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A mixed radial, angular three-body distribution function g3(rBC, θABC) is introduced, which allows
the local atomic order to be more easily characterized in a single graph than with conventional
correlation functions. It can be defined to be proportional to the probability of finding an atom
C at a distance rBC from atom B while making an angle θABC with atoms A and B, under the
condition that atom A is a nearest neighbor of B. As such, our correlation function contains, for
example, the likelihood of angles formed between nearest and next-nearest-neighbor bonds. To
demonstrate its use and usefulness, a visual library for many one-component crystals is produced
first and then employed to characterize the local order in a diverse body of elemental condensed-
matter systems. Case studies include the analysis of a grain boundary, several liquids (argon, copper
and antimony), polyamorphism in crystalline and amorphous silicon including that obtained in a
tribological interface.

I. INTRODUCTION

Computer simulations of condensed matter systems are
often run with the goal to ascertain the degree with which
the local structure of systems lacking long-range order re-
sembles that of crystalline reference phases. Examples
relate to the interpretation of liquid-liquid transitions
in terms of a competition between different local struc-
tures [1–6], or, the attempt to explain the contrast of
electrical and mechanical properties between crystalline
and amorphous materials in phase-change materials with
a change of local order that occurs at the amorphous to
crystalline transition [7, 8].

The most frequently studied observable allowing some
conclusions on local structure to be drawn is the radial
distribution function (RDF) g(r). It plays an important
role also because of its direct connection to x-ray diffrac-
tion patterns [9]. However, it is usually very difficult to
distinguish between different local orders in disordered
systems using the RDF alone, amongst other reasons, be-
cause its second peak may or may not include the third
neighbor shell in addition to the second. Thus, while the
coordination number of the sought-after reference crys-
tal can be usually estimated from the first peak of the
RDF, in particular when performing a skewed Gaussian
analysis of it [10], a similar, even rough estimate for the
number of atoms in the second coordination shell cannot
be deduced from the analysis of the RDF’s second peak.
Finally, it is generally not possible to ascertain the main
reason—potential candidates being thermal fluctuations,
positional disorder, lattice defects, or collective displacive
modes— for why the first peak in the RDF is broadened
or skewed from the RDF itself.

The natural extension of the RDF is the triplet cor-
relation function (TCF) g(rij , rik, rjk), which implicitly
includes information on bond angles, since a triangle is
fully defined by the lengths of its three edge lengths.
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While the analysis of the full TCF can certainly be very
useful, for example, to quantify many-body effects in po-
tential energy surfaces [11], it defies a general, graphi-
cal representation in a single figure, because visualizable
correlation functions can depend at most on two inde-
pendent variables. For this reason, several projections of
the TCF have been considered. These include dropping
one of the three pair distances, leading to the three-body
distribution function g(rij , rik) [12, 13], which we call
TCF1, or, restraining two of them to be close to each
other [11, 14, 15] leading to g(rij , rik ≈ rij , rjk), which
we call TCF2. Both reduced TCFs certainly have their
own merit, e.g., TCF2 allows the distribution of isosce-
les triangles to be determined, which has proven useful
in the characterization of tetrahedral liquids such as wa-
ter [16–21] and silicon [22, 23]. However, information
on bond angles is absent in TCF1, while it is not clear
that the information on bond angles contained in TCF2
adds to direct measurements of bond-angle distribution
functions.

Information on bond angles can be obtained from the
bond-angle distribution function and bond-orientational
order parameters deduced from it [24]. However, these
are only sensitive to the nearest-neighbor shell. Even
worse, in disordered systems, they are only meaning-
fully defined when augmented with non-trivial, Voronoi-
analysis based weighting functions [25]. An angular-
radial distribution function (ARDF) [26–28] has been
introduced, which, like our distribution function intro-
duced further below, depends on one distance and one
angle. However, our distribution function is a three-body
correlation function, while the ARDF is a six-point corre-
lation function. Its definition requires knowledge of two
molecular centers of mass, from which the intermolecu-
lar separation can be defined, and, in addition, two (end)
points per molecules for the calculation of the molecular
directors and the angle between them.

Another powerful, frequently used and very effective
method for the characterization of local, structural mo-
tifs, is the Voronoi tessellation. Since it is a discrete anal-
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ysis tool, for which results can be susceptible to small
(temporal) fluctuations, it provides useful complemen-
tary information to correlation functions, but does not
allow the information contained in them to be recon-
structed. Moreover, Voronoi tessellations only senses the
local order. Thus, while all mentioned characterization
methods are certainly useful, it would be beneficial to
have an additional analysis tool in place that (a) is sensi-
tive to bond angles, (b) can see past the nearest-neighbor
shell, (c) requires no or very little biased input by the
simulator, and (d) allows for simple visualization.

In this work, we propose that a mixed radial, angu-
lar three-body distribution function satisfies the just-
mentioned demands. The arguably most significant
added value of the proposed distribution function, com-
pared to the other mentioned distribution functions, is
that it allows angles between nearest-neighbor bonds and
“bonds” between the central and a more distant atom
to be readily deduced. We demonstrate the use of our
correlation function as well its usefulness for a broad
class of elementary condensed-matter systems ranging
from small perturbation of perfect crystalline order to
highly disordered, out-of-thermal-equilibrium structures.
Although work on binary and ternary systems is in ma-
ture progress, it is not presented here to reduce the risk
of making this publication unbearably extensive.

The remainder of this paper is organized as follows. We
define the distribution function in Sec. II, where we also
construct a visual reference library for monoatomic crys-
tals. A variety of applications are covered in Sec. III in-
cluding monoatomic liquids, grain boundaries and tribo-
logical interfaces, the purpose being predominantly peda-
gogical in nature. Conclusions are drawn and an outlook
is given in Sec. IV.

II. DEFINITION, METHODS, AND VISUAL
REFERENCE LIBRARY

A. Definition

Although applications in this work focus on elemen-
tary systems, we provide the general definition for the
mixed radial, angular distribution function g3(rBC, θABC)
that also holds for many-component systems. A graph-
ical representation of the terms entering the definition
of g3 is provided in Fig. 1. Our correlation function is
defined to be proportional to the probability of finding
a C atom at a distance rBC from a B atom when the
angles between rBC and rBA take the value θABC un-
der the condition that the A atom and the B atom are
nearest neighbors. Here, rBC and rBA are the vectors
pointing from the B atom to the C atom and from the
B atom to the A atom, respectively. The distribution
function is normalized such that it would equal unity
if the considered system were an ideal gas at the given
density. We note that the proposed correlation function
contains similar information as a projection of the TCF

to g(rAB ≈ dAB, rBC, rAC), i.e., to a cut through the TCF
on the plane, where type A and type B atoms are near-
est neighbors. The probably most important advantage
of our projection of g(rij , rik, rjk) compared to other pro-
jections is that it contains information on the distribution
of angles between a nearest-neighbor bond and a vector
connecting a central atom with a more distant atom.

The computation of g3 requires the specification of two
seemingly ad-hoc parameters, specifically, dAB and how
large of a deviation from dAB is allowed for rAB to qualify
as a nearest-neighbor distance. Before discussing how
to select these two parameters, we note that we found
their precise definition not to matter in the overwhelming
number of applications as long as choices are reasonable.

FIG. 1. Graphical representation of the terms entering the
definition of the mixed radial, angular distribution function
g3(rBC, θABC). Atoms of type A and B are requested to be
nearest neighbors, or, to be separated by a distance close to
their mean bond lengths.

A characteristic bond length dAB(r) can be defined as
the most likely nearest-neighbor distance between atom
types A and B, which is the location of the first maximum
of r2 gAB(r), where gAB(r) is the AB radial distribution
function. A slightly more accurate mean bond length can
be obtained through a skewed normal distribution (SND)
analysis of the first peak of r2 gAB(r) [10]. For the mar-
gin, one might restrict rAB, for example, to values less or
equal dAB + σAB, where σAB reflects a well-chosen devi-
ation, e.g., the half width of the nearest-neighbor peak
in r2 gAB(r), which can again be deduced from a Gaus-
sian or SND-fit to r2 gAB(r). More elaborate partition-
ing schemes are possible. For example, first and second
peak in r2 g(r) could be subjected to an SND analysis
and a relative probability or weight be deduced for val-
ues of r lying between the first and second maximum
of g(r) which states the probability of a given value of
r to belong to the first or to the second peak. A last,
but computationally demanding possibility to judge if A
and B are neighbors can be achieved through a Voronoi
analysis, which would satisfy the definition of g3 in the
abstract. This latter approach could certainly be further
refined with weighting schemes as those pursued in the
construction of orientational bond-order parameters [25].
However, the need to do so is reduced, because informa-
tion on angles and distances is retained in our correlation
function.

While a unique definition of g3 for which atoms qualify
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as neighbors might be desirable, we believe that the used
definition is best selected depending on the system of
interest and the number of configurations that can be
sampled over. In particular, when a system has short
and long bonds, e.g., when a weak Peierls deformation or
Jahn-Teller distortion is present, simulators might have
to decide whether or not the long bonds should be treated
as nearest-neighbor bonds.

Reasonable values of dAB should be frequently known
before the simulation is started so that g3(rBC, θABC) can
be directly measured on the fly. Alternatively, the two-
body RDF gAB(r) could be measured first, allowing an
unbiased estimate of dAB, and g3(rBC, θABC) could be
determined in post-analysis as discussed above, or, on the
fly, after dAB has been determined to a desired accuracy.

1. A note on nomenclature and plotting

In the following text, we will “overload” the symbol
g representing distribution functions and assume that
the reader identifies the correct interpretation by anal-
ysis of arguments and context. For example, g(r), g2(r),
or gAB(r) are all meant to refer to the regular two-body
distribution function. In contrast, g(r, θ) or g3(r, θ) is
meant to refer to our mixed radial, angular distribution
function, while g3(r, r) would refer to the three-body
distribution function introduced in Ref. 12. In a non-
elemental system, gABC(r, θ) or g(rBC, θAC) would both
indicate the same three-body function. If g3 is mentioned
without further explanation, we mean to refer by default
to the mixed radial, angular distribution function, intro-
duced in this work.

In this section, we also wish to provide our rationale for
the choice of y-axis in figures showing g3. We preferred
the use of cos θ over θ, because the a-priori probability
density of finding another neighbor at a given value of
cos θ is constant, while the one for finding another neigh-
bor under an angle θ changes proportionally with sin θ.
At the same time, we chose to let the y-axis go from
negative (-1) to positive (+1) numbers as this makes the
values of θ go from 0 to π. Note however, that peaks in
g3 at cos θ = ±1 may not always be immediately visible.

Finally, we note that the term “max” in the color bar
of g3 graphs indicates any intensity exceeding the value
being assigned the label “max”. However, the color cod-
ing between 0 and “max” is linear.

B. Numerical methods

For the specific examples introduced in the construc-
tion of the visual reference library, we ran brief simula-
tions that were based on either DFT or simple model
potentials. The purpose of running these simulations
was not to produce highly accurate, numerical results but
rather to provide a reference in which the ideal crystalline

peaks were broadened in a way that should be character-
istic for the given system at special points in the phase
diagram or simply at ambient conditions. Thus, the DFT
methods and classical interaction potentials used for the
applications are not necessarily the best on the market
for the modeling of a given system either, although an
attempt was made to pursue reasonable descriptions. As
such, conclusions on liquid argon are rather conclusions
on Lennard-Jones melt while simulations of copper relate
to a general system with Gupta potential interactions
even if our judgment of the Gupta potential [29] w.r.t.
its ability to model copper is certainly quite positive [30]
Thus, the main emphasis of this work is to demonstrate
how to obtain structural information from the g3 distri-
bution function.

Roughly one half of our elemental compounds was
described with DFT. The calculations were based on
the PBE exchange-correlation functional [31], and the
Gaussian Plane Waves (GPW) method [32] as imple-
mented in CP2K [33]. We used Gaussian basis sets of
double-ζ [34] quality in a combination with Goedecker-
Teter-Hutter (GTH) pseudopotentials [35, 36], and sam-
pled only Gamma point as the systems were reasonable
large in size. Energy cutoffs, particle numbers, and box
shapes were chosen to be as follows: (b) Mg (400 Ry, 36,
9.6 Å×9.6 Å×10.4 Å, hexagonal box with γ=120◦), (c)
Na (400 Ry, 54, 12.9 Å×12.9 Å×12.9 Å, cubic box), (g)
In (400 Ry, 128, 13.0 Å×13.0 Å×19.8 Å, orthorhombic
box), and (h) Sb (400 Ry, 192, 16.9 Å×16.9 Å×21.1 Å,
hexagonal box with γ=120◦).

The remaining structures were simulated with classi-
cal force fields, specifically: (a) Cu (Gupta potential [29],
as parametrized by Jalkanen et. al. [30]), (d) NaCl,
used to simulate a pseudo-SC g3 (embedded-ion model by
Zhou et. al. [37]), (e) Si diamond (Tersoff potential [38],
parametrized by Kumagai [39]), and (f) C graphite (Ter-
soff potential [38]). In the results section, we also provide
results on Al, which was modeled with an EAM poten-
tial [40].

All simulations were run either using CP2K [33] or
LAMMPS [41] or were courtesy of Thomas Reichen-
bach [42]. All analysis was conducted as post process-
ing of the configuration files. In all runs of classical
MD, Langevin [43] thermostats acted on atoms, whereas
CSVR thermostats [44] were chosen for all ab initio sim-
ulations. In all cases, Nose-Hoover chains [45] were used
as barostats whenever pressure was set constant.

C. Visual reference library for selected elemental
crystals

The number of elemental crystalline structures is
rather long. This is why we restrict our attention pri-
marily to those monoatomic structures whose elementary
cell is fully defined by a single parameter, i.e., the volume
of the unit cell. These are (underlined chemical symbols
denoting those elements serving as specific examples in
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the following):

(a) face-centered cubic (fcc), e.g., Al, Ca, Ni, Cu, Sr,
Rh, Pd, Ag, Pt, Au, and noble gases except He. Al-
lowed angles are 60◦, 90◦, 120◦ and 180◦. Allowed
secondary angles are 45◦, 90◦, 135◦ and 180◦.

(b) hexagonal close packed (hcp), e.g., He, Be, Mg, Co,
and Zn. Allowed bond angles 60◦, 90◦, 120◦ and
180◦. Allowed secondary angles are 45◦, 90◦, 135◦

and 180◦.

(c) body-centered cubic (bcc), e.g., Cr, Mn, Fe, Mo,
W, and alkali metals including Na. Allowed bond
angles satisfy cos θ = ±1/3 and cos θ = −1. Al-

lowed secondary angles satisfy cos θ = ±1/
√

3.

(d) simple cubic (sc), e.g., Po. Allowed bond angles
90◦ and 180◦. Allowed secondary angles are 45◦,
90◦ and 135◦.

(e) diamond cubic (dc), e.g., Si and Ge. Allowed bond
angle satisfies cos θ = −1/3. Allowed secondary

angles satisfy cos θ = ±
√

6/3 and cos θ = 0.

In this list, the term secondary angles refers to angles
between a vector pointing from a central atom to a near-
est neighbor and another vector pointing from a central
atom to a next-nearest neighbor, assuming perfect crys-
talline order. From the list above we were not able to
stabilize a simple cubic structure of As at pressures of
up to 40 GPa, which was reported in the literature to
be the high-pressure phase at p ≈ 25 GPa [46]. For this
reason we produced the mixed radial, angular three-body
distribution function for a simple cubic crystal by con-
sidering NaCl structure while treating all atoms in the
post-analysis as being of the same type, even if only the
(classical) T = 0 configuration would be strictly simple
cubic. Broadening of the peaks differ between Na or Cl
being the atom B in the general g3(rBC, θABC) expres-
sion.

We also include two selected single-component struc-
tures in which two parameters are needed to construct
the unit cell, in addition to hcp, which requires the pre-
cise c/a ratio for non-ideal hcp. These are:

(f) hexagonal (hex), as in graphite. Allowed bond an-
gles 120◦. Allowed secondary angles are 30◦, 90◦

and 150◦.

(g) face-centered tetragonal (fct), specifically A6, as in
In. Allowed bond angles and allowed secondary
angles are close to but not identical to those of hcp.

Lastly, one structure is included, in which the Wyckoff
position of at least one atom needs to be specified, in
order to define the crystal. This structure is

(h) rhombohedral, specifically hexagonal A7, as an ex-
ample for a solid with a weak Peierls deformation,
e.g., As, Sb, Bi. Allowed primary bond angles are

close to 90◦, and 180◦. Allowed secondary angles
are 45◦, 90◦, and 135◦, again within a few arc de-
grees.

A continuous transformation between two crystalline
structures is also explored. namely the Bain’s path con-
necting fcc and bcc. It is discussed in a separate sec-
tion II C 1.

In the following, we will discuss some selected pairs of
g3 patterns in Fig. 2 to address questions like: if a sample
had crystallites — or local order in a glass or liquid — of
a given local symmetry, how could we distinguish it from
another one?

Two structures that can be difficult to discriminate
from each other by analyzing the regular short-range,
two-body RDF are fcc and hcp, in particular because
they have the same number of nearest and next-nearest
neighbors while having identical ratios of nearest and
next-nearest neighbor distances. However, when using
g3(r, θ), fcc and hcp are readily distinguishable at small
scales, because the fcc structure has only three peaks
centered at the nearest-neighbor distance, while hcp has
five, which reduce to four as the ideal c/a ratio of

√
8/3

is approached.
While hcp has more peaks than fcc, bcc has fewer. In

particular, the θ = 90◦ peak is missing, which makes it
easy to distinguish bcc from fcc in a g3 analysis. How-
ever, it is worth keeping in mind that bcc and fcc can be
continuously transformed into each other, for example,
through the Bain’s path [47]. The corresponding defor-
mation and the evolution of the g3 pattern is presented
in Sect. II C 1.

Although bcc and fcc are easily distinguishable, it is
certainly difficult to detect a small average excursion
from either structure onto the Bain’s path from a local
structure analysis when thermal fluctuations are present.
Tiny reductions of symmetry cannot be detected from a
local analysis, e.g., in the immediate vicinity of a second-
order phase transformation. A rigorous structure de-
termination would necessitate a finite-size scaling analy-
sis [48, 49].

The question arises how far the symmetry reduction
must have proceeded in order to be visible in a g3 analy-
sis and if “typical” symmetry reductions can be detected.
Two such examples are presented in Fig. 2: first, the A6
structure, which can be obtained from fcc through a de-
formation of the fcc unit cell; second, the A7 structure,
which can be reached from simple cubic through a Peierls
deformation [50], in which not only the shape of the unit
cell but also the relative atomic positions change contin-
uously. In both cases, certain peaks appear elongated
and less symmetric in the deformed structure than in the
high-symmetry structure.

The A6 structure of In at room temperature is strained
by 7.5% in one [100] direction relative to fcc. This leads
to noticeably elongated nearest-neighbor peaks in A6.
The first clear qualitative difference between A6 and fcc
in this case study occurs in the fourth-neighbor-shell near
r/dnn = 2, where the cos θ = ±0.5 peaks break up into
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FIG. 2. g3(r, θ) for the structures discussed in Sect. II C. The sequence of sub-figures is not consistent with the text, as to
facilitate comparisons, e.g., between fcc and A6. Distances are normalized to nearest-neighbor spacings. In sub-figure (d), all
atoms in NaCl were treated as being identical in the g3-analysis. This produces g3 that is visually indistinguishable from that
of a single-cubic (sc) structure – hence the name pseudo-sc. The corresponding RDFs are shown in Fig. S2.

two peaks. In contrast, the corresponding radial distri-
bution function (not shown explicitly, see supplementary
information for g(r) figures.) has no obviously broken up
peaks for the shown distances. In the case of the fourth-
neighbor peak, this is because the contributions from
cos θ = ±1 conceal the relative minimum in the radial dis-
tribution functions that are visible under cos θ = ±0.5,
see Fig. 2(e). One might argue that effects can be de-
duced indirectly also from the RDF by fitting the various
peaks of g2(r) with an appropriate sum over Gaussians.
However, the significance of such fits would be small as
the individual peaks are not necessarily Gaussian them-
selves. An asymmetric broadening of the peaks induced
by thermal fluctuations could be falsely attributed to be
caused by a (collective) displacive mode. For similar rea-
sons, the distortion from fcc to A6 cannot be deduced
from a (nearest-neighbor) bond-angle histogram Pr(θ)
either. The skewness of the peaks in Pr(θ) is already
non-negligible in the fcc phase. Thus, we would argue to
have identified the first case, where a visual inspection of
g3 provides clearer evidence for the classification of sym-
metry from local analysis than a numerical post-analysis
of the more common g2 and nearest-neighbor bond-angle
distribution function (BADF).

We next turn to the comparison between simple cubic
and the A7 structure. Due to the Peierls distortion, the
g3 nearest-neighbor peak at cos θ = 0 develops a satellite
along the radial direction, which reveals a deviation from
local cubic symmetry as can be seen in Fig. 2(h). This

time, the analysis of g2 would have detected a double
peak as well. However, an added bonus of the g3 analysis
is that long bonds can be detected at 90◦, as revealed by
the satellites, as well as at 180◦ (since the center of mass
of the θ = 180◦ peak is located above the satellite rather
than above the main θ = 90◦ peak). In contrast, short
bonds are located only near θ = 90◦.

The last comparison of single-element, crystalline g3

fingerprints relates to the diamond and the graphite lat-
tices. This time, both the RDF and the BADF would
also reveal a clear distinction between the two crystalline
structures. However, it appears as if the clearest qualita-
tive difference relates to the g3 peak positions in the third
neighbor shell, as can be seen by comparing Figs. 2(f) and
(g). This difference might prove useful to discriminate
clearly between different in-silico generated diamond-like
carbon structures and to estimate the relative amount of
domains in which carbon atoms bond through sp2 and
sp3 hybridization.

1. Bain’s path

In 1924, Bain suggested that bcc can transform con-
tinuously to fcc through a simple tetragonal deforma-
tion [47]: starting from bcc, the crystal is expanded in
the [001] direction and contracted isotropically within the
xy plane such that the deformation is volume conserv-
ing. This yields a body-centered tetragonal (bct) struc-
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FIG. 3. g(r, θ) along the Bain’s path. The starting structure is bcc and the gradual deformation along the Bain’s path in
percentages is given in the upper left corner of each graph. 0% corresponds to an ideal bcc structure, 100% - to an ideal fcc
structure. The intermediate structures could be classified as bct. Distances are normalized to the pertinent nearest-neighbor
spacing, which was estimated from the unit cell parameters. The corresponding RDFs are shown in Fig. S3.

ture between the two end-points of the Bain’s path. The
density-conserving deformation to fcc is completed when
the expansion in the [001] direction has reached a factor

of 3
√

2 and thus a factor of 6
√

2 in the two orthogonal di-
rections. While real phase transformations between bcc
and fcc do not necessarily proceed along the Bain’s path
but through paths yielding smaller activation energies,
e.g., those proposed by Nishiyama-Wassermann [51, 52]
and Kurdjumov-Sachs [53], we chose the Bain’s paths for
reasons of simplicity.

Fig. 3 reveals how a continuous phase transformation
driven by a lattice-distortive strain shows up in the pro-
posed distribution function: initial peaks in g(r, θ) break
up into two or sometimes three peaks. All peaks move
as the strain increases and their majority merges with
another peak in the final fcc structure. Along the Bain’s
path, a familiar pattern is encountered: the A6 structure
in Fig. 2(e) can be said to have progressed by approx-
imately 92.5% along the Bain’s path and thus appears
qualitatively most similar to the last configuration be-
fore the final fcc structure is reached.

III. APPLICATIONS

The local structure of liquids, amorphous solids, and
other disordered condensed matter is often associated
with that of crystals possessing long-range order. The
latter are also termed “real solids” and set apart from
glasses, which remain to be interpreted as highly viscous
liquids. What may not always be clear, are the length
scales—and also time scales—over which disordered con-
densed matter is indeed solid like. An important aspect
of this section is to demonstrate that the analysis of g3

provides quick and meaningful answers to this type of
question.

The more general motivation for most applications
considered in the following is again to explore strengths
and weaknesses of a g3 analysis. The section is organized
such that the complexity—in the sense of deviation from
simple crystalline order—increases with each case stud-
ied.

A. Grain boundaries

Grain boundaries (GBs) are one of the most elemental,
two-dimensional defects in solids. They crucially effect
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plasticity as well as electrical and thus thermal conduc-
tivity of metals. While they are rather straightforward
to detect, to visualize, and to analyze [54], we wish to
explore to what extent a g3 analysis is able to reveal
their presence as well. A low-Σ GB is considered with a
rather weak perturbation of perfect crystallinity, thereby
providing a challenging benchmark for our analysis.

Specifically, we consider a pair of Σ5-grain boundaries
between two (001) surfaces in aluminium. The dimen-
sion of the GB is 4.0×3.8 nm2 within the GB planes and
2.8 nm in the direction normal to them. Periodic bound-
ary conditions are applied in all three spatial directions.
The GB is in the xy-plane of the simulation box. The
number of repeat units in both crystallites having (001)
surface is n = 10 yielding a relative number of atoms
being directly part of the GB pair of 10%. The system
is kept at a temperature of T = 200 K and a pressure of
p = 100 kPa. A snapshot of the simulation cell and of
the GB geometry is shown in Fig. S1.

FIG. 4. g(r, θ) of (a) Al crystal with Σ5 grain boundary at
T = 200 K, and of (b) Cu crystal at T = 300 K. Distances are
normalized to the pertinent nearest-neighbor spacing, which
was estimated from the RDFs. The corresponding RDFs are
shown in Fig. S4.

Fig. 4 shows the result for g3 of the aluminium GB at
200 K and compares it to the 300 K data on fcc copper,
which was already presented in Fig. 2(a). Since the num-
ber of atoms being part of the GB is relatively small, the
focus in the g3 analysis must be laid on the tails of the
peaks, which is why the same data looks dramatically
different in Fig. 2(a) and Fig. 4(b). At this point, it may
be in place to remind the reader of the last paragraph in
Sect. II A 1.

The presence of the investigated GB is only revealed
by a rather small deformation of the peaks and by weak
halos located exclusively around and between existing g2

maxima, i.e., no significant structural compromises need
to be made in the investigated GB. This observation is
consistent with the low defect energy associated with the
studied low-Σ grain boundaries. It remains to be seen to
what extent a g3 analysis allows one to estimate statistics
on GBs.

B. Equilibrium liquids

1. Two simple, mono-atomic liquids

We now draw our attention to systems lacking long-
range order and consider two simple, mono-atomic liquids
first, namely argon and copper. We omit mentioning
our motivation for studying these systems for reasons of
brevity and hope that it becomes clear as the results are
discussed.

Argon is modeled with a regular Lennard-Jones (LJ)
potential, V (r) = 4 ε{(σ/r)12 − (σ/r)6}, which is why
we will sometimes refer to argon as to Lennard-Jones
system in the following. Commonly used values for ar-
gon would be ε = 120 kBK and σ = 3.405 Å, however,
both values are set to unity in reduced units. In addi-
tion, we employ the frequently used LJ cut-off radius of
rc = 2.5 σ. A cubic simulation cell containing N = 2000
randomly placed atoms was set up at a fixed pressure of
p = 0.0024 ε/σ3 and then equilibrated at a temperature
of T = 0.708 ε/kB , which is just a few percent above the
melting temperature and still below the boiling temper-
ature. For these conditions, we found a relative packing
fraction of ηrel = 0.872, which we define as the ratio of the
liquid density and the density of a defect-free fcc crystal
superheated to the liquid temperature.

The simulation of the copper melt encompasses N =
4,000 atoms. Atoms were initially placed on a diamond
cubic lattice and equilibrated in a cubic simulation cell
at a temperature of T = 1,400 K and a pressure of p =
0.1 MPa. This makes the system be roughly 3% above
the melting temperature at that pressure. For copper,
the first estimate for the relative packing density of ηrel =
0.940 is deduced relative to that of a defect-free crystal
superheated to 1,400 K. This estimate will be improved
further below.

Figs. 5(a) and (c) convey quite similar bond-length,
bond-angle correlations for copper and Lennard-Jones
melt, where in both cases temperature was kept just a few
percent above the melting temperature. In both cases,
significant intensity is only found at the first-neighbor-
shell distance, while relatively little (or smeared out) in-
tensity exists at distances that would correspond to the
second-nearest-neighbor distance in fcc or hcp. Interest-
ingly, both liquids have a narrowing of intensity at the
90◦ bond angle in the nearest-neighbor shell, where both
fcc and hcp have a maximum. It is therefore not mean-
ingful to rationalize the liquid structure of Ar and Cu
as having a close-packed structure resembling that of a
crystal.

The view of a hard-sphere close random packing [55]
appears much more appropriate for both Lennard-Jones
system and copper than that of local crystalline order.
In fact, both systems have the second peak in the RDF
at about 1.8 times the typical bond-length distance, as
can be deduced also indirectly from projecting intensi-
ties of the g3 intensity onto the r/dnn axis, which is typ-
ical for hard-sphere random packing. Moreover, the LJ
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FIG. 5. g3(r, θ) for a Lennard-Jones system at (a) kBT =
0.708ε in thermal equilibrium and (b) quenched to kBT = 0.1ε
as well as for copper at (c) T = 1400 K and (d) quenched to
T = 100 K. The corresponding RDFs are shown in Fig. S5.

system has a relative packing fraction close to estimates
for random hard-sphere packing of ηrhs ≈ 0.855 ± 0.01,
precise numbers being somewhat ill defined [56]. The
value for copper deviates more clearly from that esti-
mate. However, it has to be kept in mind that many-body
interactions can lead to either bond-length contractions
or extensions compared to that of crystalline reference
structures, depending on whether an atom’s coordination
number Z is decreased or increased. One could define an
effective value for coordination number, Zeff , in liquid
copper through the (mean) charge density provided by
the first-neighbor peak in g(r) in units of the charge den-
sity of a single atom located a distance dNN away from
a central atom. This would yield a value of Zeff = 12.4.
Comparison of this value to the zero-moment of the first-
neighbor peak of Z = 11.7, leads to an expected expan-
sion of the bond length of about 2.3%, since the equilib-
rium bond length (in an ideal crystal structure) is pro-
portional in the leading order to lnZ (see Eq. (31) and
Fig. 1 in Ref. [30]). In turn, this yields a density in-
crease of 7.3% and a modified estimate of ηrhs = 0.876,
consistent with a dense, random hard-sphere packing for
copper.

Despite the random-sphere packing analogy, the close
similarity in the g3’s between the LJ system and copper
may remain somewhat surprising in light of the LJ po-
tential being a two-body potential, for which the binding
energy E0 of ideal crystalline structures is roughly linear
in Z, while the Gupta potential is a many-body poten-
tial for which E0 scales approximately with Z0.4. Thus,
by simple rescaling of the Lennard-Jones coefficients, one
would be in a position to reproduce a g3-measurement of

Cu reasonably well. Yet, the such-constructed potential
would make awful predictions on a variety of material
parameters, which crucially affect the material’s proper-
ties. In particular, defect energies (measured in units of
the cohesive energy per atom) and ratios formed by the
independent elastic tensor elements differ strongly be-
tween metals and any two-body potential [57], see also
the large discrepancies of the ratio ηmb = Tm/Tb for no-
ble gases (LJ) and copper, or other metals, which are well
described by the Gupta (G) potential, where ηmb(LJ)
barely exceeds unity, while ηmb(G) is almost a factor of
three. Thus, reproducing g3 — and even more so repro-
ducing the RDF — at a single state point should never be
used as strong evidence for the accuracy of a potential.

Quenching the systems down to small temperatures
appears to arrest the random packing structure to a sig-
nificant degree. Signs of peaks at θ = 90◦ are at best
subtle for copper and somewhat more easily to ascer-
tain in the case of a LJ system. Statistically speaking
there appears to be a 60◦ symmetry axis but still very
little intensity at distances where hcp and fcc have their
nearest-neighbor shell. The marginal intensities in the
second shell of LJ appear at the locations, where fcc but
not hcp has peaks. Assessing to what degree the dif-
ferences between the g3 patterns in Cu and LJ system
arise due to differences in (i) interaction potentials, (ii)
packing densities or meaningfully undimensionalized (ii)
cooling rates, and (iii) temperatures is beyond the scope
of this work.

2. A Peierls-distorted liquid

While rare-gas atoms (LJ system) and simple metals
(that is those that can be modeled with a Gupta or
related embedding potentials) have no significantly di-
rected interactions—in the sense of necessitating explicit
angle or directional dependencies in the construction of
transferable potentials—other elements do, in particular
those that do not adopt close-packed structure in their el-
emental crystalline phase at small temperature and pres-
sure. One such example is the metalloid antimony whose
thermodynamically stable structure at ambient condi-
tions is the rhombohedral A7 structure, which can be
interpreted as a Peierls-distorted simple-cubic crystal, as
already discussed in Sect. II C. Here, we investigate to
what extent a g3-based analysis allows remnants of a
Peierls deformation in the liquid phase to be more eas-
ily identified than with ordinary bond-angle distribution
functions. Ref. [58] presents pertinent histograms for
different cut-off radii are presented and discusses how a
Peierls deformation in our system of interest may occur
in the absence of long-range order.

To model liquid antimony, we use a cubic elemen-
tary cell with a particle number that is incompatible
with a defect-free, simple-cubic or A7 structure, i.e.,
N = int(5.53) = 166 atoms. The initial structure was
diamond with randomly drawn vacancies, as to prevent
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the system from being locked into a superheated poten-
tially Peierls-distorted simple-cubic solid. The system
was thermostat at constant (experimental) density for
3 ps at T = 1, 100 K, which is 20% above the melting
temperature, and then equilibrated for another 3 ps at
constant pressure. This was followed by two subsequent
2.5 ps runs, over which g3 was accumulated. An addi-
tional, similar run was performed with N = 200 atoms,
which also contained two 2.5 ps measurements. Since all
measurements had no obvious differences other than ran-
dom scatter, the results for g3 were averaged to yield the
data shown in Fig. 6.

1.0 1.5 2.0

r/rnn

−1.0

−0.5
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FIG. 6. g3(r, θ) for liquid Sb at T = 1100 K. Distances are
normalized to the pertinent nearest-neighbor spacing, which
was estimated from the analysis of RDF of the melt. The
corresponding RDFs are shown in Fig. S6.

In many aspects, Fig. 6 reveals a compromise between
random-sphere packing and either a simple cubic or an
A7 structure. The following features are indicative of the
latter: The nearest-neighbor peak has increased intensity
at 90◦ bond angles, as to be expected from atoms that
form bonds with a valent, half-filled p-shell and a full
outer s-shell. The increased intensity for the nearest-
neighbor shell at 180◦ is shifted to slightly larger radii
than those at 90◦, whereby a local Peierls distortion is
revealed. Moreover, the peak associated with the sec-
ondary bond angle of 45◦ is still visible, although it is
smeared out substantially. However, other secondary or
even tertiary peaks are no longer visible. Instead, in-
creased intensity shows up at r/dnn ≈ 2 at cos θ . 0.5 as
is the case for the random-sphere packing. However, this
increased intensity lies at r/dnn < 2 for random-sphere
packing but at r/dnn > 2 in liquid antimony. Another
difference between the random (sphere) packing in liquid
copper and that in liquid antimony is the absence of a
significantly enhanced intensity at cos θ = ±0.5 in liquid
antimony.

C. Out-of-equilibrium systems

The last case study presented in this work evolves
around polyamorphism and the detection of coexisting
disordered phases in a computer simulation. Polyamor-
phism refers to the existence of two distinct, disordered
equilibrium phases, that is liquids, which are separated
by a discontinuous phase transition. The possibility of
polyamorphism was discussed controversially in the lit-
erature [59–61], because, in contrast to crystals, liquids
were thought to evolve continuously as a function of
pressure, temperature, or other intrinsic thermodynamic
variables. In fact, we must admit that we managed
to identify only a single, convincing work [59] report-
ing a first-order equilibrium (rather than supercooled)
phase transition between two condensed phases both of
which lacking any type of long-range order. The con-
cept of polyamorphism is typically extended to and in-
vestigated in out-of-equilibrium disordered systems, i.e.,
glasses [62–65], although it often remains unclear if a
certain anomaly in the response function of a glass can
rightfully be associated with an underlying polymorphic
phase transitions (PPT) of an equilibrium reference liq-
uid.

Silicon is one of few materials for which the existence
of a PPT in the supercooled and thus out-of-equilibrium
liquid has been properly established [66, 67]. The re-
versible transformation between the two involved phases,
namely, low-density, amorphous silicon (LDA-Si) and
high-density, amorphous silicon (HDA-Si) occurs near
14 GPa upon compression and at 4 GPa under decom-
pression. The local structure of LDA-Si has been found
to resemble that of the cubic diamond structure (Si-I)
with four nearest neighbors, while HDA-Si locally resem-
bles β-tin (Si-II) with six nearest neighbors. Due to their
structures, Si-I and likewise LDA-Si are semiconducting,
while Si-II and HDA-Si are metallic [66, 67]. A question
that arises is whether a g3-based analysis can clearly dis-
criminate between the two structures, and, more impor-
tantly, identify their coexistence if applicable.

To produce different amorphous silicon structures, we
proceeded as follows: A supercell of crystalline dia-
mond silicon containing 1,728 atoms was equilibrated at
a temperature of T = 5, 000 K and atmospheric pres-
sure. The sample was quenched at ambient pressure to
T = 1, 000 K, which is well below silicon’s melting point
of Tm ≈ 1, 700 K. The T = 1, 000 K sample is therefore
deep in the glass phase. Thermal fluctuations are still
large enough to smear out the nearest-neighbor g3 peaks
in the crystalline reference phase to a substantial amount
as can be seen in Fig. 2(f) and again in Fig. 7(a), where
the same data is shown.

In the next step, the sample was quenched down to
room temperature and the applied pressure was increased
with a ramp of 0.1 GPa/ps. Just before 15 GPa was
reached, the density suddenly increased, which is indica-
tive of a pressure-driven PPT from the LDA to the HDA
silicon phase. The transition pressure is close to the value
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FIG. 7. g(r, θ) for (a) diamond Si structure, (b) β-tin structure of Si, (c) the amorphous Si obtained in a sliding experiment of
two diamond blocks at external pressure of p = 11 GPa (see text for more details), (d) amorphous Si at pressure p = 0 GPa, (e)
amorphous Si at pressure p = 15 GPa, and (f) amorphous Si equilibrated at intermediate density (see text for more details).
Distances are normalized to the pertinent nearest-neighbor spacing, which was estimated from the analysis of RDF of the melt.
The corresponding RDFs are shown in Fig. S7.

of 14 GPa reported in Ref. [42]. Upon further compres-
sion to 25 GPa, additional quasi-discontinuities occurred
neither in volume nor in energy. A configuration with
a density half way between the LDA and the HDA den-
sity was kept and further equilibrated at 300 K at fixed
volume.

Representative g3 functions occurring during the just-
described thermo-mechanical protocol are depicted in
Fig. 7(d)–(f). The LDA silicon phase reveals predomi-
nantly nearest-neighbor bond angles close to the tetra-
hedral bond angle for which cos θ = −1/3. At larger
distances, no ternary bond-angle peaks are noticeable,
which means that a diamond-like domain extents over
less than two nearest-neighbor spacings. The HDA sili-
con phase has increased intensity in the nearest-neighbor
shell near and predominantly just below θ = 90◦ as well
as just below θ = 180◦. Remnants of the β-tin, next-
nearest-neighbor shell, see Fig. 7(b), are also present in
HDA silicon but increased intensity is absent with regard
to ternary angles. Thus, our analysis corroborates the
finding that local order in LDA and HDA silicon is simi-
lar to that found in the diamond and the β-tin structure,
respectively. In addition, we find that not only positional
but also orientational order is short ranged and does not

extend past distances exceeding twice the bond length.
Note that g3 of LDA-Si equilibrated for longer times

at around p = 8 GPa develops nearest-neighbor peaks,
which are elongated with significant intensity along the
cos θ-axis all the way to slightly negative values (not
shown explicitly). From this observation, it can be con-
cluded that the tetrahedrally coordinated Si atom in the
two considered amorphous samples experience a local
pressure of less than 8 GPa.

For intermediate densities, Fig. 7(f) reveals coexistence
of LDA and HDA through the presence of two pertinent
peaks in the nearest-neighbor shell having similar inten-
sity. Coexistence could have been also easily deduced
from a regular bond-angle histogram, in particular be-
cause the first two neighbor shells are well separated.
The added insight of our analysis is that local order can
be said to not extent in any statistically relevant way
beyond the second neighbor shell.

As the last application of this study, we analyze the
atomistic structure of a tribological layer, which Moras
et al. [42] produced in the force-field based simulation
of an unlubricated contact between two Si-I, single crys-
tals under the combined action of normal compression
and lateral sliding. They found interfacial shear-assisted
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amorphization at room temperature. An interesting ob-
servation in this work was that the density in the tribo
layer was already relatively close to that of β-tin even
when normal stresses were still well below the hydrostatic
PPT pressure of 14 GPa. By analyzing radial and angu-
lar distribution function, they found the tribo-introduced
layer to resemble predominantly HDA silicon.

To further analyze the structure in the silicon tribo
layer, we calculated the mixed radial-angular distribu-
tion function of the amorphous region, which had been
obtained after 15 ns sliding at a 10 m/s velocity and an
applied external normal pressure of p = 11 GPa. Our
result shown in Fig. 7(c) confirms the conclusion of a
mixed Si-I and Si-II local structure through the increased
primary peak intensity at cos θ ≈ −0.3 and slightly posi-
tive cos θ values, respectively. One difference between the
system that we produced at intermediate density and the
tribo layer of Moras et al. is that the tribo layer has a
slightly larger relative weight on the Si-II phase. More-
over, the primary g3 peaks are broader and more asym-
metric in the tribo layer. This can be easily attributed to
the stress being anisotropic within the amorphous tribo
layer, which should lead to a distortion of crystalline ref-
erence structures. The distortion of peaks should be par-
ticularly large when the shear modulus is small, which
would explain why the peak associated with the β-tin-
like structure is more asymmetric than the one belong-
ing to tetrahedral local order. In addition, we find that
local order is similarly short ranged in the tribo layer
as in the amorphous structures obtained via the cool-
ing/compression protocol under hydrostatic pressure.

For both amorphous silicon samples, we tested (visu-
ally) to what extent the phase separation of HDA and
LDA silicon is indeed local. This was done by label-
ing and representing atoms as high-, low-, or intermedi-
ate density, depending on the size of their Voronoi cell.
Atoms were said to belong to a high- (low-) density do-
main, if their Voronoi volume was less than 98% (more
than 102%) of the mean volume per atom. Roughly one
third fell into either category for both samples with a
slightly larger weight (40%) on the high-density atoms
in the tribo layer and (38%) in the intermediate-density
sample. No larger clusters were discernible to the naked
eye when looking at such produced configuration files,
which is consistent with the finding from the g3 analysis
that structural correlations are short ranged.

IV. CONCLUSIONS

In this work, we proposed a mixed radial, orienta-
tional distribution function for the analysis of local or-
der and applied it to various elemental condensed-matter
systems. The central beneficial property of the correla-
tion function is that it allows local and intermediate-scale
angular correlations to be deduced simultaneously with
little effort in a single graph. For example, the struc-
ture of liquid copper and LJ melt can be readily associ-

ated with random-sphere packing, while the aluminium
grain boundary, which effectively represents a nanocrys-
talline material, leads to graphs of the correlation func-
tion, which are difficult to distinguish from that of a per-
fect crystal. In fact, detailed features of angular correla-
tions are clearly visible even in the fifth coordination shell
for the given nanocrystalline material, while orientational
correlations for random-sphere packing are rather minor
beyond the nearest-neighbor shell. At the same time,
the tails of the correlation function for nanocrystalline
aluminium contains features, i.e., smeared-out intensity
around individual peaks, which clearly point to the pres-
ence of lattice defects.

Although the proposed correlation function is local and
thus intrinsically unable to detect rigorously subtle struc-
tural change occurring as collective phenomena, we pre-
sented a few examples, for which signs of such changes
could be detected. These were small-amplitude symme-
try reductions of a unit cell including minor excursions
on the Bain’s path connecting fcc and bcc as well as a
Peierls distortion from simple cubic to rhombohedral A7.

Of course, the proposed analysis also has shortcom-
ings. The introduced correlation function is not neces-
sarily sensitive to every (collective) mode or every local
symmetry. One such example, which we plan on dis-
cussing in a forth-coming work, appears to be the rigid-
unit modes turning β into α quartz. In addition, the
correlation function cannot discriminate (without further
quantitative analysis) between certain structural motifs,
in particular when they have the same (relative amount)
of bond angles, at least not when considering only inten-
sity in the first neighbor shell. As an example, imagine
the local binding in octahedral, square-pyramidal, and
seesaw geometries. All structural motifs have equilibrium
bond angles at or near 90◦ and 180◦ and they have same
relative amount, namely 2:1. While a quantitative pro-
cessing would allow pure octahedral or pure seesaw geom-
etry to be determined, it would not be possible, based on
a combined g(r) and g3(r, θ) analysis alone, to discrimi-
nate between pure square-pyramidal and mixed octahe-
dral/seesaw local orders. The final limitation discussed
in this section is that deducing order parameters from the
correlation function would necessitate further considera-
tions of how precisely a bond is labeled or weighted as a
nearest-neighbor bond.

Despite the just-mentioned shortcomings, the poten-
tially most interesting application of the proposed cor-
relation function is the possibility to detect coexis-
tence of competing phases in disordered systems. Our
analysis revealed with little effort that two different
forms of high-pressure amorphous silicon—one being ob-
tained traditionally through quenching a melt and ap-
plication of hydrostatic pressure, the other one through
the tribo-induced amorphization of a crystal at room
temperature—has coexisting diamond-like and β-tin like
domains. The size of these domains was easily deter-
mined to be extremely small for both classes without
performing further analysis. In our forthcoming work,
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we plan on demonstrating that the controversial discus-
sion [3, 61, 68] on whether liquid silica (as described by
the potential of van Beest, Kramers, and van Santen [69])
contains coexisting “liquid quartz” and “liquid cristabo-
lite” would have come to a quick, conclusive end, if sim-
ulators had only made use of the proposed correlation
function.

For the future, we hope that applications can be iden-
tified in which the mixed radial, angular correlation func-
tion proves useful to provide initial answers to scientific
problems rather than clearer versions of answers that are
already known. To assist others in achieving this, we up-
loaded our analysis code to the supplementary materials
section.

V. DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author upon reasonable

request.

VI. SUPPLEMENTARY INFORMATION

See supplementary information for radial distribution
functions of all systems discussed in this article. The
C++ code for calculation of the described three-body
correlation function is also attached to the supplementary
information.
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[27] L. Degrève and C. Quintale, Electrochimica Acta

38, 1405 (1993), URL https://doi.org/10.1016/

0013-4686(93)80077-d.
[28] J.-W. Shen, O. Kitao, and K. Nakanishi, Fluid Phase

Equilibria 120, 81 (1996), URL https://doi.org/10.

1016/0378-3812(96)02996-2.
[29] R. P. Gupta, Physical Review B 23, 6265 (1981), URL

https://doi.org/10.1103/physrevb.23.6265.
[30] J. Jalkanen and M. H. Müser, Modelling and Simula-
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