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Department of Applied Mathematics, University of Western Ontario, London, ON, Canada N6A 5B7
(Dated: May 18, 2006)

This paper is concerned with the principles of Green’s function-based molecular dynamics
(GFMD) simulations of semi-infinite elastic solids and their application to various contact me-
chanical problems. A methodology to compute the (renormalized) elastic interactions of surface
atoms is presented first. It is based on the fluctuation-dissipation theorem, with the help of which
thermal fluctuations of atomic displacements can be related to the elastic Green’s functions and thus
to the effective coupling between surface atoms. We suggest a sparse representation of these renor-
malized spring constants and present numerical results for some simple two- and three-dimensional
lattices. The renormalized elastic interactions can be obtained for relatively small systems and then
be extrapolated to large systems. They incorporate the full elastic response of semi-infinite solids
in a way that only surface atoms have to be considered in molecular dynamics (MD) simulations.
The usefulness of GFMD is demonstrated by applying it to various idealized contact models, such
as non-adhesive Hertzian contacts as well as non-adhesive contacts between flat, semi-infinite elastic
solids and a self-affine, rigid substrate. In all cases, a zero probability density P (p) for infinitesimally
small contact pressures p is found, as predicted theoretically. If the self-affine, non-adhesive surfaces
are under such high loads that the contact is complete, the pressure histogram can be represented
by a Gaussian also in accordance with theoretical predictions. However, if the topography of the
substrate resembles that of industrial steel surfaces and the loads are moderate, P (p) decays ex-
ponentially for medium and large p in contradiction to theoretical predictions for randomly rough
surfaces.
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I. INTRODUCTION

Many physical processes that are commonly associated
with interfacial interactions can be strongly affected by
long-range elastic deformation in the bulk. Examples are
the epitaxial growth of metals on elastically-deformable,
crystalline substrates1,2 and the contact mechanics or the
friction between elastically-deformable bodies with rough
surfaces.3–7 When modeling such interfaces by means of
molecular dynamics (MD) or related atomistic simulation
techniques, it may thus be necessary to include the effect
of long-range elastic deformation of a system whose linear
dimension normal to the interface is as large as the linear
dimension L of the interface.8 An all-atom simulation
of these blocks will require significant computing time
and memory. Without the implementation of multi-scale
techniques, the computational effort of a single time step
algorithm would scale with L3, while using multi-scale
approaches can reduce the effort to scale approximately
with L2. Thus, the speed-up of the computation can be
tremendous if the value of L is in the order of 1,000 times
the typical size of an atom.

In the past, two different methodologies have been
used to numerically analyze the elastic deformation of
semi-infinite solids in atom-based simulations. In the
first approach, the system is represented on ever more
coarse-grained scales as one moves away from the zone
of interest,9–12 e.g., the interface. Calculations using
this methodology to study the mechanical contact be-
tween three-dimensional systems have been presented
recently.4–6,8 The second type of approach is based on

Green’s function formulations for semi-infinite elastic
lattices.13–18 In a recent paper by Rudd and Broughton
both types of approaches were combined within one
framework:19 Green’s function-like techniques were used
to connect the atomic region with the coarse-grained
finite element description of the bulk material. This
method allows for almost perfect transmission of elastic
waves through the interface between the atomistic and
the coarse-grained description. Despite these important
advances, a Green’s function-based simulation technique
of semi-infinite solids has not yet been employed in prac-
tice, to the best of our knowledge. This comment con-
cerns in particular the study of contact mechanics and
the friction between two rough surfaces. Overcoming this
shortcoming is the purpose of our work, which includes a
description of how to efficiently obtain the elastic Green’s
functions for a given system. We do not intend to point
out all the assets and drawbacks of each class of algorithm
in detail. Instead, we will mainly content ourselves with
a technical discussion of the Green’s function approach.

The main idea behind GFMD is that all internal (har-
monic) modes of an elastic body can be integrated out
leading to effective interactions of those atoms whose de-
grees of freedom couple to an external force,20 i.e., one
calculates the renormalized interactions between the sur-
face atoms. The idea does not only apply to static situa-
tions, but also extends to dynamics.14,15,19–21 However, a
(full) Green’s function implementation for dynamics may
not be suitable, because the dynamical coupling between
different modes and the book keeping of memory func-
tionals requires a large computational overhead. In this
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work, we will mainly be concerned with static properties.

Calculating elastic Green’s function analytically is no-
toriously difficult even for relatively simple interactions
and geometries such as simple square16 or simple cubic17

lattices with harmonic coupling between nearest and next
nearest neighbors. This difficulty may well have been
the main impediment for the use of Green’s functions
in the simulation of contact mechanics and friction be-
tween elastic bodies. The only Green’s function-based
numerical simulation of contact mechanics that we are
aware of was done in the long-wavelength limit for one-
dimensional interfaces.22 However, for lattices other than
simple Bravais lattices, such continuum approaches will
need extensions along the lines that are presented here.

An important aspect of this paper is the suggestion to
exploit the fluctuation-dissipation theorem to evaluate
the elastic Green’s function of homogeneous solids nu-
merically, which facilitates their calculation. The main
idea can be summarized as follows: A (small) solid block
of the material of interest is observed under the influ-
ence of thermal noise. The correlation matrix (or Green’s
functions) of atomic displacements ũα(q) can be mea-
sured in reciprocal space, where α enumerates the Carte-
sian components and q is a wave vector lying within
the interface. The inverse of the correlation matrix
〈ũ∗

α(q)ũβ(q))〉 (divided by the thermal energy) can be
interpreted as the renormalized force constants in recip-
rocal space Φαβ(q). These force constants (or stiffness
coefficients) can then be used in MD simulations. A simi-
lar scheme to obtain effective elastic interactions was used
previously to ascertain the effective elastic coupling be-
tween self-assembled, ordered rod-like structures formed
by block copolymers.23

It is also crucial for our approach that the results for
the Φαβ(q)’s can be easily extrapolated from small sys-
tems to large systems if they are represented as Fourier
series or related sums. These sums are quickly converg-
ing provided that the generating functions are properly
chosen. Another important aspect of GFMD is that dis-
placements for different q vectors decouple, if the semi-
infinite solid is translationally invariant. For a lattice
with basis, similar comments apply, however, the indices
α and β have to be expanded to also include an index
of the atom numbers in the basis. Lastly, due to the
Green’s functions being non-local in space, convergence
to equilibrium is extremely fast.

As will be demonstrated in this paper, GFMD allows
one to tackle questions evolving around the contact me-
chanics of solids quite efficiently. The first test case will
be a Hertzian contact, for which we can ascertain how
many grid points per contact radius need to be taken to
reliably predict pressure histograms. We will also inves-
tigate the contact mechanics between self-affine surfaces
and test predictions based on analytical theories24,25 and
finite-element calculations.4–6

The remainder of this manuscript is organized as fol-
lows: In Sec. II, we provide the theoretical background
and the methodology. We review how to relate ther-

mal, harmonic fluctuations with the (effective) spring
constants of the underlying eigenmodes. Included is
also a brief description of how to generate the full force
constants matrices Φαβ(q) if their leading-order expan-
sion coefficients are known as well as a discussion of
how quickly GFMD converges compared to all-atom sim-
ulations. In Sec. III, GFMD will be applied to cal-
culate the elastic force constants of various two- and
three-dimensional lattices. These results can be seen
as an initial step to construct a library of the expan-
sion coefficients of semi-infinite solids. Comparison of
the numerically-obtained coefficients is made to analyti-
cal expressions, whenever we are aware of exact solutions.
In Sec. IV, GFMD is applied to various non-adhesive con-
tact mechanics models, i.e., the exactly-solved Hertzian
contact as well as the approximatively-solved complete
contact between a rigid, self-affine substrate and an elas-
tic manifold. Lastly, a harmonic solid is pressed against
a substrate whose roughness was experimentally deter-
mined. Conclusions are drawn in Sec. V.

II. THEORY AND METHODOLOGY

A. Thermal fluctuations and renormalization of

harmonic variables

In this section, some properties of harmonic variables
are briefly reviewed. It will be shown how integrating
out harmonic variables in the partition function renor-
malizes the coupling between the remaining, explicitly
represented harmonic degrees of freedom. None of this
material is new.26 For example, conceptually similar ap-
proaches have been used to calculate thermal displace-
ments of surface atoms in nickel27 and the underlying
ideas can be extended to include anharmonic corrections
of thermal displacements in the bulk.19 However, a brief
and focused overview might prove useful to readers who
are not familiar with Gaussian integrals in statistical me-
chanics.

Consider a system of bi-linearly coupled degrees of free-
dom {u}, for which the potential energy V is given by

V =
∑

i,j

1

2
kijuiuj (1)

with the regular choice of kij = kji. The coefficients, or
spring constants, kij must form a positive-definite ma-
trix k for mechanically stable solids. (Zero eigenvalues
of this matrix would be associated with translation and
rotation of the solid, which we do not intend to consider
here.) In thermal equilibrium, the ui’s will be distributed
according to the Boltzmann statistics, i.e., the probabil-
ity to find a given configuration will be proportional to
exp(−βV ), where β = 1/kBT is the inverse thermal en-
ergy.

By expressing the ui and dui in terms of the eigenvec-
tors of the k matrix, it is easy to show that the second
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moments of the displacements ui satisfy

〈uiuj〉 =
1

Z(β)

∫

du1 · · · duN ui uj e−βV

= kBT
[

k−1
]

ij
, (2)

where the partition function Z(β) is given by

Z(β) =

∫

du1 · · · duNe−βV . (3)

Suppose now that k is unknown, but that there is a
sufficiently large number of observations of {u} in ther-
mal equilibrium so that all 〈uiuj〉 are known to great
accuracy. One can then use Eq. (2) to reconstruct the k

matrix.
Alternatively, if one knows the forces Fi on unit i, then

the k matrix can be reconstructed directly, provided the
set {F} is known for N linearly independent configura-
tions {u}, i.e., the kij must satisfy

Fi =
∑

j

kijuj (4)

for every single set {u}. In conclusion, when monitoring
the correlation matrix 〈uiuj〉 or a sufficiently large set
of forces {F} and displacements {u}, it is possible to
reconstruct the elastic interactions.

A useful property of harmonic systems is that integrat-
ing out individual degrees of freedom leaves the Boltz-
mann factor of the remaining terms in a Gaussian form,
i.e.,

∫

dun e−βV ∝ e−βṼ ′

, (5)

where

Ṽ ′ =
1

2

∑

i6=n,j>i;j 6=n

k̃ijuiuj (6)

and

k̃ij = kij − kinkjn/knn. (7)

The coefficients k̃ij can be considered to be effective or
renormalized spring constants. It is important to men-
tion that the proportionality factor in Eq. (5) does not
depend on any displacement variable. This means that
we can use Eq. (2) also for evaluation of renormalized
effective spring constants.

In principle, many harmonic variables can be elimi-
nated according to the scheme outlined in Eqs. (5) to
(7), i.e., those degrees of freedom that do not couple di-
rectly to any external force. In the given context of a
semi-infinite elastic solid in contact with an adsorbate
or a substrate, it will be reasonable to assume that only
the first or the first few layers interact with the adsor-
bate/substrate, respectively. All layers beyond the “in-
teraction zone” can be included in a single Green’s func-
tion layer.

While it is possible to use Eq. (2) for the calculation

of effective elastic couplings k̃, it is not possible to use
Eq. (4) without further modification for the same pur-
pose. The reason is that the forces Fi are fluctuating
quantities and Eq. (4) only holds on average.

Thus, we need to identify those k̃ij that minimize the
error function χ2 defined as

χ2 =

〈



Fi −
∑

j

k̃ijuj





2
〉

, (8)

where the indices on the right-hand-side of the last equa-
tion and the following equations only run over those de-
grees of freedoms that are not integrated out. Note that
taking the expectation value requires sampling of the
whole system, including the variables that will be elimi-
nated. Minimizing χ2 with respect to k̃ij yields

k̃ij =
∑

n

〈Fiun〉
(

G−1
)

nj
, (9)

where the coefficients Gij of the matrix G are defined as

Gij = 〈uiuj〉. (10)

When computing the k̃ij ’s, Eq. (9) promises to be less
susceptible to statistical errors than Eq. (2), for exam-
ple, when applied to a single harmonic degree of freedom,
Eq. (9) is exact for a single configuration (unless the sys-
tem happens to sit in the potential energy minimum),
while determining the spring constant with the help of
Eq. (2) would require sampling of many configurations.

If the remaining degrees of freedom, i.e., those that
have not been integrated out, are coupled to an exter-
nal potential Vext, one can say that the remaining atoms
move on an (average) potential V given by

V =
∑

i,j

1

2
k̃ijuiuj + Vext({u}) (11)

B. Representation of elastic coupling in periodic

systems

The procedure to eliminate harmonic degrees of free-
dom, presented in the previous subsection, applies to
periodic and non-periodic systems alike. However, the
representation of effective interactions in periodic sys-
tems can be made sparse by exploiting the translational
symmetries of the semi-infinite crystal. Instead of calcu-
lating effective spring constants between individual (sur-
face) atoms in real space, it is more efficient to assess
the effective elastic coupling in reciprocal space, because
modes with different wave number cannot couple in the
harmonic approximation for symmetry reasons. Thus, if
un is a displacement vector of atom n with equilibrium
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position R0
n in real space and its Fourier transform is

defined as

ũ(q) =
1√
N

∑

n

un exp
[

iqR0
n

]

, (12)

then, the only terms to be averaged are

Gαβ(q) = 〈ũ∗
α(q)ũβ(q)〉 , (13)

which replace the Gij ’s in Eq. (10). Note that the q’s
have the dimensionality of the interface, i.e., typically
two components, say x and y, while the u’s are vectors
with all three Cartesian coordinates.

For three-dimensional simple solids with a linear length
of L atomic radii, (3L)2 Green’s function would have to
be accumulated if no use were made of periodicity, while
making use of periodicity requires the observation of 32L
functions only. Note that for crystals with basis, the
indices in Gαβ would incorporate the Cartesian coordi-
nates of all atoms in the unit cell. This unit cell only
needs to be the unit cell of the very bottom layer and
can therefore be smaller than the unit cell of the whole
three-dimensional structure.

As is the case for other harmonic systems, the inverse
of a correlation matrix G divided by the thermal energy
can be interpreted as effective elastic interactions Φαβ(q)
in reciprocal space, i.e.,

Φαβ(q) = β
[

G−1(q)
]

αβ
. (14)

The symmetry properties of functions defined in recip-
rocal space facilitate their representation. To be specific,
the Φ(q) matrices only need to be known in the first
Brillouin zone, because they are periodic in the recipro-
cal lattice. In theory this means that the components of
the Φ(q)’s can be written as a Fourier series,

Φαβ(q) =
∑

∆R

Φ̃αβ(∆R) eiq∆R, (15)

where the Φ̃(∆R) are expansion coefficients and the ∆R

are the reciprocal lattice vectors of the reciprocal lattice,
that is, the original lattice vectors.

For the three-dimensional lattices studied here, it ap-
pears that the Φαβ(q)’s are either real and symmetric
functions of q with a cusp at the Γ point, namely Φxx,
Φyy and Φzz, or they are real and antisymmetric, i.e.,
Φxy(q) = −Φxy(−q), or purely imaginary and antisym-
metric, Φxz, Φyz. An example for the dispersion of the
stiffness matrix is shown in Fig. 1. Details of the calcula-
tions are presented in Section III. Due to the symmetry
properties of the Φαβ , it is convenient to represent the
Φ(q) matrix in the following way

[Φαβ ] =





Φxx 0 0
0 Φyy 0
0 0 Φzz



 +





0 Φxy 0
Φxy 0 0
0 0 0





+i





0 0 +Φxz/i
0 0 +Φyz/i

−Φxz/i −Φyz/i 0



 (16)
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FIG. 1: Dispersion of the surface stiffness coefficients for a
semi-infinite (111) surface of an fcc lattice. Some components
of the Φαβ(q) matrix are multiplied by a factor of four for
reasons of optical resolution. The lines correspond to fits
whose adjustable parameters are given in Section III.

Some of the components of the Φ(q) matrix, that is,
only those on the diagonal, would not yield quickly con-
verging series if they were written as a simple Fourier
sum. The reason is that they have a cusp in the center of
the Brillouin zone, which is similar to that of a phonon
dispersion ω(q). The slow convergence of the Φαβ(q)’s
when expressed as a Fourier series can be overcome if the
squares of those Φαβ(q)’s are written as a Fourier series
rather than their first moments, i.e.,

Φ2
αβ(q) =

∑

∆R

Φ̃
(2)
αβ(∆R) eiq∆R, (17)

where the Φ̃
(2)
αβ(∆R)’s are the expansion coefficients of

the squared elastic coupling terms. Note that one shall
not employ summation convention on the left-hand side
of Eq. (17).

The representation of the elastic interactions in terms
of the Fourier series Eqs. [15] and [17] is quickly converg-
ing for quickly decaying potentials. It turns out that only

those expansion coefficients Φ̃αβ(∆R) and Φ̃
(2)
αβ(∆R)

need to be included for which ∆R is a lattice vector con-
necting a central particle with a nearest or next-nearest
neighbor. Exceptions are the simple square (ss) and the
simple cubic (sc) lattice, which require (strong) interac-
tions between next-nearest neighbors for reasons of me-
chanical stability.

Besides the translational symmetries of the crystals,
there are also point symmetries, which further reduce
the number of independent expansion coefficients. If
the expansion coefficient Φ̃αβ(∆R) is known for say,

∆R = (1, 0, 0) a, where a is the nearest-neighbor dis-
tance, and the rotation matrix U maps ∆R to an equiv-
alent neighbor ∆R′ = U∆R, then this same rotation
matrix can be used to map Φ̃αβ(∆R) onto Φ̃αβ(∆R′).
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To illustrate how the point symmetries can be used
in a sparse representation of the elastic interactions, we
discuss the two-dimensional hexagonal lattice, which is
formed by the surface atoms in the (111) surface of a
face-centered cubic (fcc) lattice and also by the (001)
surface of the three-dimensional hexagonal closed packed
lattice. The rotation matrices can be written as

U =





cos(nπ/3) sin(nπ/3) 0
− sin(nπ/3) cos(nπ/3) 0

0 0 1



 , (18)

where 0 ≤ n ≤ 5 is an integer number. If ∆R is a lattice
vector, then so is ∆R′ = U∆R and the components of
the expansion coefficient associated with ∆R′ read:

Φ̃(∆R′) = UT Φ̃(∆R)U. (19)

A similar relationship holds for the transformation of the
matrix Φ̃(2)(∆R′).

It is important to realize that Fourier expansion co-

efficients such as Φ̃
(2)
xy (∆R) are not necessarily identi-

cal to zero, although the sum over all symmetry-related

terms vanishes. The knowledge of Φ̃
(2)
xy (∆R) is required,

because such an off-diagonal term can become diagonal
through the symmetry operation defined in Eq. (19). The

non-zero expansion coefficients are: Φ̃
(2)
xx , Φ̃

(2)
yy , Φ̃

(2)
zz , Φ̃

(2)
xy ,

Φ̃
(2)
yz , Φ̃

(2)
xz , which are needed for the reconstruction of the

first term on the right-hand side of Eq. (16) as well as

Φ̃xy, and Φ̃xz, Φ̃yz, which reconstruct the second and
third term on the right-hand side of Eq. (16), respec-
tively. Each of the stated coefficients is either real or
purely imaginary.

In conclusion, the effective interactions of surface
atoms can be expressed in reciprocal space. The Φαβ(q)
are periodic in the reciprocal lattice and they or their
squares can thus be represented as a Fourier series. The

Fourier expansion coefficients Φ̃αβ(∆R) or Φ̃
(2)
αβ(∆R)

only need to be known for one atom per neighbor shell.
All symmetry equivalent coefficients can be obtained by
applying rotation matrices that map the surface onto it-
self. In Section III, tables will be listed for various simple
crystalline structures.

C. Model for the interaction between a substrate

and a slider

For frictionless contacts, it is possible to map the con-
tact mechanics of two elastic solids each being rough onto
that of a flat, elastic solid and a rigid, rough solid.28 We
will use this isomorphism, because the applications in this
work are solely concerned with contact mechanics. In the
following, a flat, discrete, semi-infinite, elastic lattice will
be pressed against a continuous, rigid, rough substrate.

The rigid substrate will be defined by a continuous

height function h(x). For three-dimensional systems,
height function h(r) depends on the in-plane vector r =

(x, y). Using continuous height functions makes it possi-
ble to test continuum-mechanics predictions more easily
than if the substrate were composed of discrete atoms, in
which case it was found that continuum-mechanics can
break down.29 It is yet possible to investigate the effect
of discreteness within GFMD, e.g., by adding significant
roughness to the substrate at a wavelength near the dis-
cretization of the elastic slider.

In test simulations of Hertzian contacts, the height
function was chosen to be circular, i.e.,

h(x) = (R2 − x2)1/2 · Θ(R − |x|)

for one-dimensional interfaces, or spherical

h(r) = (R2 − r2)1/2 · Θ(R − r)

for two-dimensional interfaces. In both cases, R de-
notes the radius of curvature as specified in Hertzian con-
tacts and Θ(•) is the Heaviside step function, defined as
unity for positive and zero for negative arguments. In
our computations, the indentation depth was kept small
compared to the linear size of the periodically-repeated
cell and the substrate’s radius of curvature so that the
spherical cap was equivalent to a parabolic tip, for which
Hertzian contact mechanics is exact.

The simulation of Hertzian contacts was important to
ascertain at what level of spatial discretization (lattice
constant a divided by contact radius Rc), it is possible
to obtain accurate pressure histograms P (p). Pressure
histograms are helpful in a meaningful determination of
the true contact area in the case of randomly rough sub-
strates.

Randomly rough surfaces were considered as well.
Their topology is often characterized by a height-
difference correlation function C2(r) defined as:

C2(r) = 〈{h(0) − h(r)}2〉. (20)

Sometimes, we produced these functions using a Fourier
filtering algorithm,30 while in other simulations, an ex-
perimental height map was taken as input. For the arti-
ficially generated functions h(x) or h(r), the surface was
represented in reciprocal space and the values for the
Fourier transform30 h̃(q) of h(x) were chosen such that

〈h̃∗(q)h̃(q)〉 = h2
s ·(q/qs)

−2H−DintΘ(q−qs)Θ(ql−q) (21)

where hs is a Gaussian random variable with zero mean
and a standard deviation that represents the fluctuation
of the height profile associated with the short-wavelength
cutoff qs. Dint is the dimensionality of the interface, e.g.,
Dint = 2 for three-dimensional solids and H is the so-
called Hurst roughness exponent. qs and ql denote cut-
offs for roughness at short and long wavelengths, respec-
tively. In the limit of qs = 0 and ql → ∞, C2(r) scales
algebraically with r−2H .

To fully determine the contact mechanics, interactions
between the two opposed surfaces have to be specified.
In most simulations, hard walls potentials are employed,
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i.e., if the z-coordinate of atom n at position x crosses
through h(x), the interaction energy increases from zero
to infinity. As long as one is not interested in the de-
tailed dynamics of the slider but only in static (zero-
temperature) properties, these hard-wall potentials can
be implemented by using regular molecular dynamics, in
which external and intra-slider forces act on atom n. The
boundary condition zn ≥ h(xn) can be enforced at the
end of each time step by setting zn to h(xn) if the “pre-
dicted” value of zn turned out less than h(xn).

For studies of dynamical phenomena, hard-wall inter-
actions are not straightforward to implement. This is one
of the reasons why in some cases, the interaction between
substrate and the elastic manifold was modeled with an
exponentially repulsive potential31

V (zn) = V0 exp [−{zn − h(xn)}/σ] , (22)

where V0 and σ are constants of unit energy and length,
respectively. In the limit σ → 0, V (zn) mimics hard
walls potentials. Even at finite values of σ, the ratio of
lateral and normal forces has the “hard-wall property”
that the lateral and normal force are proportional to each
other, the local slope of h(x) being the proportionality
coefficient. Thus, the precise value of V0 has no effect
on the wall-manifold potentials other than shifting the
slider’s center of mass. The parameter σ is adjustable.
To make the exponential walls look similar to hard walls,
it is desirable to chose σ as small as possible. However,
for computational convenience, large values of σ are pre-
ferred. Small σ’s can limit the MD time step signifi-
cantly, because normal forces alter quite quickly when
slider atoms approach the substrate. We found σ = a/4,
which is our default choice for σ unless mentioned other-
wise, to be a good compromise between the two opposed
requirements. Moreover, if we took a to be the spacing
of a covalent bond or a typical nearest neighbor distance
in a molecular solid, then the choice of σ = a/4 would be
reasonably close to the real values used in, for instance,
Morse or Buckingham potentials.

Besides the hard-wall property, Fx = ∇h(x)Fz, an-
other feature of the exponential interactions seems ap-
pealing: Repulsion in real materials is due to the
Pauli exclusion principle.32 As the density of closed-
electron shell systems decays approximately exponen-
tially, Eq. (22) mimics true repulsion between atoms in a
very crude fashion. Large values of σ relative to spacing
(e.g., fluorine atoms terminating dangling bonds in a car-
bon chain as in teflon) mean smaller effective roughness
than small values of σ (e.g., hydrogen atoms terminating
dangling bonds).

D. Comments on the dynamics and the

convergence rate of GFMD

When performing molecular dynamics simulations of
semi-infinite regular lattices, it is desirable to have an al-
gorithm at hand, which not only works correctly but also
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FIG. 2: Normal center-of-mass position of the bottom layer
〈zbl〉 of a square solid (N=256x256 atoms) as a function of the
number of time step for different MD integration schemes:
Green’s function molecular dynamics (GFMD, solid lines),
MD of whole elastic manifold thermostatted with Langevin
thermostat (LT-MD, broken lines), MD of whole elastic man-
ifold with dissipative particle dynamics thermostat (DPD-
MD).34 Time steps were chosen identical in each case, and
the strength of the thermostat was optimized for each indi-
vidual MD technique to minimize the convergence rate.

works fast, because such algorithms allow one to study
longer time and length scales. Therefore it is interest-
ing to investigate how quickly an elastic manifold that is
initially placed above a substrate and then pressed down
at a specified normal load reaches its mechanical equilib-
rium.

Different dynamical schemes, which all yield the same
equilibrium configuration, were tested regarding their
rate of convergence, and the results are shown in Fig. 2.
To be specific, we include data of GFMD, where in-
dividual atoms are damped via a Langevin thermostat
and all-atom simulations where the thermostat was ei-
ther a Langevin thermostat33 (LT) or a dissipative-
particle dynamics34 (DPD) thermostat. In Langevin
thermostats, a friction term and a stochastic random
noise act in the “laboratory system,” which ensures the
canonical distribution in the absence of external driving
and sufficiently long waiting time. DPD is similar to
Langevin, however, friction and random noise always act
on (interacting) pairs of atoms such that the center-of-
mass motion of this pair is not affected, which conserves
their net momentum. DPD has proved to be extremely
valuable in simulations of fluids or gases, because it prop-
erly reproduces hydrodynamic interactions. Note that
the choice of temperature has no effect on the rate of
convergence in these calculations.

The three investigated numerical schemes reveal quite
different convergence rates. GFMD already equilibrates
reasonably well within twenty MD time steps. This an-
ticipates that convergence is affected only marginally by
system size. Langevin thermostat based all-atoms simu-
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lations equilibrate much more slowly, while DPD based
all-atom molecular dynamics equilibrates prohibitively
slow for large systems. The slow convergence in the
Langevin-based calculations can be understood as fol-
lows: Information has to travel from the top of the man-
ifold that experiences the normal load to the bottom
surface, which initially overlaps partially with the sub-
strate - hence the positive slope in zbl(t). Conversely, the
Green’s function layer experiences both forces right from
the start. The extremely bad convergence of the DPD all-
atom simulations can be understood from the fact that
damping in reciprocal space is inversely proportional to
wavelength. This gives the system little chance to dump
energy into the thermostat/damping term. When the
substrate is extremely rough on large length scales, then
individual atoms need to travel long distances, which
leads to a less favorable size scaling in each of the three
approaches.

The improvements in real computing time owing to
GFMD are even more dramatic than what can be in-
ferred from Fig. 2. In that figure it was not taken into
account that GFMD only requires to step forward in time
the surface atoms, i.e., approximately (L/a)Dint opera-
tions, while the other two simulations techniques require
(L/a)Dint+1 operations. Thus including the results from
Fig. 2, the combined benefit of GFMD over all-atom LT-
MD is approximately (L/a)2 divided by a correction log-
arithmic in the number of particles taken into account.

It may also be useful to compare the computational ef-
ficiency of GFMD to coarse-grained techniques (CGTs).
In CGTs the computational effort of a single time step
is only L2 rather than L2 lnL as in GFMD. However, in
CGTs several dozen times lnL time steps will have to
pass by before information between the (coarse-grained)
top plate and bottom layer can be exchanged. This ar-
gument makes the favorable assumption that good trans-
mission of sound waves with mass-matching techniques
can be achieved.8,11 Thus, in theory, both approaches
scale with L2 lnL, however, we feel that the prefactors
are smaller for GFMD.

As mentioned in the introduction, it is possible to gen-
eralize the GFMD approach to time-dependent Green’s
functions in a way such that not only the static properties
are reproduced but also the dynamics.20 Unfortunately,
different wave-numbers can couple dynamically, i.e., the
time-dependent Green’s function

Gαβ(q,q′,∆t) = 〈ũ∗
α(q, t + ∆t)ũβ(q′, t)〉 (23)

are not diagonal in q. This breaks the sparseness of
the interactions and hence the computational gain due
to discretization if the current scheme were applied not
only to statics but also to dynamics. Even if an effi-
cient way could be found to incorporate time-memory
functionals into the Green’s function treatment as sug-
gested a long time ago,14,15 the coupling of different q

modes appears to render a dynamic GFMD into an or-
der L2Dint procedure. Potentially another factor of L
enters the computational cost of dynamic GFMD due

to the book keeping of the past history of the modes.
Thus, one may conclude that the computational expense
of static GFMD scales with LDint , while dynamic GFMD
would scale with L2Dint+1, where Dint is the dimension
of the hyper-surface, typically Dint = 2. Even if dynamic
GFMD can be made more efficient than projected here,
it appears to be a challenge to maintain the favorable
LDint scaling inherent to the static GFMD.

Since an MD simulation based on the static Green’s
function finds the proper equilibrium configuration
rather quickly, it may well be that this GFMD may
give satisfactory answers to some dynamical processes
as well. Note that simulations based on coarse-graining
techniques in real space suffer from the inverse problem:
Sound waves reflect to a large extent at the boundaries
between different levels of discreteness unless special pre-
caution is taken.19 This reflection artificially slows down
the flow of energy and momentum.

III. ELASTIC GREEN’S FUNCTION FOR

SELECTED, SEMI-INFINITE SOLIDS

In this section, we will present some results for the
matrix of stiffness coefficients for selected 1+1 and 2+1
dimensional systems. Our study includes an analysis of
finite-size effects and a demonstration that GFMD is in-
deed able to reproduce the correct contact mechanics.

A. Square lattice with next-nearest neighbor

coupling

The first geometry considered is the two-dimensional,
simple square (ss) lattice, in which nearest neighbors are
separated by a distance a = 1 and coupled through a
harmonic potential V of the form

V =
1

2

∑

i,j>i

kij((ui − uj) · nij)
2, (24)

where ui is the displacement of atom i from its equilib-
rium position and nij is the unit vector parallel to the
ideal lattice vector connecting atoms i and j. The stiff-
ness kij for nearest neighbors is chosen to be k1 = 2.
Next-nearest neighbors are coupled in a similar fashion,
however, the stiffness was chosen to be k2 = 1.

The connection to continuum mechanics of our
model16 can be made by introducing the Eulerian strain
tensor uαβ = (∂uα/∂Rβ+∂uβ/∂Rα)/2 and by expressing
the continuum potential energy as

V =

∫

dx

∫

dy

[

k1 + k2

2
(u2

xx + u2
yy)+

k2uxxuyy + 2k2u
2
xy

]

. (25)

Following the argument in Refs. [16,35] this choice of k1

and k2 results in Young modulus and Poisson ratio of
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FIG. 3: Stiffness coefficients of the semi-infinite simple square
lattice as a function of wavenumber q. Straight lines are re-
sults from analytical calculations.16

E = 2.66 and ν = 1/3, respectively. Note that non-
positive values of k2 for simple cubic solids do not lead
to mechanically stable systems. With the current choice
of k2, the same continuum elastic properties are obtained
as for the simple hexagonal lattice with nearest-neighbor
coupling k1 = 4/

√
3, which will be investigated further

below. Moreover, we can compare the matrix coefficients
Φαβ obtained numerically with our procedure to an ana-
lytical solution given in Ref. [16].

As mentioned in the previous section, the Φαβ(q) are
calculated by averaging in reciprocal space the displace-
ment fluctuations of surface atoms. For the simple square
lattice, the (hyper-) surface consists of a linear chain,
whose constituting atoms can oscillate parallel and nor-
mal to the interface, i.e., atoms are allowed to fluctuate in
x and z direction. (To be consistent with the theory sec-
tion, we chose the direction normal to the interface to be
parallel to the z-axis even for two-dimensional lattices.)
The results for the stiffness matrix are shown in Fig. 3 for
different system sizes. They agree with analytically pre-
dicted stiffness coefficients16 within the stochastic error,
except for finite-size effects, which are addressed later on.

Due to the absence of rotational symmetries other than
a rotation by π, we chose to express the dispersion rela-
tion of the stiffness coefficients as

Φ2
αα(q) =

∑

n≥0

(2 − δn0)Φ̃
(2)
αα(n) cos (nqa) , (26)

for the diagonal elements (δn0 is the Kronecker symbol)
and

Φxz(q) =
∑

n≥0

2Φ̃xz(n) sin (nqa) , (27)

for the off-diagonal element Φxz(q) = Φ∗
zx(q). As the

Φxz(q) are purely imaginary, one can conclude that

n Φ̃
(2)
xx Φ̃xz/i Φ̃

(2)
zz

0 +31.2836 ±0.0000 +4.1809

1 -19.7458 +0.1912 -2.0132

2 +4.1279 +0.0287 -0.0908

3 -0.0641 +0.0002 +0.0131

TABLE I: Expansion coefficients for the stiffness matrix of
the simple square lattice. The data is numerically exact.

Φ̃xz(n) = −Φ̃zx(n). The leading-order expansion coef-

ficients Φ̃αβ and Φ̃
(2)
αβ are listed in Table I. It can be

noticed that the expansion coefficients Φ̃(n) quickly de-
cay to zero with increasing n. This behavior is what
makes it possible to determine the expansion coefficients
for relatively small systems and to use them later in the
simulation of large semi-infinite lattices.

B. Finite-size effects

The system size dependence of the force constants is
a crucial aspect that also needs to be addressed. Lower
and upper bounds for the stiffnesses can be obtained by
comparing the force constants calculated via what we
call open and closed-boundary conditions, respectively.
When using open boundary conditions, the top layer in
the solid is allowed to fluctuate freely, which makes the
displacement fluctuations of the atoms in the bottom
layer larger than in the thermodynamic (td) limit. This
makes the system appear softer. Conversely, if the atoms
in the top layer are kept fixed, displacement fluctuations
in the bottom layer are suppressed, which “stiffens” the
manifold. These arguments can be summarized in the
following inequality

Φopen(q) ≤ Φtd−limit(q) ≤ Φclosed(q). (28)

Thus, the difference between Φopen(q) and Φclosed(q) is a
measure of the system size error. Numerical results for
the upper bound in the size error are shown in Fig. 4
for the component Φxx(q = π/2) of the simple square
lattice. Identical random seeds were employed to reduce
the stochastic errors when comparing closed and open-
boundary conditions.

Given a fixed amount of computational resources, the
best procedure is to use relatively small systems and to
asses their force constants with open and closed bound-
aries. The average value gives the best guess. Note that
in the center of the Brillouin zone all Φαβ(q) are identical
to zero.

C. Two-dimensional, hexagonal lattice

A similar calculation of the force constants as for the
simple square lattice in Sect. IIIA was performed for the
hexagonal lattice. In the hexagonal lattice only nearest
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FIG. 4: Difference ∆Φxx(q = π/2) in the stiffness coefficient
between calculation with a flexible top layer (open) and a
rigid top layer (closed), as a function of system size.

n Φ̃
(2)
xx Φ̃xz/i Φ̃

(2)
zz

0 +28.3196 ±0.0000 +3.5623

1 -17.9257 +0.1898 -1.8062

2 +3.7409 +0.0116 +0.0212

3 -0.0335 +0.0012 +0.0074

TABLE II: Expansion coefficients for the stiffness matrix of
the hexagonal lattice. The data has ±0.0002 absolute error.

neighbors are coupled with a force constant k1 = 4/
√

3,
which results in the same long wavelength elastic prop-
erties. The dispersion relations for the Φαβ(q) of simple
hexagonal (hxg) lattices turns out to be similar to that
of simple square lattices, although the expansion coeffi-
cients differ to some degree. They are listed in Table II.

To verify the correctness of the numerical values for the
coefficients, for which no analytical solutions are known
to us, we compared GFMD to all-atom simulations. The
results of these computations, in which an elastic man-
ifold is pressed onto a rough substrate can be found in
Fig. 5. In that figure, the all-atom simulation is that of
a 64× 64 system. It is clearly borne out that the GFMD
reproduces the contact morphology of the all-atom simu-
lation. The accuracy of GFMD did not deteriorate when
the size was increased to 512 × 512.

D. Three-dimensional lattices

The coefficients for different atomic Bravais lattices in
three dimensions can be computed following the same
procedure used for the two-dimensional systems. As be-
fore, the matrix Φαβ is Hermitian with six independent
components as described in Eq. (16). In the following
sections, results for the Fourier expansion coefficients for
(100) simple cubic and (111) face centered cubic (fcc) will
be presented.

0 16 32 48 64

0
4
8

12
16

y

28 32 36 40 44
x

2
3
4
5
6

y

FIG. 5: Comparison of the contact formation of a manifold
with a rough substrate: Small, full circles show atomic posi-
tions of atoms in the full MD, while large, open circles repre-
sent the degrees of freedom used in the GFMD simulations.
The lower graph is a magnification of a part of the upper
graph.

It may be useful to repeat some of the definitions used
in this paper. Whenever spring constants are stated, be it
for nearest (k1) or next-nearest neighbors (k2), the under-
lying potential energy function is given in Eq. (24). The
Fourier expansion coefficients for the three-dimensional
solids are those introduced in Eqs. (15) and (17), which
differ from the sine and cosine coefficients for the two-
dimensional elastic manifolds used in the last section.

1. Simple cubic (100)

While simple cubic solids are not very common in na-
ture, they constitute good test systems, partially because
they are more amenable to analytical calculations. For
instance, Saito17 obtained exact Green’s functions for
simple cubic solids of lattice constant a = 1 with near-
est and next-nearest harmonic interactions, k1 = 1 and
k2 = 1, respectively. This solid has a Young modulus
E = 2.43 and a Poisson ratio ν = 1/3.

Here, we intend to demonstrate that our calculations
reproduce Saito’s exact solutions. Exemplary only the
diagonal coefficients of Φαβ are shown in Fig. 6. To rep-
resent the matrix element Φαα in reciprocal space dif-
ferent paths connecting various symmetry points within
the first Brillouin zone were chosen, i.e., those paths that
are commonly used to plot phonon dispersion relations.
The symmetry points are Γ = (0, 0), M = (0, 1)π/a, and
∆ = (1, 1)π/a. The agreement between our and Saito’s
data is within the numerical error. Similar agreement
between our data and Saito’s results is found for all off-
diagonal elements as well, but not displayed in the graph
for reasons of clear visualization, e.g., the cusp of some
of the Φαβ(q) is not clearly evident from Fig. 1, while it
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FIG. 6: Numerical (symbols) and analytical17 (lines) results
for the diagonal elements of Φαβ(q) in the simple cubic crystal
lattice along lines connecting high symmetry points in the
Brillouin zone.

nx ny Φ̃
(2)
xx Φ̃

(2)
yy Φ̃

(2)
zz

0 0 +26.2801 +26.2801 +6.2489

1 0 -9.8853 +1.9890 -0.9663

1 1 -4.9398 -4.9398 -0.5046

2 0 +1.5446 +0.5077 -0.0786

2 1 +1.0296 +0.0048 -0.0205

2 2 +0.2585 +0.2585 +0.0165

nx ny Φ̃xy = Φ̃yx Φ̃xz = Φ̃∗

zx Φ̃yz = Φ̃∗

zy

0 0 ±0.0000 ±0.0000*i ±0.0000*i

1 0 ±0.0000 +0.0891*i ±0.0000*i

1 1 -0.4552 +0.0475*i +0.0475*i

2 0 ±0.0000 +0.0144*i ±0.0000*i

2 1 +0.0011 +0.0069*i +0.0032*i

2 2 -0.0028 ±0.0000*i ±0.0000*i

TABLE III: Expansion coefficients Φ̃
(2)
αβ(∆R) and Φ̃αβ(∆R)

of the 3D simple cubic lattice with k1 = k2 = 1. ∆R =
(nx, ny) for a system with lattice constant a = 1.

is more clearly borne out for the Φαα in Fig. 6.
Our full results are stated in Table III in terms of

the non-vanishing expansion coefficients Φ̃
(2)
αβ(∆R) and

Φ̃αβ(∆R). For the simple cubic lattice, ∆R is repre-
sented by the integer numbers nx and ny, i.e., if a is
the lattice constant, then ∆R = anx ex + any ey, where
eα are unit vectors. Note that the expansion coefficients
need to be stated up to the fifth neighbor shell because
of the relatively large ratio of k2/k1.

2. Face centered cubic (111)

No analytical solution of the stiffness matrix for the
(111) plane of the fcc lattice is known to us. However,

FIG. 7: Labeling of the sites within the hexagonal lattice
using integer pairs of numbers (nx, ny) according to Ref. [36].

its knowledge may be beneficial, mainly because many
metals have thermodynamically stable surfaces with this
symmetry.

The (111) plane of fcc lattices has hexagonal sym-
metry. In order to evaluate the Green’s functions
〈ũ∗

α(q)ũβ(q)〉/kBT , it is useful to label the atoms in such
a way that use can be made from fast Fourier transforma-
tion techniques in a straightforward fashion. For this pur-
pose, the convention described in Fig. 7 was used.36 Note
that the point symmetry transformation as described in
Eq. (19) have to be performed on the real-space coordi-
nates and not on the indices introduced in Fig. 7. As
an example, the point (nx, ny) = (1, 0) maps onto (0, 1)
under a π/3 rotation.

The results for the stiffness matrix expansion coeffi-
cients are stated in Tab. IV. The knowledge of the coef-
ficients associated with nearest and next nearest neigh-
bors yields numerically accurate results. Contributions
related to more distant neighboring shells appear to van-
ish exponentially fast. Due to the similar local atomic
arrangements of (111) fcc planes and (001) hexagonal
closed packed (hcp) planes, the results stated in Tab. IV
are excellent approximations to the effective force con-
stants of (001) hcp surfaces.

IV. APPLICATION TO CONTACT

MECHANICS

In this section, we will apply our methodology to a
variety of contact mechanical problems. This includes a
validation of our method for Hertzian contacts, the test
of an analytical prediction24 for the complete contact be-
tween an elastic, semi-infinite, flat solid and a self-affine
rigid substrate, as well as the analysis of an experimen-
tal roughness profile. To illustrate the methodology, a
snapshot of a simulation is presented in Fig. 8. Only
the shown layer, reminiscent of a membrane, needs to be
simulated to yield the contact mechanics of a complete,
three-dimensional solid.

An important observable in the contact mechanical cal-
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nx ny Φ̃xx Φ̃yy Φ̃zz

0 0 +3.1079 +3.0001 +1.3971

1 0 -0.9112 -0.1168 -0.1576

1 1 -0.0086 +0.0086 -0.0215

nx ny Φ̃xy = Φ̃yx Φ̃xz = Φ̃∗

zx Φ̃yz = Φ̃∗

zy

0 0 ±0.0000 ±0.0000*i ±0.0000*i

1 0 ±0.0000 +0.0599*i ±0.0000*i

1 1 -0.0271 +0.0046*i +0.0016*i

nx ny Φ̃
(2)
xx Φ̃

(2)
yy Φ̃

(2)
zz

0 0 +14.3031 +14.1713 +2.2294

1 0 -5.4953 +0.0893 -0.3827

1 1 +0.3974 +0.2258 -0.0063

nx ny Φ̃
(2)
xy = Φ̃

(2)
yx Φ̃

(2)
xz = Φ̃

(2)∗
zx Φ̃

(2)
yz = Φ̃

(2)∗
zy

0 0 +0.4917 -0.0102*i -0.0086*i

1 0 -0.2412 +0.0007*i -0.0045*i

1 1 -0.0030 +0.0031*i -0.0001*i

TABLE IV: Expansion coefficients Φ̃αβ(∆R) for the (111)
surface of the fcc lattice. In the full three-dimensional solid,
only nearest neighbors were coupled with springs k1 = 1. The
statistical accuracy of the non-diagonal coefficients is only
±0.005.

FIG. 8: Illustration of a GFMD configuration representing a
three-dimensional, semi-infinite, elastic solid that is pressed
against a rigid, self-affine, fractal substrate. The right half
of the Green’s function layer is represented in a more trans-
parent fashion that the left half. The direction normal to the
interface is enlarged with respect to the in-plane directions.

culations presented below is the normal stress and its
probability distribution at the interface between the sub-
strate and the elastic manifold. In the case of hard-walls,
these quantities can only be obtained indirectly, because
of the discontinuous nature of the hard-wall potential.
Use can be made of the argument that all forces must
balance to zero in mechanical equilibrium. Thus, the
force that the impenetrable, rigid substrate exerts on a
specific surface atom is equal in magnitude and opposite
in direction to the force experienced by the remaining

elastic manifold, which is easy to compute. To calcu-
late the local normal pressure, the ratio of the normal
force and the area associated with a particle was formed,
where a Voronoi construction via Delaunay triangulation
was used to estimate the area per atom.

A. Hertzian contact

The Hertzian contact has become a benchmark for nu-
merical solutions of frictionless contact mechanics, see
for instance Ref. [37]. The reason is that the geome-
try of the Hertzian contact is relatively simple, the pres-
sure distribution is analytically known, and it contains
sharp features, which are challenging to obtain numeri-
cally. Any numerical scheme should have the ability to
reproduce exact solutions within controllable accuracy.
Even if it may not always be necessary to achieve the
highest accuracy, one should yet be in a position to esti-
mate systematic errors due to, say, finite discretization of
the elastic manifold. Under the assumption of no adhe-
sion and no shear stress at the interface, Hertz found that
when squeezing a deformable spherical or parabolic tip
against a flat, rigid surface, a circular contact is formed
and that the pressure profile in the contact area is given
by the expression:28

p(r) = p0

[

1 −
(

r

Rc

)2
]1/2

Θ(Rc − r). (29)

Here, p0 is the maximum pressure measured at the center
of the tip, Rc is the contact radius and r is the lateral
distance of a point in the surface from the tip’s center. As
before, Θ(•) is the Heaviside step function and R without
index is the radius of curvature. In three dimensions the
values of p0 and Rc are: p0 = 3L/(2πR2) and Rc =
{3LR/(4Ec)}1/3, where L is the normal force acting on
the tip and Ec = E/(1 − ν2) is known as the contact
modulus. The same formula, Eq. (29), applies to a two-
dimensional circle pressed onto a rigid one-dimensional
line, in which case the values of p0 and Rc become: p0 =
2L/(πR) and Rc = {4LR/(πEc)}1/2.

In Fig. 9 we compare the pressure profile obtained in
a numerical calculation with the exact solution of the
one-dimensional Hertzian contact, i.e., a circle pressed
against a line. The numerical data matches Hertz’ solu-
tion very closely. However, one can notice that obtaining
good pressure histograms P (p) requires fine numerical
meshes, e.g., if the linear length of the mesh is a = 0.4Rc

the smallest observed pressure is about 0.5 p0 and thus
little information would be obtained for p ≪ p0. It has
been argued that in order to obtain meaningful P (p)’s,
the discretization of the mesh should be less than a tenth,
preferentially a hundredth of the contact’s linear dimen-
sion.38

Generally, pressure histograms in purely repulsive con-
tacts are useful to determine the real contact area, Areal,
in particular in the case of hard wall interactions.38 The
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FIG. 9: Pressure profile of a one-dimensional Hertzian con-
tact, i.e., circle on line, in the hard wall approach for different
degrees of discretization of the elastic manifold. The external
load was chosen such that in the analytical solution p0 and
Rc are both unity.

reason for this statement is that whenever no contact
exists, the normal pressure is equal to zero. Any posi-
tive pressure, however small it may be, indicates contact.
Thus, if P (p) is normalized such that

∫ ∞

0+

dpP (p) = 1 (30)

then Areal can be calculated from

L

Areal
=

∫ ∞

0+

dp pP (p), (31)

where the integration limit 0+ indicates an arbitrarily
small but positive number.

Contacts of macroscopic surfaces can be interpreted
as the superposition of (correlated) individual Hertzian
contacts. Since the pressure profiles p(r) have diverg-
ing slopes at the boundary of each individual micro con-
tact, the probability distribution P (p) must disappear as
p approaches zero. The same argument holds in the case
of multi-asperity contacts. A numerical approach should
thus use a grid that makes it possible to accumulate pres-
sure distribution functions exhibiting this behavior. Oth-
erwise, that is, if the mesh is not sufficiently fine, the real
contact area may be overestimated.38

To judge the performance of different levels of dis-
cretization, we have analyzed P (p) in a one-dimensional
Hertzian contact, see Fig. 10. The exact distribution
function can be derived in an analogous way as the den-
sity of states of phonons, g(E), which is commonly cal-
culated with the equation g(E) dE = g(k) dk and a given
dispersion relation E(k). In our case, the pressure p plays
the role of the phonon energy E and the radius r substi-
tutes the momentum k, thus

P (p) = Dint
rDint−1

RDint
c

·
∣

∣

∣

∣

dp

dr

∣

∣

∣

∣

−1

. (32)
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FIG. 10: Pressure distribution P (p) at the interface of the
one-dimensional Hertzian contact using the hard walls ap-
proach. Different degrees of discretization of the manifold are
shown as well as the analytical solution and its linear approx-
imation. Sometimes, P (p) turned out zero in the numerically
computed histograms, in which case the data was not included
in the graph.

The results of P (p) for one-dimensional and two-
dimensional contacts are

P (p) = Dint
p

p2
0

{

1 − (p/p0)
2
}(Dint−2)/2

(33)

as shown previously for Dint = 139 and Dint = 2,8 re-
spectively. Thus, P (p) is simply a linear function for the
regular Dint = 2, sphere on flat contact. Conversely, for
the circle on a line, the histogram is initially linear in p
and ends in a van-Hove type singularity at the bound-
ary of the contact. This behavior is clearly borne out
in Fig. 10, in particular for a grid whose (linear) mesh
size is less than a tenth of the contact radius. Simi-
lar statements regarding the convergence of the pressure
histogram hold for the two-dimensional Hertzian contact,
which is not included explicitly.

Real interactions between surfaces extend over a non-
zero distance as opposed to the approximation used
within the hard-wall picture, which changes pressure his-
tograms qualitatively. Repulsion between atoms is not
hard-wall like but typically exponential due to the Pauli
exclusion principle. Thus, as argued in Sect. II C, the
exponential repulsion introduced in Eq. (22) is proba-
bly more realistic than hard walls. Replacing hard-wall
potentials with more long-ranged interactions eliminates
the cusp in p(r) at the (former) boundary of the contact.
This can be seen in Fig. 11, where the pressure profiles are
shown for different levels of discretization. This in turn
alters the distribution function P (p) in such a way that
the distribution function P (p) alters its behavior quali-
tatively at small p, i.e., the delta function contribution
stemming from the non-contact areas gets broadened.

We wish to note that other authors in the past have
carefully investigated the deviations of pressure distri-
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FIG. 11: Normalized pressure profile of a one-dimensional
Hertzian contact using the exponential wall interactions with
a screening length of σ = 0.25 · a. Different degrees of dis-
cretization of the elastic manifold were used. The radius of
curvature of the parabolic tip was chosen to be 128 · a, which
corresponds to roughly 40 nm if a is a typical interatomic dis-
tance of 3 Å. The contact radius Rc was varied by applying
different loads.

butions between (discrete) atomic systems and contin-
uum mechanics treatments of single-asperity contacts.8,29

However, the primary interest in Ref. [29] was in identi-
fying effects due to discreteness, commensurability, and
atomic arrangements rather than effects due to the finite
range of repulsion. Conversely, the analysis in Ref. [8] is
much closer in spirit to ours than that in Ref. [29]. A
technical difference between our work and Ref. [8] is that
Yang et al. used Lennard-Jones potentials, while we use
exponentially repulsive potentials. More importantly, we
investigate in more detail how Hertzian contact mechan-
ics becomes increasingly more accurate as the mesh size
of the manifold is decreased. Our data reveals that the
Hertzian contact profile is rather accurate for a surface
curvature typical of atomic force microscope tips, pro-
vided that the tips are very smooth. Lastly, we would
like to emphasize that the relevant dimensionless vari-
able is the ratio of σ and Rc, where σ was introduced
in Eq. (22). For instance, if we chose σ = 2 · (a/4) as
opposed to σ = (a/4) and set a = 0.025Rc instead of
a = 0.05Rc, then the normalized pressure profiles of the
two parameterization schemes superimpose almost per-
fectly.

It is tempting to define contact between two surfaces
whenever the distance between them is below a thresh-
old value. However, as outlined in Ref. [8], this leads to
discrepancies between Hertzian contacts and estimated
contacts whose relative magnitude depends on the local
surface curvature. To nevertheless define contact mean-
ingfully, it was suggested to reduce the amount of, we
paraphrase, artificially counted contact, such as areas as-
sociated with R > Rc in Fig. 11, by comparing numeri-
cal data with solutions of appropriate contact mechanical

models. It may yet be desirable to define the real contact
area merely based on numerically available stress distri-
bution. In some cases, P (p) may go through a minimum
at p = pmin. If this is the case, it is possible to argue
that there is contact for pressures p ≥ pmin, while there
is none for p < pmin.

B. Flat-fractal contact without adhesion

While Hertzian contact mechanics are well established,
there is no generally accepted theory that describes the
contact between two surfaces that have roughness on
many different length scales. However, recent progress
was made towards predicting pressure distributions for
elastic contacts in which the original, undeformed sur-
face corrugation can be described as self-affine and ran-
domly rough.8,24,25,40 Particularly appealing is Persson’s
theory,8,24,25 in which it is argued that the pressure dis-
tribution in a self-affine contact depends on the level of
magnification with which the contact is studied. At small
levels of magnification, the pressure distribution is as-
sessed to be a delta function centered at the nominal
contact pressure p0.

Two cases are generally distinguished, full contact and
partial contact. In the case of full contact, predicting the
pressure distribution is relatively simple, as the displace-
ment field is essentially defined by the boundary condi-
tion. For complete contact and in the absence of adhe-
sion, the pressure histogram must be centered around p0.
While we do not study partial contacts in this section, we
wish to note for the next section that in the case of in-
complete contact, the pressure distribution peak does not
only broaden when the magnification is increased, but the
peak also shifts to pressures larger than p0. Moreover, a
new delta-like peak occurs at zero pressure, due to those
locations where there is no contact.

In the case of complete contact and at full magnifica-
tion, Persson’s theory predicts a Gaussian pressure dis-
tribution,

P (p) =
1

√

2πσ2
p

e−(p − p0)
2/2σ2

p , (34)

where the pressure variance σp is given by

σ2
p =

πE2
c

2

∫ qs

ql

dq q3 〈h̃∗(q)h̃(q)〉. (35)

This prediction is tested and confirmed in Fig. 12. In
these simulations, the equivalent of an elastic block com-
posed of up to 5123 atoms is studied. A nominal con-
tact pressure p0 = 0.3 was applied and Young’s modu-
lus, Poisson ratio, and Hurst exponent were E = 2.4342,
ν = 1/3, and H = 0.5, respectively. The long wave-
length cutoff is ql = 0.04/512, i.e., the 512’th fraction
of the smallest value for qs. The calculated value of the
pressure variance is σp = 0.079.
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FIG. 12: Pressure distribution for different magnifications at
the interface of a rough interface in complete contact with
an elastic solid. The distribution is centered at the nomi-
nal contact pressure. Full and broken lines are based on a
parameter-free theory by Yang et al. [8].

The theoretical treatment extends to descriptions in
which the shortest wavelengths are not fully resolved.
When the discretization of the manifold is increased with
respect to the short wavelength cutoff qs, which was intro-
duced in Eq. (21), the pressure histograms remain Gaus-
sian and as predicted, they become less broad. For a
comparison of theory and simulation in the case of small
magnification, we integrated on the right-hand-side of
Eq. (35) only to an effective upper cutoff of qs, eff = 2π/a,
which replaced qs. This is similar to but not exactly
the same procedure as reducing the magnification as sug-
gested in the theory. In the theory, the small wavelength
components in the substrate are eliminated rather than
those in the slider. Thus, the minor discrepancy between
theory and calculation at large magnification does not
stem from an error in theory. Instead, the dispersion
effects within the Brillouin zones are responsible. They
make the effective spring constants increase less with the
magnitude of the wavelength q than in the continuum
limit, which explains why the Gaussian distribution for,
say qsa = 1.24, is (marginally) broader in the simulations
than in the analytical calculations.

To summarize, the agreement between theory and sim-
ulations anticipates not only the correctness of the theory
of full, non-adhesive contacts but also the feasibility of
the current methodology. The computational time to ac-
cumulate the distributions displayed in Fig. 12 takes a
little less than two hours on an Intel 875P processor.

C. Real contact without adhesion

The topographies of real surfaces do not necessarily
have the properties that theoreticians consider within
their models. In particular, the Fourier transforms of the
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FIG. 13: Height-difference correlation function in a 2D plane
for three different slices of a realistic surface. The values
of the parameters in the corresponding self-affine model are:
H = 0.84, qs = 2π 10−3/a.

height profiles h̃(q) may be correlated in higher order.
Such correlations potentially lead to deviations between
theory on one hand and experiment or numerically exact
solutions on the other hand. In this section, we would
like to demonstrate that our methodology can be used to
not only study artificially constructed but also realistic
roughness profiles. While we do not attempt to elaborate
on the contact mechanics for realistic roughness profiles,
we would like to assess whether the pressure distribution
in realistic contacts corresponds to those predicted the-
oretically for non-adhesive, randomly rough surfaces. A
detailed analysis of the contact mechanics based on real-
istic surface geometries is beyond the scope of the present
paper, partially due to the lack of sufficient experimental
data to make statistically significant assertions.

Height difference correlation functions C2(r) of a ma-
chined and grinded steel surface are shown in Fig. 13.
Each of the three functions shown were averaged over
different scans of length 20µm. The accumulated second-
order correlation functions have the same features as
randomly rough surfaces, however, as alluded to above,
higher-order correlation functions Cn>2(r, r

′, ...) may
have properties that are different than those of randomly
rough surfaces. Our surface of interest can be charac-
terized by a Hurst roughness exponent H = 0.84. The
longest length scale on which roughness is found is ap-
proximately 0.3 µm, and the experimental data is not
resolved below 10 nm.

In order to obtain fully converged and statistically
meaningful pressure profiles, we only simulated the con-
tact of ridges rather than the contact of the complete
interfaces. For this purpose, the elastic manifold is dis-
cretized into 216 units each being associated with a linear
length of a ≈ 3 Å The pressure histogram was averaged
over eight essentially uncorrelated profiles of the experi-
mental data and the result is displayed in Fig. 14. The
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FIG. 14: Pressure distribution on the contact region between
two elastic bodies with realistic interfaces. The linear lines
show the exponential decay (tails) of each distribution.

nominal, normal pressure used in these calculation was
p = 10−3 E, which lead a relative true contact area of
approximately 4%.

Fig. 14 reveals that at very small pressures, P (p) van-
ishes linearly with decreasing p, which demonstrates that
our results are converged.38 At medium and large pres-
sures, P (p) decays exponentially with increasing p in con-
tradiction to what one would expect for randomly rough
surfaces.8 Exponential tails were also identified by Hyun
et al.

4 and Luan et al.
5 for randomly rough surfaces.

However, it is not clear whether they found the expo-
nential tails due to discretization effects as suggested by
Persson38 or due to jamming as claimed by the original
authors. Settling this debate will require further investi-
gation, which is beyond the scope of the present paper.

V. CONCLUSIONS

In this work, we have put into practice a molecular
dynamics methodology, which allows one to replace a
semi-infinite, harmonic solid with a single layer of atoms.
Only periodic structures were considered, which made it
possible to represent the (effective) elastic interactions
between surface atoms in reciprocal space so that dis-
placements associated with different wavevectors do not
couple. The effective spring constants were calculated nu-
merically by averaging the thermal fluctuations of surface
atoms, i.e., their static, elastic Green’s functions. These
simulations were done on moderately-sized crystals with
eight or fewer elementary cells in each spatial dimension.
The results obtained for those reference crystals can be
extrapolated to arbitrarily large systems with the help
of an appropriate representation. The effective elastic
interactions that we obtain with our methodology agree
numerically with all analytically exact solutions known
to us. The advantage of our approach is that - unlike

analytical solutions - computation of the elastic coupling
does not become much more involved for complex inter-
actions.

Once the effective coupling between surface atoms are
determined, their knowledge can be used in Green’s func-
tion molecular dynamics (GFMD) simulations of semi-
infinite, elastic solids. The main advantages of GFMD
appear to be its low computational cost, that is, each
time step is relatively cheap, and its fast rate of con-
vergence, i.e., only few time steps are required to equi-
librate elastic manifold that is pressed against a rough
substrate. Part of the reason for this behavior is that
sound waves do not reflect in the Green’s function layer,
while many coarse-graining techniques suffer from low
transmission of vibrations at the interface between two
levels of discreteness. Moreover, when used as a solver for
elastic continuum mechanical problems, it seems that the
Green’s function layer can be chosen much coarser than
grids of conventional numerical methods such as finite
elements.

The usefulness of GFMD was demonstrated by apply-
ing it to a few selected contact mechanical problems. We
showed that the Hertzian contact and self-affine contacts
can be modeled accurately with relatively small compu-
tational effort. We also investigated the theoretical pre-
diction for the pressure distribution in non-adhesive con-
tacts between an elastic, semi-infinite solid and a rigid,
self-affine fractal substrate and confirmed the presence
of Gaussian distributions that broaden when the level of
discreteness of the description is increased. Most impor-
tantly, however, it turned out that GFMD is able to pro-
duce fully converged pressure distributions P (p) for the
contact between a solid and a rigid ridge, whose rough-
ness profile was taken from experimental data. Here,
fully converged refers to the situation where the pressure
distribution remains (essentially) invariant when the dis-
cretization of the elastic manifold is increased. In these
calculations, we found that P (p) vanishes linearly with p
as p approaches zero, while P (p) decreased exponentially
with increasing p for intermediate and large values of p.

The above-mentioned advantages of GFMD do not
come without cost. Incorporating plastic deformation
is presently not feasible. Even allowing for simple an-
harmonicity in a numerically exact fashion will require
substantial coupling of displacements associated with dif-
ferent wave vectors. This will slow down the simulations
tremendously. Including roughness and chemical hetero-
geneity within GFMD will also be conceptually challeng-
ing. However, as long as roughness and heterogeneity are
not too extreme, it may be possible to represent the ef-
fective elastic interactions in a hybrid fashion in real and
reciprocal space without too much computational over-
head.
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