the strain increases and their majority merges with another peak in the final fcc structure. Along the Bain’s path, a familiar pattern is encountered: the A6 structure in Fig. 1(e) can be said to have progressed by approximately 92.5% along the Bain’s path and thus appears qualitatively most similar to the last configuration before the final fcc structure is reached.

III. APPLICATIONS

The local structure of liquids, amorphous solids, and other disordered condensed matter is often associated with that of crystals possessing long-range order. The latter are also termed “real solids” and set apart from glasses, which remain to be interpreted as highly viscous liquids. What may not always be clear, are the length scales—and also time scales—over which disordered condensed matter is indeed solid like. An important aspect of this section is to demonstrate that the analysis of g_3 provides quick and meaningful answers to this type of question.

The more general motivation for most applications considered in the following is again to explore strengths and weaknesses of a g_3 analysis. The section is organized such that the complexity—in the sense of deviation from simple crystalline order—increases with each case studied.

A. Grain boundaries

Grain boundaries (GBs) are one of the most elemental, two-dimensional defects in solids. They crucially affect plasticity as well as electrical and thus thermal conductivity of metals. While they are rather straightforward to detect, to visualize, and to analyze, we wish to explore to what extent a g_3 analysis is able to reveal their presence as well. A low-Σ GB is considered with a rather weak perturbation of perfect crystallinity, thereby providing a challenging benchmark for our analysis.

Specifically, we consider a pair of $\Sigma 5$-grain boundaries between two (001) surfaces in aluminium. The dimension of the GB is 2.8×3.8 nm2 within the GB planes and 4 nm in the direction normal to them. Periodic boundary conditions are applied in all three spatial directions. The number of repeat units in both crystallites having (001) surface is $n = 10$ yielding a relative number of atoms
FIG. 2: \(g(r, \theta) \) along the Bain’s path. The starting structure is bcc and the gradual deformation along the Bain’s path in percentages is given in the upper left corner of each graph. 0% corresponds to an ideal bcc structure, 100% - to an ideal fcc structure. The intermediate structures could be classified as bct. Distances are normalized to the pertinent nearest-neighbor spacing, which was estimated from the unit cell parameters.

being directly part of the GB pair of 10%. The system is kept at a temperature of \(T = 200 \) K and a pressure of \(p = 100 \) kPa.

FIG. 3: \(g(r, \theta) \) of (a) Al crystal with \(\Sigma 5 \) grain boundary at \(T = 200 \) K, and of (b) Cu crystal at \(T = 300 \) K. Distances are normalized to the pertinent nearest-neighbor spacing, which was estimated from the RDFs.

Fig. 3 shows the result for \(g_3 \) of the aluminium GB at 200 K and compares it to the 300 K data on fcc copper, which was already presented in Fig. 1(a). Since the number of atoms being part of the GB is relatively small, the focus in the \(g_3 \) analysis must be laid on the tails of the peaks, which is why the same data looks dramatically different in Fig. 1(a) and Fig. 3(b). At this point, it may be in place to remind the reader of the last paragraph in Sect. II A 1.

The presence of the investigated GB is only revealed by a rather small deformation of the peaks and by weak halos located exclusively around and between existing \(g_2 \) maxima, i.e., no significant structural compromises need to be made in the investigated GB. This observation is consistent with the low defect energy associated with the studied low-\(\Sigma \) grain boundaries. It remains to be seen to what extent a \(g_3 \) analysis allows one to estimate statistics on GBs.

B. Equilibrium liquids

1. Two simple, mono-atomic liquids

We now draw our attention to systems lacking long-range order and consider two simple, mono-atomic liquids first, namely argon and copper. We omit mentioning our motivation for studying these systems for reasons of brevity and hope that it becomes clear as the results are discussed.
Argon is modeled with a regular Lennard-Jones (LJ) potential, \(V(r) = 4 \varepsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \), which is why we will sometimes refer to argon as to Lennard-Jonesium in the following. Commonly used values for argon would be \(\varepsilon = 120 \) \(k_B \)K and \(\sigma = 3.405 \) \AA, however, both values are set to unity in reduced units. In addition, we employ the frequently used LJ cut-off radius of \(r_c = 2.5 \sigma \). A cubic simulation cell containing \(N = 2000 \) randomly placed atoms was set up at a fixed pressure of \(p = 0.0024 \varepsilon / \sigma^3 \) and then equilibrated at a temperature of \(T = 0.708 \varepsilon / k_B \), which is just a few percent above the melting temperature and still below the boiling temperature. For these conditions, we found a relative packing fraction of \(\eta_{rel} = 0.872 \), which we define as the ratio of the liquid density and the density of a defect-free fcc crystal superheated to the liquid temperature.

The simulation of the copper melt encompasses \(N = 4000 \) atoms. Atoms were initially placed on a diamond cubic lattice and equilibrated in a cubic simulation cell at a temperature of \(T = 1400 \) K and a pressure of \(p = 0.1 \) MPa. This makes the system be roughly 3% above the melting temperature at that pressure. For copper, the first estimate for the relative packing density of \(\eta_{rel} = 0.940 \) is deduced relative to that of a defect-free crystal superheated to 1400 K. This estimate will be improved further below.

Figs. 4(a) and (c) convey quite similar bond-length, bond-angle correlations for copper and Lennard-Jonesium, where in both cases temperature was kept just a few percent above the melting temperature. In both cases, significant intensity is only found at the first-neighbor-shell distance, while relatively little (or smeared out) intensity exists at distances that would correspond to the second-nearest-neighbor distance in fcc or hcp. Interestingly, both liquids have a narrowing of intensity at the 90° bond angle in the nearest-neighbor shell, where both fcc and hcp have a maximum. It is therefore not meaningful to rationalize the liquid structure of Ar and Cu as having a close-packed structure resembling that of a crystal.

The view of a hard-sphere close random packing\(^{41}\) appears much more appropriate for both Lennard-Jonesium and copper than that of local crystalline order. In fact, both systems have the second peak in the RDF at about 1.8 times the typical bond-length distance, as can be deduced also indirectly from projecting intensities of the \(g_3 \) intensity onto the \(r/d_{nn} \) axis, which is typical for hard-sphere random packing. Moreover, Lennard-Jonesium has a relative packing fraction close to estimates for random hard-sphere packing of \(\eta_{hs} \approx 0.855 \pm 0.01 \), precise numbers being somewhat ill defined\(^{42}\). The value for copper deviates more clearly from that estimate. However, it has to be kept in mind that many-body interactions can lead to either bond-length contractions or extensions compared to that of crystalline reference structures, depending on whether an atom’s coordination number \(Z \) is decreased or increased. One could define an effective value for coordination number, \(Z_{eff} \), in disordered Gup-

FIG. 4: \(g_3(r, \theta) \) for ”Lennard-Jonesium” at (a) \(k_B T = 0.8 \varepsilon \) in thermal equilibrium and (b) quenched to \(k_B T = 0.1 \varepsilon \) as well as copper at (c) \(T = 800 \) K and (d) quenched to \(T = 100 \) K.

tanium through the (mean) charge density provided by the first-neighbor peak in \(g(r) \) in units of the charge density of a single atom located a distance \(d_{NN} \) away from a central atom. This would yield a value of \(Z_{eff} = 12.4 \). Comparison of this value to the zero-moment of the first-neighbor peak of \(Z = 11.7 \), leads to an expected expansion of the bond length of about 2.3%, since bond length is proportional in the leading order to \(\ln Z \) (see Eq. (31) and Fig. 1 in Ref. [18]). In turn, this yields a density increase of 7.3% and a modified estimate of \(\eta_{hs} = 0.876 \), consistent with a dense, random hard-sphere packing for copper.

Despite the random-sphere packing analogy, the close similarity in the \(g_3 \)’s between Lennard-Jonesium and copper may remain somewhat surprising in light of the LJ potential being a two-body potential, for which the binding energy \(E_0 \) of ideal crystalline structures is roughly linear in \(Z \), while the Gupta potential is a many-body potential for which \(E_0 \) scales approximately with \(Z^{0.4} \). Thus, by simple rescaling of the Lennard-Jones coefficients, one would be in a position to reproduce a \(g_3 \)-measurement of Cu reasonably well. Yet, the such-constructed potential would make awful predictions on a variety of material parameters, which crucially affect the material’s properties. In particular, defect energies (measured in units of the cohesive energy per atom) and ratios formed by the independent elastic tensor elements differ strongly between metals (Guptanium) and any two-body potential\(^{43}\), see also the large discrepancies of the ratio \(\eta_{mb} = T_m / T_b \) for noble gases (LJ) and copper (Guptanium), where \(\eta_{mb} \) (LJ) barely exceeds unity, while \(\eta_{mb} \) (G) is almost a factor of three. Thus, reproducing \(g_3 \) — and even more so reproducing the RDF — at a single state
point should never be used as strong evidence for the accuracy of a potential.

Quenching the systems down to small temperatures appears to arrest the random packing structure to a significant degree. Signs of peaks at $\theta = 90^\circ$ are at best subtle for copper and somewhat more easily to ascertain in the case of Lennard-Jonesium. Statistically speaking there appears to be a 60° symmetry axis but still very little intensity at distances where hcp and fcc have their nearest-neighbor shell. The marginal intensities in the second shell of LJ appear at the locations, where fcc but not hcp has peaks. Assessing to what degree the differences between the g_3 patterns in Cu and Lennard-Jonesium arise due to differences in (i) interaction potentials, (ii) packing densities or meaningfully undimensionalized (ii) cooling rates, and (iii) temperatures is beyond the scope of this work.

2. A Peierls-distorted liquid

While rare-gas atoms (Lennard-Jonesium) and simple metals (Guptanium) have no significantly directed interactions—in the sense of necessitating explicit angle or directional dependencies in the construction of transferable potentials—other elements do, in particular those that do not adopt close-packed structure in their elemental crystalline phase at small temperature and pressure. One such example is the metalloid antimony whose thermodynamically stable structure at ambient conditions is the rhombohedral A7 structure, which can be interpreted as a Peierls-distorted simple-cubic crystal, as already discussed in Sect. II C. Here, we investigate to what extent a g_3-based analysis allows remnants of a Peierls deformation in the liquid phase to be more easily identified than with ordinary bond-angle distribution functions. Ref. [44] presents pertinent histograms for different cutoff radii are presented and discusses how a Peierls deformation in our system of interest may occur in the absence of long-range order.

To model liquid antimony, we use a cubic elementary cell with a particle number that is incompatible with a defect-free, simple-cubic or A7 structure, i.e., $N = \text{int}(5.5^3) = 166$ atoms. The initial structure was diamond with randomly drawn vacancies, as to prevent the system from being locked into a superheated potentially Peierls-distorted simple-cubic solid. The system was thermostat at constant (experimental) density for 3 ps at $T = 1,100$ K, which is 20% above the melting temperature, and then equilibrated for another 3 ps at constant pressure. This was followed by two subsequent 2.5 ps runs, over which g_3 was accumulated. An additional, similar run was performed with $N = 200$ atoms, which also contained two 2.5 ps measurements. Since all measurements had no obvious differences other than random scatter, the results for g_3 were averaged to yield the data shown in Fig. 5.

In many aspects, Fig. 5 reveals a compromise between random-sphere packing and either a simple cubic or an A7 structure. The following features are indicative of the latter: The nearest-neighbor peak has increased intensity at 90° bond angles, as to be expected from atoms that form bonds with a valent, half-filled p-shell and a full outer s-shell. The increased intensity for the nearest-neighbor shell at 180° is shifted to slightly larger radii than those at 90°, whereby a local Peierls distortion is revealed. Moreover, the peak associated with the secondary bond angle of 45° is still visible, although it is smeared out substantially. However, other secondary or even tertiary peaks are no longer visible. Instead, increased intensity shows up at $r/d_{nn} \approx 2$ at $\cos \vartheta \lesssim 0.5$ as is the case for the random-sphere packing. However, this increased intensity lies at $r/d_{nn} < 2$ for random-sphere packing but at $r/d_{nn} > 2$ in liquid antimony. Another difference between the random (sphere) packing in liquid copper and that in liquid antimony is the absence of a significantly enhanced intensity at $\cos \vartheta = \pm 0.5$ in liquid antimony.

C. Out-of-equilibrium systems

The last case study presented in this work evolves around polyamorphism and the detection of coexisting disordered phases in a computer simulation. Polyamorphism refers to the existence of two distinct, disordered equilibrium phases, that is liquids, which are separated by a discontinuous phase transition. The possibility of polyamorphism was discussed controversially in the literature[45–47], because, in contrast to crystals, liquids were thought to evolve continuously as a function of pressure, temperature, or other intrinsic thermodynamic variables. In fact, we must admit that we managed to identify only a single, convincing work[45] reporting a first-order equilib-
rium (rather than supercooled) phase transition between two condensed phases both of which lacking any type of long-range order. The concept of polymorphism is typically extended to and investigated in out-of-equilibrium disordered systems, i.e., glasses,48–51, although it often remains unclear if a certain anomaly in the response function of a glass can rightfully be associated with an underlying polymorphic phase transitions (PPT) of an equilibrium reference liquid.

Silicon is one of few materials for which the existence of a PPT in the supercooled and thus out-of-equilibrium liquid has been properly established52,53. The reversible transformation between the two involved phases, namely, low-density, amorphous silicon (LDA-Si) and high-density, amorphous silicon (HDA-Si) occurs near 14 GPa upon compression and at 4 GPa under decompression. The local structure of LDA-Si has been found to resemble that of the cubic diamond structure (Si-I) with four nearest neighbors, while HDA-Si locally resembles β-tin (Si-II) with six nearest neighbors. Due to their structures, Si-I and likewise LDA-Si are semiconducting, while Si-II and LDA-Si are metallic52,53. A question that arises is whether a g₃-based analysis can clearly discriminate between the two structures, and, more importantly, identify their coexistence if applicable.

To produce different amorphous silicon structures, we proceeded as follows: A supercell of crystalline diamond silicon containing 1,728 atoms was equilibrated at a temperature of $T = 5,000$ K and atmospheric pressure. The sample was quenched at ambient pressure to $T = 1,000$ K, which is well below silicon’s melting point of $T_{\text{m}} \approx 1,700$ K. The $T = 1,000$ K sample is therefore deep in the glass phase. Thermal fluctuations are still large enough to smear out the nearest-neighbor g_3 peaks in the crystalline reference phase to a substantial amount as can be seen in Fig. 1(f) and again in Fig. 6(a), where the same data is shown.

In the next step, the sample was quenched down to room temperature and the applied pressure was increased with a ramp of 0.1 GPa/ps. Just before 15 GPa was reached, the density suddenly increased, which is indicative of a pressure-driven PPT from the LDA to the HDA silicon phase. The transition pressure is close to the value of 14 GPa reported in Ref. [29]. Upon further compression to 25 GPa, additional quasi-discontinuities occurred neither in volume nor in energy. A configuration with a density half way between the LDA and the HDA density was kept and further equilibrated at 300 K at fixed volume.

Representative g_3 functions occurring during the just-described thermo-mechanical protocol are depicted in Fig. 6(d)–(f). The LDA silicon phase reveals predominantly nearest-neighbor bond angles close to the tetrahedral bond angle for which $\cos \theta = -1/3$. At larger distances, no ternary bond-angle peaks are noticeable, which means that a diamond-like domain extents over less than two nearest-neighbor spacings. The HDA silicon phase has increased intensity in the nearest-neighbor shell near and predominantly just below $\theta = 90^\circ$ as well as just below $\theta = 180^\circ$. Remnants of the β-tin, next-nearest-neighbor shell, see Fig. 6(b), are also present in HDA silicon but increased intensity is absent with regard to ternary angles. Thus, our analysis corroborates the finding that local order in LDA and HDA silicon is similar to that found in the diamond and β-tin. In addition, we find that not only positional but also orientational order is short ranged and does not extend past distances exceeding twice the bond length.

Note that g_3 of LDA-Si equilibrated for longer times at around $p = 8$ GPa develops nearest-neighbor peaks, which are elongated with significant intensity along the $\cos \theta$-axis all the way to slightly negative values (not shown explicitly). From this observation, it can be concluded that the tetrahedrally coordinated Si atom in the two considered amorphous samples experience a local pressure of less than 8 GPa.

For intermediate densities, Fig. 6(f) reveals coexistence of LDA and HDA through the presence of two pertinent peaks in the nearest-neighbor shell having similar intensity. Coexistence could have been also easily deduced from a regular bond-angle histogram, in particular because the first two neighbor shells are well separated. The added insight of our analysis is that local order can be said to not extent in any statistically relevant way beyond the second neighbor shell.

As the last application of this study, we analyze the atomistic structure of a tribological layer, which Moras et al.29 produced in the force-field based simulation of an unlubricated contact between two Si-I, single crystals under the combined action of normal compression and lateral sliding. They found interfacial shear-assisted amorphization at room temperature. An interesting observation in this work was that the density in the tribo layer was already relatively close to that of β-tin even when normal stresses were still well below the hydrostatic PPT pressure of 14 GPa. By analyzing radial and angular distribution function, they found the tribo-introduced layer to resemble predominantly HDA silicon.

To further analyze the structure in the silicon tribo layer, we calculated the mixed radial-angular distribution function of the amorphous region, which had been obtained after 15 ns sliding at a 10 m/s velocity and an applied external normal pressure of $p = 11$ GPa. Our result shown in Fig. 6(c) confirms the conclusion of a mixed Si-I and Si-II local structure through the increased primary peak intensity at $\cos \theta \approx -0.3$ and slightly positive $\cos \theta$ values, respectively. One difference between the system that we produced at intermediate density and the tribo layer of Moras et al. is that the tribo layer has a slightly larger relative weight on the Si-II phase. Moreover, the primary g_3 peaks are broader and more asymmetric in the tribo layer. This can be easily attributed to the stress being anisotropic within the amorphous tribo layer, which should lead to a distortion of crystalline reference structures. The distortion of peaks should be particularly large when the shear modulus is small, which
FIG. 6: $g(r, \theta)$ for (a) diamond Si structure, (b) β-tin structure of Si, (c) the amorphous Si obtained in a sliding experiment of two diamond blocks at external pressure of $p = 11$ GPa (see text for more details), (d) amorphous Si at pressure $p = 0$ GPa, (e) amorphous Si at pressure $p = 15$ GPa, and (f) amorphous Si equilibrated at intermediate density (see text for more details). Distances are normalized to the pertinent nearest-neighbor spacing, which was estimated from the analysis of RDF of the melt.

would explain why the peak associated with the β-tin-like structure is more asymmetric than the one belonging to tetrahedral local order. In addition, we find that local order is similarly short ranged in the tribo layer as in the amorphous structures obtained via the cooling/compression protocol under hydrostatic pressure.

For both amorphous silicon samples, we tested (visually) to what extent the phase separation of HDA and LDA silicon is indeed local. This was done by labeling and representing atoms as high-, low-, or intermediate density, depending on the size of their Voronoi cell. Atoms were said to belong to a high- (low-) density domain, if their Voronoi volume was less than 98% (more than 102%) of the mean volume per atom. Roughly one third fell into either category for both samples with a slightly larger weight (40%) on the high-density atoms in the tribo layer and (38%) in the intermediate-density sample. No larger clusters were discernible to the naked eye when looking at such produced configuration files, which is consistent with the finding from the g_3 analysis that structural correlations are short ranged.

IV. CONCLUSIONS

In this work, we proposed a mixed radial, orientational distribution function for the analysis of local order and applied it to various elemental condensed-matter systems. The central beneficial property of the correlation function is that it allows local and intermediate-scale angular correlations to be deduced simultaneously with little effort in a single graph. For example, the structure of liquid copper and liquid Lennard-Jonesium can be readily associated with random-sphere packing, while the aluminium grain boundary, which effectively represents a nano-crystalline material, leads to graphs of the correlation function, which are difficult to distinguish from that of a perfect crystal. In fact, detailed features of angular correlations are clearly visible even in the fifth coordination shell for the given nanocrystalline material, while orientational correlations for random-sphere packing are rather minor beyond the nearest-neighbor shell. At the same time, the tails of the correlation function for nanocrystalline aluminium contains features, i.e., smeared-out intensity around individual peaks, which clearly point to the presence of lattice defects.

Although the proposed correlation function is local and
thus intrinsically unable to detect rigorously subtle structural change occurring as collective phenomena, we presented a few examples, for which signs of such changes could be detected. These were small-amplitude symmetry reductions of a unit cell including minor excursions on the Bain’s path connecting fcc and bcc as well as a Peierls distortion from simple cubic to rhombohedral A7.

Of course, the proposed analysis also has shortcomings. The introduced correlation function is not necessarily sensitive to every (collective) mode or every local symmetry. One such example, which we plan on discussing in a forth-coming work, appears to be the rigid unit modes turning β into α quartz. In addition, the correlation function cannot discriminate (without further quantitative analysis) between certain structural motifs, in particular when they have the same (relative amount) of bond angles, at least not when considering only intensity in the first neighbor shell. As an example, imagine the local binding in octahedral, square-pyramidal, and seesaw geometries. All structural motifs have equilibrium bond angles at or near 90° and 180° and they have same relative amount, namely 2:1. While a quantitative processing would allow pure octahedral or pure seesaw geometry to be determined, it would not be possible, based on a combined g(r) and g5(r, θ) analysis alone, to discriminate between pure square-pyramidal and mixed octahedral/seesaw local orders. The final limitation discussed in this section is that deducing order parameters from the correlation function would necessitate further considerations of how precisely a bond is label or weighted as a nearest-neighbor bond.

Despite the just-mentioned shortcomings, the potentially most interesting application of the proposed correlation function is the possibility to detect coexistence of competing phases in disordered systems. Our analysis revealed with little effort that two different forms of high-pressure amorphous silicon—one being obtained traditionally through quenching a melt and application of hydrostatic pressure, the other one through the tribo-induced amorphization of a crystal at room temperature—has coexisting diamond-like and β-tin like domains. The size of these domains was easily determined to be extremely small for both classes without performing further analysis. In our forthcoming work, we plan on demonstrating that the controversial discussion on whether liquid silica (as described by the potential of van Beest, Kramers, and van Santen) contains coexisting “liquid quartz” and “liquid cristabolite” would have come to a quick, conclusive end, if simulators had only made use of the proposed correlation function.

For the future, we hope that applications can be identified in which the mixed radial, angular correlation function proves useful to provide initial answers to scientific problems rather than clearer versions of answers that are already known. To assist others in achieving this, we uploaded our analysis code to the supplementary materials section (to referee: if the possibility is to do so).

19 J. P. Perdew, M. Ernzerhof, and K. Burke, The Journal of