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Abstract: When an elastomer approaches to or retracts from an adhesive indenter, the elastomer’s1

surface can suddenly become unstable and reshape itself quasi-discontinuously, e.g., when small-scale2

asperities jump into or snap out of contact. Such dynamics induce a displacement hysteresis between3

approach and retraction. In this study, we quantify the ensuing unavoidable energy loss for rigid4

indenters with surface flat and Hertzian surface profiles using analytical and numerical methods.5

The range of adhesion turns out to be central in particular during the rarely modeled approach-to6

and subsequent jump-into contact. Central attention is paid to the design of cohesive-zone models7

allowing dynamical processes in the absence of high symmetries to be efficiently simulated. Our8

study includes a Griffith’s type analysis for the energy lost during fracture and regeneration of a flat9

interface. It reveals that the leading-order corrections of the energy loss being due to finite-range10

adhesion only disappear with the third root of the linear mesh size, while leading-order errors in the11

pull-off force disappear linearly.12

Keywords: adhesion; cohesive zone model; hysteresis13

1. Introduction14

Adhesion between solid bodies plays an important role in nature and technology. Usually, it is15

strongly suppressed due to the presence of roughness, which exists even for highly polished surfaces16

[1]. However, when one of the two solid bodies is very compliant, adhesion can become noticeable at17

relatively large scales and be exploited technologically [2].18

The optimization of adhesive structures can certainly benefit from modeling adhesion, which, however,19

is not always a trivial task. One difficulty is that adhesion tends to be very short ranged, which leads20

to stiff differential equations to be solved when describing a structure at a coarse scale. A popular21

method to avoid singularities and to reduce the stiffness of adhesive contact problem is to use so-called22

cohesive-zone models (CZMs) [3–5]. They describe, usually in analytical form, how the traction23

depends on the local separation between two surfaces. CZMs are commonly stated and used for a24

given pair of surfaces irrespective of the scale to which the surface is discretized.25

Traditionally CZMs [6] are constructed in a top-down fashion, i.e., surface energy γ and Tabor26

parameter µT, a measure for the range of adhesion, are determined at an intermediate length scale, and27

the parameters of a given CZM are adjusted such that these two target numbers are reproduced. It was28

shown for adhesive Hertzian contacts that details of the functional form of CZM’s do not significantly29

affect how contact area and displacement change as a function of normal load as long as γ and µT are30

matched [7].31

So far, there have been only few attempts [8,9] to construct CZMs from the bottom up. However,32

it appears to be generally accepted that they are best given by the interaction energy per surface33

area that two solid bodies with atomically flat surfaces would have as a function of their distance [3].34

Using CZMs that reflect the microscopic short range of adhesion realistically either requires a very35
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fine discretization or induces unrealistic force-displacement dependencies [10]. When the grid is not36

sufficiently fine, jump-in or snap-out dynamics usually suffer from unacceptably large errors, e.g., the37

pull-off force and work of separation can be largely overestimated [11]. A frequent solution to this38

problem is a mesh refinement in the zone of interest, which, however, implies a low computational39

efficiency. Unfortunately, there does not appear to be a generally accepted, or well tested rule for how40

to best select the mesh. When it cannot be made very fine, the most common way to proceed is to41

reduce the surface energy, whereby realistic traction forces [3,12–17] can be obtained. However, it is42

unclear if this is the best course of action, or, if it could sometimes be better to change the range of43

interaction instead.44

In this work, we propose a rule for how to select the mesh size for a given CZM, and more45

importantly, we provide a recipe for how to redesign it such that it provides accurate force-displacement46

dependencies if the mesh size cannot be made arbitrarily small. Towards this end we focus on the case47

of a smooth flat elastomer in contact with a rigid, flat, smooth indenter with adhesive interaction as the48

most basic model and explore the following two questions: At what point is a mesh size inadequate?49

How can a CZM be redefined at a coarse scale such that the work of separation and the energy50

hysteresis that in a closed compression-decompression loop are similar to their results obtained in a51

refined calculation using the “exact” CZM?52

Another issue has been discussed surprisingly little, namely, whether a given CZM reproduces53

a realistic approach curve. One of us found that a Tabor parameter of µT = 4 produces a54

load-displacement curve similar to the well-known limit proposed by Johnson, Kendall, and Robertson55

(JKR) [18], while the approach remained – as almost always – unexplored. The latter, however, is56

decisive for the unavoidable energy loss that ensues as a consequence of the difference between the57

approach and the retraction curve. In fact, a Tabor parameter of µT = 4 leads to a negligible hysteresis58

as is demonstrated in this study. Since it is concerned with hysteresis, we also scrutinize the seemingly59

boring approach curve and discuss why we are critical of common ways to model approach.60

The reminder of this paper is organized as follows: The model and the computational method are61

presented in Sect. 2. Sect. 3 contains analytical and numerical approaches to the contact between two62

adhesive, originally flat adhesive surfaces, including a guideline for the construction of scale-dependent63

CZMs. This guideline is then applied in Sect. 4 to an uneven surface, namely to a smooth Hertzian64

indenter. Conclusions are drawn in the final Sect. 5.65

2. Model and method66

2.1. Model67

We consider an adhesive, flat, linearly elastic, semi-infinite elastomer interacting with a rigid
indenter. The center-of-mass of the elastomer’s bottom surface, u0, is gradually decreased from a large
positive value, clearly exceeding the characteristic length of attraction, to a value, where elastomer
and indenter repel each other and then increased again back to its original value. The internal degrees
of freedom, as denoted by u(r) in real space or by its Fourier transform ũ(q), are allowed to take
arbitrary values except for the center-of-mass mode u0 = ũ(0), see Fig. 1. The elastic energy to deform
the (surface of the) elastomer is given by

Vela = A ∑
q

qE∗

4
|ũ(q)|2, (1)

where E∗ is the elastomer’s contact modulus and q is the magnitude of q = (qx, qy). The square68

domain has an area of A = L2, where L is the system’s linear dimension. The central image is repeated69

periodically in x and y direction,70

The default geometry of the rigid indenter is flat, however, uneven surfaces are considered as well.71

The xy-plane is located such that it cuts through the indenter’s highest point. The contact between72
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Figure 1. Schematic illustration of the computational model. The elastomer is moved relative to a
rigid indenter such that the center-of-mass position of the elastomer’s lower surface is constrained
to a (time-dependent) value. The remaining internal degrees of freedom are allowed to relax to a
configuration minimizing the total (potential) energy.

elastomer and indenter is frictionless. Furthermore, the interfacial energy per simulation cell is defined73

as74

Vint =
∫

A
d2r γ(r) (2)

with the interfacial energy density given by, for example, a relation inspired by the Morse potential75

γM(r) = γ
[
e−2{g(r)−ρ0}/ρ − 2 e−{g(r)−ρ0}/ρ

]
, (3)

where γ is the (maximum) surface energy, ρ the decay length of the adhesion, and ρ0 the equilibrium76

separation between indenter and elastomer. The latter is set to ρ0 = 0, since it constitutes only an77

offset, which can be deemed irrelevant in a continuum treatment. The function g(r) = u(r)− h(r)78

indicates the gap or interfacial separation between elastomer and indenter as a function of the in-plane79

coordinate r = (x, y), where h(r) states the shape of the indenter. For a flat indenter, h(r) ≡ 0.80

The original rationale for the choice of this particular interaction law, which is also known as81

Morse potential, was as follows: An exponential attraction as cohesive zone model was reported82

to yield smooth responses [19,20]. For reasons that should become obvious later in this work, we83

want the interaction to be at least twice differentiable so that a hard-wall repulsion is no option. The84

Morse potential is then beneficial, because the repulsive stress can be computed by squaring the85

exponential function exp{−g(r)/ρ} without having to evaluate another exponential. Moreover, the86

curvature in the energy minimum is relatively modest (which is beneficial for simulations). Finally, it87

is relatively easy to change the interaction range by replacing ρ with a different value, without having88

to reparametrize the prefactor γ.89

Alternatively, it would have been possible to use, for example, a m− n Mie potential,

γMie(g) = γ
m n

m− n

{
1
m

(
g
ρ

)−m
− 1

n

(
g
ρ

)−n
}

with m > n > 0 being real numbers. The Mie potential is sometimes misleadingly said to be a90

generalization of Lennard-Jones, however, Mie [21] introduced his potential more than two decades91

before Lennard-Jones [22]. An effective 8 − 2 Mie potential between surface points ensues from92

Lennard-Jones interactions between two semi-infinite bodies within the Derjaguin approximation [23].93

Since both considered potentials have the property that repulsion decreases more quickly with94

distance than attraction, they should lead to qualitatively similar behavior, just like other potentials95

with that property. However, moderate changes in the adhesion law can still affect some computed96
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properties quite substantially. This is why some thought should be spent on the choice of the potential.97

If the goal is to construct a CZM starting from the atomic scale, a properly constructed Mie potential98

would be a good candidate, in particular if the adhesion arises mainly from dispersive or van-der-Waals99

forces. If, however, the mesh-elements are more than a few microns in size, the CZM should reflect100

the proper contact mechanics of the underlying microscopic (random) roughness and the functional101

form be chosen accordingly. As we find in preliminary simulations of adhesive, randomly rough102

surfaces, these CZMs can be similar to the Morse potential, as they can be well described by a difference103

between two exponentially decaying functions. In fact, a purely repulsive, non-overlap constraint104

between an elastomer and a randomly rough surface effectively leads to an exponential between the105

two surfaces [24,25]. If, however, the goal is to reach the continuum limit as quickly as possible, yet106

different choices are possible, e.g., the one introduced later in Eq. (31).107

For the simulations on ideally flat surfaces in this study, we decided to use the Morse potential.108

In hindsight, we could argue that this was done to represent the formation and the detachment of a109

randomly rough surfaces at a coarse scale. Two properties of the Morse surface-energy density are110

needed in the remainder of this article. First, the maximum tensile traction, i.e., the maximum of111

the first derivative of the r.h.s. of Eq. (3). It is given by σmax = γ/(2ρ) and located at an interfacial112

separation of g = ρ ln 2. Second, the negative minimum curvature, which can be deduced to be113

κmax = γ/(4ρ2). It occurs at an interfacial separation of g = ρ ln 4. Also note that the radius of114

curvature of a flat contact is formally infinite (at least in the limit L → ∞) so that the (usual) Tabor115

parameter can be said to diverge automatically and thus the interaction to be short ranged irrespective116

of the numerical value of ρ.117

2.2. Method118

The system is displacement-driven rather than force-driven, i.e., depending on the mean gap u0

between elastomer and indenter, the total potential energy

Vtot[g0, u(r)] = Vela[u(r)] + Vint[g0, u(r)] (4)

is minimized by a structured or unstructured displacement field u(r). Minimization is done using119

Green’s function molecular dynamics (GFMD) [26], in which the elastomer is discretized into (L/a0)×120

(L/a0) square elements, a0 being the linear discretization so that the number of grid points in x and121

y direction are identical nx = ny = L/a0. The Fourier transforms ũ(q) are used as the dynamical122

degrees of freedom. Here, we employ the so-called mass-weighting GFMD variant as described in123

Ref. [27], because of its high convergence rate. The basic idea of mass-weighting is to assign inertia124

to each ũ(q) mode such that the system’s intrinsic frequencies collapse as well as possible. This can125

be achieved by choosing the inertia roughly inversely proportional to q. The equations of motion126

were augmented with a thermostat as described in Ref. [28] in order to introduce small, symmetry127

breaking perturbations to the displacement field. The thermal noise induces a quicker transition from128

an unstructured displacement field, u(r) ≡ const, to a structured one than round-off errors. The129

thermal energy is chosen very small so that it does not significantly assist the elastomer to overcome130

energy barriers. It is yet large enough to make the elastomer quickly “realize ” when a displacement131

field is no longer stable against a small perturbation.132

The mean gap, or in the case of Hertzian indenter, simply the displacement, is moved133

quasi-continuously using a ramp, which in most cases was realized as follows: For 50 time steps, u0134

is changed over a small quantum ∆u0. The system is then relaxed over typically 150 additional time135

steps. In most cases, this is sufficient to closely approach the next stable or metastable configuration.136

For a 512×512 system, one increment in average displacement then takes a little less than 1.5 seconds137

using our house-written GFMD code on a single core of a 1.6 GHz Intel Core i5 processor. For larger138

systems, the number of necessary time steps to be done per ∆u0 does not increase with system size139

due to the mass-weighting procedure.140
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3. Patterns and instabilities in periodically repeated, flat, adhesive contacts141

Adhesion is known to lead to instabilities when two surfaces approach each other. The arguably142

simplest description of an adhesive instability was proposed by Tomlinson [29], who assumed atoms143

to be bonded to their lattice sites by springs of stiffness k. As a surface atom approaches a counterface,144

the position of the atom becomes unstable when the negative curvature of the atom-surface interaction145

exceeds k, at which case the atom jumps into contact. On retraction, the inverse jump occurs at an146

increased separation between the equilibrium site and the counter surface, so that hysteresis and thus147

energy dissipation results.148

It is now well known that Tomlinson’s model is not sufficiently refined to describe adhesive149

hysteresis. Its simplest valid description was proposed by Johnson, Kendall, and Robertson (JKR) [18].150

In their solution of short-range adhesion in Hertzian contact geometries, jump to contact occurs at151

a zero load but breaking the same contact on retraction requires the tensile load and the work of152

adhesion to be finite.153

Surprisingly little attention has been paid to flat, adhesive interfaces, unless they are nominally154

flat with true contact occurring only in isolated patches [30–33]. For surfaces in which microscopic155

roughness is not significant, previous studies [34,35] reveal that adhesive instabilities are easily156

triggered in the presence of a cohesive traction law, as to be expected from the JKR model in the limit157

of infinite radii of curvature. Yet, little has been reported on the jump into and snap out of contact158

for ideally flat adhesive surfaces, in particular when assuming periodic boundary conditions. In this159

section, we will be concerned with this question, not only for academic reasons (periodic boundary160

conditions do not exist in reality), but because this analysis gives clear cues on how to select mesh161

sizes and how to meaningfully modify CZMs when the mesh size cannot be made arbitrarily small.162

Towards this end, we use typical energy balance arguments, as originally done by Griffith [36] in163

the context of cracks and later by Maugis and Barquins [37] in the context of peeling, to describe the164

force-stress relations in certain asymptotic limits, while simulations are needed to properly describe165

those relations near instability points.166

Fig. 2 shows the stress-displacement relation for a contact described by the two dimensionless167

numbers L/ρ = 256 and γ/(E∗ρ) = 0.15 along with patterns—as defined by the topography of the168

elastomer’s surface—that arise as stable or metastable solutions. At very large separation, ideally169

flat surfaces are stable as shown in the inset (a) of Fig. 2. When approaching the indenter, the flat170

configuration becomes suddenly unstable, and a circular bulge, see inset (b), is formed. Upon further171

reduction of the mean gap, the bulge turns into a line ridge, depicted in inset (c). Next, the ridge172

develops into a dimple, as shown in inset (d). Finally, the elastomer’s surface flattens out again at close173

approach as revealed in inset (e).174

All transitions shown in Fig. 2 are reversible but discontinuous and thus hysteretic: upon retraction175

of the elastomer, the patterns reverse, however, at a larger mean gap than during contact formation.176

The areas between approach and retraction curve in the stress-displacement relation corresponds to177

the dissipated surface energy. In contrast to ordinary visco-elastic losses, the lost energy depends very178

weakly on the velocity u̇0 at small u̇0, see also Refs. [33,38,39] linking adhesive losses to (small-scale)179

instabilities rather than to visco-elastic effects. Since our simulations are thermostatted to a very small180

temperature, a minor logarithmic rate dependence of the lost energy with tiny prefactors is obtained.181

Note that the patterns shown in the insets of Fig. 2 occurred at random locations of the simulation182

cell. However, they were moved to the center of the graphs for aesthetic reasons. Note also that the183

line ridge is formed parallel to x with the same probability as to y, however, it was never observed to184

form along the diagonal. To represent ridges consistently, we represented them parallel to y. Fig. 3185

depicts the approach-retraction curve for a system, in which γ was kept the same as before, but L was186

increased to L = 1024 ρ, i.e., to four times the linear dimension of the system represented in Fig. 2,187

While surface patterns and instabilities show similarities for the two different system sizes, notable188

differences can be observed: in the larger system, the circular bulge has disappeared and instabilities189

span a broader range in the interfacial displacement than before. In addition, the energy hysteresis per190
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Figure 2. Mean stress (normalized to the maximum adhesive strength) as a function of mean
displacement (in units of the interaction range) during approach (blue, upper solid curves) and
retraction (red, lower solid curves). Four gray regions indicate the energy loss. The square insets
show representative local, interfacial gaps on different branches, which increase from red to orange to
yellow to blue to black. Solid and dashed red arrows indicate instabilities on approach and retraction,
respectively. The dashed line indicates the stress-displacement relation for a flat elastomer.

unit area, γhys =
∮

du0σ(u0), has grown by a factor close to 4, which means that the total lost energy191

is still far from a linear scaling with system size for the used appropriate dimensionless numbers192

describing our system.193

In the remaining part of this section, we attempt to rationalize and to quantify the differences for194

the different system sizes. This is done by two means, first by exploring a harmonic approximation195

around the stable or metastable, undeformed elastomer. This analysis provides a first guideline for196

how to set the minimum value for the range of adhesion in a cohesive-zone-model-based (peeling)197

simulation. Second, an energy analysis of the characteristic defect pattern is performed similar to the198

traditional Griffith analysis [18], however, adopted to periodically repeated domains. As a word of199

honesty, we must confess that we cannot fully judge to what extent Griffith theory of brittle fracture is200

simply “reinvented” in some of the following calculations, as we even find text books on that matter201

somewhat difficult to follow. If it is a reinvention, we hope to have provided an alternative derivation,202

which is easier to digest than common treatments of that matter, in particular because our treatment is203

based entirely on the (Fourier) stress-strain relation.204

3.1. Harmonic approximation205

At mean gaps, where an undeformed surface is the only stable solution, any deviation of206

the function u(x, y) from u(x, y) ≡ u0 is counteracted at fixed u0 by a restoring force. For small207

perturbations, γ(r) and therefore also Vint[u(r)] can then be expanded as a second-order Taylor series208

in the displacement so that the total excess energy w.r.t. a flat surface reads209

∆Vtot =
A
2 ∑

q,q 6=0

{
γ′′(u0) +

qE∗

2

}
|ũ(q)|2 +O(δu3). (5)
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Figure 3. Similar to Fig. 2, however, for a linear system size of L = 1024 ρ.

Thus, when γ′′(u0) is negative, the harmonic approximation cannot be maintained if there exists a210

non-zero wave vector whose magnitude is less than the critical wave number211

qc(u0) ≡ −2γ′′(u0)/E∗. (6)

In other words, if the linear dimension of a periodically repeated cell exceeds a critical length

Lc = 2π/qc, (7)

the surface will deform spontaneously in response to a tiny perturbation of appropriate symmetry.212

For fixed system size, two critical separations (may) result. For the used Morse potential, these
can be evaluated to

uc = −ρ ln

1
4
± 1

4

√
1− 4πρ2E∗

γ L

 . (8)

Thus, for linear system sizes less than the critical size Lc = 4πρ2E∗/γ, the undeformed surface213

can remain (meta) stable at any separation and instabilities can be avoided, even if configurations214

with lower potential energy may exist. Fig. 4 confirms that the just-made analytical calculations are215

consistent with the results of GFMD simulations.216

3.1.1. Scale-dependent cohesive zone models217

How do the just-obtained results relate to the construction of cohesive-zone models? Assume
that a system is discretized to an in-plane linear dimension of a0. If ρ were much less than the critical
value below which a periodically repeated cell of length a0 adopts internal defects, then a proper
representation of the defect structure (e.g., a peeling front) cannot be represented. Subsequently, the
energy required for the peeling process would be much too large. If, however, ρ were much in excess
of the critical value, then the adhesion would become long ranged and potentially too long ranged
for a given purpose, e.g., if a system had (microscopic) roughness, or the tape to be peeled were very
thin. In that case, the force required to peel the system might be underestimated. This means that the
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Figure 4. Critical separations at which an undeformed, flat surface becomes unstable. The upper
(black) and the lower (red) branch relate to approach and retraction, respectively. Circles show GFMD
simulation results, while lines reflect Eq. (8).

optimum choice for the mesh size, or, alternatively, the choice of the optimum range of interaction
should satisfy

ρ &

√
γ ∆a

4π E∗
(9)

in the case of the Morse potential.218

For a general CZM, the just-proposed criterion could also be formulated as

min
{

γ′′(u)
}
= −µ2

ρ ·
E∗

∆a
, (10)

where µρ should be a constant of order unity. The precise optimum value for µρ will depend on the
specific functional form of the CZM, however, we do not expect a great sensitivity for reasonable
choices. In the case of the Morse potential, Eq. (10) translates (back) to

ρ =
1

2 µρ

√
γ∆a
E∗

. (11)

3.2. Griffith-based, continuum approach219

In this section, we identify some traction-displacement relations for mechanically stable or
meta-stable, non-constant displacement fields. Thus, we attempt to minimize the total energy

Vtot = Vela + Vint + Vext (12)
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with respect to the displacement field, which contains an “external energy” Vext in addition to the220

elastic and interaction energies, which have already been introduced. Vext is the energy gained in221

response to an external load, including gravitational loads, i.e.,222

Vext = −pext u0 A (13a)

= p u0 A (13b)

where the external pressure pext plays the role of a Lagrange parameter, which is adjusted such that223

the desired mean displacement u0 is an extremum of the total energy. The pressure p exerted from the224

indenter has the opposite sign of pext but is equal in magnitude.225

In order to proceed analytically, adhesion is considered infinitesimally short ranged so that

Vint = −γ Ac, (14)

where Ac is the real contact area.226

In the following treatment, we will minimize the total energy per area. A lower-case letter v (with227

varying indices, i.e., ela, ext, int, and tot) will indicate that the pertinent energy is re-expressed as a228

surface energy density. Moreover, a periodically repeated square domain of length L will be assumed.229

Since elasticity is a scale-free theory, in which energy increases quadratically with the displacement,
and adhesion is considered infinitesimally short ranged, the mean total energy density of a given
defect pattern must be of the form

vtot =
E∗u2

0
L

v̂ela(α) + p u0 − γ â(α), (15)

where αL is the linear dimension of the non-contact with 0 < α ≤ 1 so that α L would be, for example,
the diameter of a dimple, Moreover, v̂ela(α) is a dimensionless function of α, while â(α) denotes the
relative contact area, i.e.,

â(α) =


π (ᾱ/2)2 (bulge)

ᾱ (ridge)

1− π (α/2)2 (dimple)

, (16)

where ᾱ ≡ 1− α is the linear dimension of a contact patch in units of L.230

The non-trivial part of the calculation is the determination of the function v̂ela(α). Asymptotic231

analytical solutions for some defect patterns are derived in the appendix for α→ 0 and α→ 1. They232

can also be determined numerically in adhesion-free simulations as described further below. For the233

moment, we simply assume the function v̂ela(α) to exist and to be differentiable.234

For any stable solution, both u0 and α must minimize the mean energy density, which is why the235

partial derivatives of vtot with respect to these two variables must be equal to zero. Thus,236

v̂′ela(α)

â′(α)
=

γ L
E∗u2

0
(17)

p = − 2 E∗ u0

L
v̂ela(α) (18)

in mechanical equilibrium. A consequence of Eq. (17) is the existence of a maximum (or minimum)237

displacement u0 if the l.h.s. of Eq. (17) has a minimum (or maximum).238

Defining Ξ̂(...) such that α = Ξ̂{v̂′ela(α)/â′(α)} and inserting the resulting value of α into Eq. (18)
yields

p̃ = −2 ũ2
0 v̂ela

{
Ξ̂
(

ũ−2
0

)}
, (19)
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after expanding the fraction with u0/γ. Here, we used239

ũ0 =
u0√

γL/E∗
(20)

p̃ =
p

γ/u0
. (21)

Thus, for any defect pattern, there is a unique shape of the p(u0) dependence in the continuum limit,240

which is obtained by expressing u0 in units of
√

γL/E∗ and p in units of γ/u0.241

The most important missing ingredient to identify the stress-displacement relation summarized242

in Eq. (19) is the determination of the dimensionless function v̂ela(α). For its numerical determination,243

we proceeded as follows: For a given defect pattern and a given fixed value of α, contact points244

were defined and constrained to a zero displacement. The energy is minimized with respect to the245

unconstrained displacement field under a given external pressure pext. In the last step, Vela and u0246

are determined from u(r). This was done for different discretizations, which allowed us to perform a247

Richardson extrapolation of the two observables of interest to the continuum limit for each value of α.248

In the remaining part of this section, we will present our numerical results on v̂ela(α) and compare249

them to asymptotic results wherever appropriate as well as with simulation results that were obtained250

with finite-range adhesion. Since an accurate determination of Ξ(ũ−2
0 ) turned out very labor intensive,251

we decided to abstain from this exercise for now.252

3.2.1. Line ridge253

The line ridge is considered first and with a greater level of detail than the other patterns, since it254

allows peeling to be studied in the most straightforward fashion. Periodic boundary condition make255

the simulation cell have two peeling fronts, which are mirror images of each other.256

Two possible asymptotic limits arise, namely a thick ridge with a localized “line crack” as defect
pattern for α→ 0 and a thin contact ridge for α approaching unity from below as closely as possible.
For each limit, it is possible to identify a closed-form analytical expression for v̂(α):

v̂ela(α) =

 2
π α2 (thick line ridge)

π
−4 ln(πᾱ)+8c (thin line ridge)

(22)

with c = 0.3079(7). These two expressions are derived in appendices A.1 and A.2. Fig. 5 reveals that257

the analytical results for v̂ela(α) are consistent with GFMD data.258

As mentioned before, u0 has extrema (and thus end points) when the l.h.s. of Eq. (17) has an
extremum. Since â′(α) = −1 for a line ridge, an endpoint of u0(α) coincides with an extremum in
v̂′ela(α). Since v̂′ela(α) is monotonic at small α, no unstable point exists in the continuum solution for
thick line ridges. Thus, the instabilities in the GFMD simulations toward the formation of dimples can
only have arisen due to adhesion having been modeled with a finite range. The power-law relation

α =

(
4E∗u2

0
πLγ

)1/3

, (23)

is easily deduced in the α→ 0 thick-ridge limit, which turns out to be quite accurate even up to α . 0.7259

as evidenced in Fig. 6.260

In contrast to the thick-line-ridge limit, the thin-line-ridge asymptote does have a critical value αc,261

at which v̂ela(α) has zero curvature. It is located at αc ≈ 0.92(0). Although the thick-line-ridge limit262

appears to match αc quite well, it fails to produce a truly satisfactory p(u0) dependence, because the263

first and the second derivative are not quite as accurate as v̂ela(α) itself.264

In order to obtain a more precise estimate for the asymptotic thin-ridge behavior before the
instability to flattening, GFMD calculations of the reduced elastic energy were refined in the vicinity
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Figure 5. Dimensionless elastic energy v̂ela(α) for a line ridge as a function of 1− α. Symbols show
GFMD results. The red and blue lines reflect the α → 1 and α → 0 asymptotics respectively. Inset:
v̂′ela(α) in the vicinity of its maximum. The orange line shows a third-order polynomial of α.

of αc. The following results were deduced, which allow that “critical behavior” to be characterized:
αc = 0.90(9), v̂c ≡ v̂ela(αc) = 0.420(4), v̂′c ≡ v̂′ela(αc) = −2.2(6), and v̂′′′c ≡ v̂′′′ela(αc) = −1.4(5) · 102.
Thus, near the flattening transition, Eq. (17) reads

− v̂′c −
v̂′′′c
2

(α− αc)
2 =

1
ũ2

0
, (24)

in leading order, which can be easily solved for α(ũ0). Just before the flattening instability, a critical265

separation of ũc = 1/
√
−v̂′c ≈ 0.665(6) is reached.266

The final analytical step is to insert the two analytical α(u0) dependencies into Eq. (18). In the
thick-line-ridge limit, this yields

p
E∗

= −
(

4γ2

πLE∗2u0

)1/3

, (25)

which reads
p̃ = − 3

√
4/π ũ2/3

0 (26)

in reduced variables. In the thin-line-limit, we obtain in leading order

p̃ = p̃c + p̃(1/2)
c
√

ũc − ũ0 (27)

with p̃c ≈ −0.393(7) and p̃(1/2)
c = −2/ũ

′′
c ( p̃c) ≈ −0.360(0).267

Fig. 7 reveals the correctness of our analysis. The larger system with fixed finite-range adhesion268

reproduces the continuum solution more closely than the smaller system. This includes a closer269

approximation of the end-points.270

The continuum solution shown in Fig. 7 is an overlapping superposition (conglomerate) of three271

different approaches: On 0 ≤ α ≤ 0.1 and on 0.6345 ≤ α ≤ αc the thick-line-ridge asymptotic solution272

and the expansion about the flattening point are depicted, respectively. In addition, the GFMD data273

presented in Fig. 5 was processed numerically to yield results on 0.05 < α < 0.663. It agrees with the274

two shown approximations within line widths in the shown overlapping domains.275
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Figure 6. Comparison of the α(ũ0) dependence obtained with GFMD to the asymptotic thick-ridge
(blue line) and critical point (orange line) solutions.
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Figure 7. Reduced pressure p̃ ≡ p/(γ/u0) as a function of reduced displacement ũ0 ≡ u0/
√

γ L/E∗

for different values of ρ̃ ≡ ρ/
√

γ L/E∗, i.e., for ρ̃ = 0.1614 (green, small circles) and ρ̃ = 0.0807 (red,
large squares). For these calculations, dimples were suppressed by making the cell in the y direction
infinitesimally thin. The full blue and the full orange line represent the thick-line and critical-point
asymptotics, respectively, while the dashed black line shows a direct numerical analysis of the GFMD
data from Fig. 5.
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We now turn our attention back to a computational question central to this study. How can we276

design a CZM such that it reproduces the p̃(ũ0) relation for zero-range adhesion as accurately as277

possible for a given, fixed number of grid points. In Sect. 3.1.1, a scaling relation was proposed towards278

this end, which is tested next. Fig. 8 reveals that using µρ & 0.5 induces instabilities and thus hysteresis279

on the p(u0) curve, which do not exist in the continuum solution and which would disappear if ρ was280

kept constant but the mesh was refined. For µρ . 0.5, instabilities disappear but only a relatively small281

part of the line-ridge solution is stable for the given discretization of nx = 16.
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Figure 8. Reduced pressure p̃ as a function of reduced displacement ũ0 for a fixed mesh of nx = 16
grid points in x-direction. For these calculations, dimples were suppressed by making the cell in the
y direction infinitesimally thin. Different scaling parameters µρ determining the range of interaction
were used.

282

Despite visible discrepancies, the agreement between the exact solution and the one obtained for283

µρ = 0.5 can be called surprisingly good, because the discretization of the simulation cell into nx = 16284

elements disposes only of eight independent, i.e., symmetry-unrelated points to describe contact285

plus non-contact. They both have fields (stress and derivative of displacement) that cannot be Taylor286

expanded upon. This makes a total of four fields, which are numerically difficult to integrate, because287

the simulation cell contains two peeling processes, plus the zones in between the diverging fields. Their288

combined effect is reflected by merely 16 grid points. Anyone having applied numerical integration289

schemes to such “poorly behaved” functions will thus certainly appreciate the “performance” of the290

nx = 16, µρ = 0.5 simulation. Specifically, for µρ = 0.5, the line ridge becomes unstable to flattening at291

ũ0 ≈ 0.15 for a thick ridge (dimples were suppressed by using ny = 1 for the analysis of ridges) and at292

ũ0 ≈ 0.6 for a thin ridge. From Fig. 6, it becomes obvious that non-contact is only about 30% of the293

simulation cell in the first case and contact is only 20% of the simulation cell in the second. At that294

point, a simulation effectively evaluates an integral over displacement (first case) or stress (second295

case) field using only two to three integration points. Yet relative errors are relatively small. They296

decrease quite substantially for all three studied choices for µρ when the linear mesh size is reduced to297

half its value. Evidence for this claim is not shown explicitly, because the main problem is the approach298

to contact rather than a proper description of p(u0) in contact, as will be discussed further below.299
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3.2.2. Circular defect patterns300

Since our main interest is the line ridge, we only sketch results for the two remaining defect
patterns. The dimensionless elastic energy for the two circular patterns satisfies

v̂ela(α) =

 8√
3π α3 dimple, α→ 0
√

2(1− α)3/2 bulge, α→ 1.
(28)

Fig. 9 shows the numerical results for v̂ela(α) of the two circular defects including their asymptotic301

behavior.302
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Figure 9. Dimensionless elastic energy v̂ela(α) as a function of the relative, linear contact dimension ᾱ

for the dimple (red squares) and the bulge (blue diamonds).

Proceeding as above, the p̃(ũ0) is obtained as

p̃ = − (4ũ0/3)4/5 (29)

for the dimple. Fig. 10 reveals that this asymptotic solution is approached as the (dimensionless) range303

of adhesion is reduced.304

No stable solution exists for the bulge in the continuum limit, because an extremum in vtot(α) is305

a maximum in α. Thus, the bulge in Fig. 2 can only have arisen as a consequence of the finite-range306

of the adhesion. This argument is supported by the bulge’s disappearance in Fig. 3, in which the307

(dimensionless) range of adhesion was reduced compared to that used in Fig. 2. It is also consistent308

with the observation that the detachment process of a nominally flat surfaces (which can be roughly309

mimicked with—or “coarse-grained” to—Morse-like potentials) frequently has one last contact patch310

in place before the contact breaks.311

3.3. Dissipated energy312

When two or more stable microstates coexist for a given collective degree of freedom,313

quasi-discontinuous transitions between them occur when the collective degree is driven externally.314

This is the mechanism by which multistability leads to instability and ultimately to energy loss, which,315

as stated in Coulomb’s law of friction, predominantly depends on the moved distances and much less316

on rates or velocities [29,40]. For Coulomb’s friction law and related laws to be applicable, the motion317
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Figure 10. Reduced pressure p̃ as a function of reduced displacement ũ0 for different values of ρ̃. i.e.,
for ρ̃ = 0.1614 (small, green circles) and ρ̃ = 0.0807 (large, red squares). The full blue and the full
orange line represent the point-dimple and critical point asymptotics, respectively, while dashed black
line shows a direct numerical analysis of the GFMD dimple data from Fig. 9.

has to be slow enough to prevent “basin hopping” between the two stable “macro” states when they318

are similar in energy but not so fast that significant heating occurs. In this section, we calculate the319

energy hysteresis arising from the multistability of non-contact and a line ridge.320

In a first approximation, the stress can be approximated with zero as long as the elastomer is321

flat. The approximation is exact for potentials with a true cut-off, as for example, in the potential322

introduced later in Eq. (31). When the range of adhesion is very small, the elastomer turns directly323

to a thick line ridge upon approach, which happens at the distance uc, nc, where the flat, non-contact324

solution becomes unstable. It is the larger of the two solutions in Eq. (8), that is, the one in which the325

minus sign is selected in the parenthesis on the r.h.s. of that equation. Upon retraction the elastomers326

flattens out again at the critical distance, uc,lr, where the line-ridge solution becomes unstable. Thus,327

for short-range adhesion328 ∮
du0 σ(u0) ≈

∫ uc,lr

uc,nc
du0 σlr(u0) (30a)

≈ 3
2

(
4γ2E∗

π L

)1/3

u2/3
0

∣∣∣∣∣
uc,r

u0=uc,nc

(30b)

≈ 3
2

αc γ− 3
2

(
4γ2E∗

π L

)1/3

u2/3
c,nc (30c)

(for Morse) ≈ 3 γ

2

{
αc −

(
2 ρ̃√

π
ln

2
πρ̃2

)2/3
}

. (30d)

is obtained in a cycle going from non-contact to line ridge and back to non-contact.329

In a more refined calculation, the “integration constant” 3 αc/2 can be replaced with a more330

precise value for the lost energy in the continuum limit. The latter is best obtained by integrating331

(numerically) the p(u0) curve that is reconstructed from the reference line shown in Fig. 7. Moreover,332

a correction of vint(uc,nc)− vint(uc,lr) due to the gained energy while approaching the counterface in333

non-contact must be subtracted from the dissipated energy to yield accurate estimates.334
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The second term on the r.h.s. of Eq. (30c) is the main correction to the dissipated energy that arises335

by replacing a zero-range with a finite-range adhesion. Unfortunately, convergence of the computed336

dissipated energy is rather slow. For CZMs with a true cutoff gc linear in ρ, the error disappears337

with ρ2/3 and thus with ∆a1/3. For the Morse potential, this scaling is further impeded by corrections338

logarithmic in ρ. GFMD data confirm these conclusions in Fig. 11.339
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Figure 11. Normalized dissipated energy γh/γ as a function of the dimensionless range of interaction
ρ/ρ0 with ρ0 =

√
γL/(4πE∗). The red and black dashed lines show the theoretical line derived from

Eq. (30c) — plus the contribution γ(uc,nc)− γ(uc,r) for the Morse potential. Circles and squares indicate
GFMD results for Morse potential and cosine potential, respectively. The blue line gives the asymptotic
value derived from the analysis of the dashed line in Fig. 8.

Since optimizing prefactors is particularly important when convergence is slow, it may be desirable
to use other CZMs than the one based on the Morse potential. For a CZM used to study not only
(quasi-) statics, as in this work, but true dynamics, an additional requirement would be that the stress
is a continuous function of the interfacial separation. This is because (strongly) discontinuous forces or
stresses, as they occur in many CZMs at small gc [3,4,10,11,14], violate energy conservation even for
symplectic integration scheme [41]. This in turn is likely to lead to undesirable dynamical artifacts,
e.g., when modeling reciprocating motion. A simple CZM avoiding discontinuous forces is:

γcos(g) = −γ×


0 for gc < g
1
2 {1 + cos (πg/gc)} for 0 < g < gc{

1− (πg/gc)
2 /2

}
for g < 0.

(31)

Fig. 11 reveals that the alternative CZM converges to its asymptotic value more quickly than the Morse340

potential. Even more importantly, extrapolation to short-range adhesion can be achieved already at341

relatively large interaction ranges. This is mainly because the alternative CZM lacks the corrections in342

the second term on the r.h.s. of Eq. (30d) that are logarithmic in ρ̃.343

4. Application to Hertzian contacts344

In this section, we explore to what extent the insights gained for adhesive hysteresis and the345

modeling of adhesive hysteresis in ideally flat contacts extend to uneven surfaces. To this end, we346

simulate adhesive contacts with Hertzian indenters. While our initial motivation for these simulations347
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Figure 12. Typical traction-separation curves for adhesive Hertzian indenters with different
discretization nx and different scaling factors µρ determining the range of interaction through Eq. (11).
(a) µρ = 0.5, (b) µρ = 1, (c) µρ = 1.5, and (d) µρ = 2. The used cell dimension L was identical to the
radius curvature Rc.

was to explore how the continuum limit can be approached in the most effective way, it is also348

possible to look at these calculations as if the used CZMs had arisen from integrating out the effect349

of small-wave-length surface undulations, i.e., from wave lengths much less than either the contact350

radius in a Hertzian contact geometry or less than the short wave length cutoff in the simulation on351

nominally flat surfaces.352

We consider a Hertzian contact with radius of curvature Rc and contact modulus E∗, which define
the units for length and pressure, respectively. The interfacial energy density, as defined in Eq. (3), is
assigned the value of γ = 0.59 · 10−3 E∗ Rc. This choice makes the critical contact radius at the pull-off
instability be roughly 10% of the radius of curvature, which was also used as the linear size of the
periodically repeated simulation cell. This way, the contact radius is small compared to half a cell
dimension so that the periodic boundary conditions have a marginal effect on the contact, while, at the
same time, a Fourier-based code remains efficient. Using the definition of the Tabor parameter µT as in
Eq. (8) of Ref. [42], the relation between µT and µρ is

µT = 2 µρ

(
γ

RcE∗

)1/6√
nx, (32)

which turns out to be µT ≈ 0.579 · µρ
√

nx for the used parameters. This relation is useful to know for353

our later analysis. Moreover, we define the displacement such that a flat elastomer, which touches the354

indenter in its most extreme point is assigned a (mean) displacement of u0 = 0.355

Fig. 12 compares the displacement-driven force-distance dependence in approach and retraction356

for different choices of µρ and varying mesh sizes ∆a = L/nx. Qualitatively different types of behaviors357
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are produced by using different numerical values for µρ in Eq. (11): (a) If µρ is small, i.e., less than358

0.5, the only observed instabilities are collective jump-into and jump-out-of contact. In this case,359

the hysteresis compared to the exact solution is strongly underestimated at a coarse discretization,360

however, the true hysteresis is approached when increasing nx. (b) As µρ increases to values361

around unity, small-scale instabilities occur, which are related to individual rings of (coarse-grained)362

atoms. The correct hysteresis is still approached, because instabilities on the compressive branch363

become smaller with increasing nx. (c) As µρ increases to 1.5, the computed dissipated energy in364

a compression/decompression cycle starts to depend quite sensitively on how far the system is365

compressed, e.g., if it is compressed to a zero displacement or to a zero load. For µρ = 1.5, it is not clear366

if convergence to the continuum limit can be reached. (d) For even larger µρ, small-scale instabilities367

dominate and both pull-off force as well as dissipated energy no longer converge to the correct values368

as the mesh size is decreased.369

The results presented in Fig. 12 ressemble to a significant degree simulations of contacts involving370

a curved ridge to which a single-sinusoidal undulation is added, see Figs. 5–7 in Ref. [38]. In those371

figures, the force-displacement relation also transits from subtle perturbations of a smooth JKR372

dependence to violent zig-zag motion. Differences are that our undulations arise from discreteness373

effects while those in Ref. [38] are due to continuous undulations. Moreover, spacings between374

discontinuities are irregular in our case but regular in Ref. [38], as our system is two-dimensional, in375

which case rings of discretization points have irregular spacings, which, moreover, become smaller376

and smaller the greater the distance from the symmetry axis.377

An interesting feature revealed in Fig. 12 is that the JKR separation curve can be approximated378

quite well with Tabor parameters as small as µT ≈ 1.6, as evidenced by the nx = 32 curve in Fig. 12(a).379

In fact, for µT = 4, both the dependence of contact area and of displacement on load are almost380

indistinguishable from the exact JKR solution [7] when using large nx but fixed µT. However, the381

approach curve is still relatively crude even when the Tabor parameter is as large as µT ≈ 10, i.e., for382

the (nx = 256, µρ = 1) data set shown in Fig. 12(b).383

To further discuss the ramifications of Fig. 12, it is useful to know that the critical contact radius384

in a load-driven separation is ac ≈ 0.1278 Rc for the parameters used, which reduces to roughly half385

that value of ac ≈ 0.06315 Rc in a displacement-driven separation. Thus, to obtain estimates within386

approximately 20% accuracy for pull-off stress and dissipated energy density, the length into which387

the elastomer is discretized should not exceed ac/10 for the given value of γ/E∗Rc = 0.5859 · 10−3.388

This is a finer discretization than for non-adhesive contacts, where we observe an error of order 10% in389

the normal displacement for a linear mesh size of ∆a = ac/5.390

We next quantify the effect of mesh size on the pull-off force Fpull and on the energy, Vhys =391 ∮
du0F(u0), dissipated in a single c/d cycle. Due to the presence of micro-scale instabilities during392

contact, Vhys does not have a unique value but depends on the maximum displacement during the393

compression cycle. We chose it to be the displacement at which the normal load, needed to keep the394

elastomer at a fixed center-mass, disappeared. In other words, Vhys corresponds to be the gray-shaded395

areas in Fig. 12 below the x-axis times the maximum JKR tensile force to which Fpull was normalized.396

Results for Fpull and Vhys are shown in Fig. 13.397

The adhesive Hertzian indenter shows similar behavior as the flat-on-flat geometry in the398

following ways: the dissipated energy converges noticeably slower to its asymptotic value than399

the pull-off force. The scaling factor µρ has to be sufficiently small in order for convergence to the400

correct values to be reached. For large µρ, results are quite insensitive to the mesh size ∆a. For Hertzian401

contact geometries, we did not repeat the simulation by replacing the default Morse expression for402

the surface energy, γ(g), with γcos(g). However, we are certain that convergence to the continuum403

limit can been reached more quickly with this alternative form. Preliminary analysis on hysteresis in404

nominally flat contacts also indicates the scaling identified for the flat-on-flat geometry.405

We note that it can be difficult to judge if the use of a given µρ > 0.5 is not too “aggressive”.406

The data for µρ = 1.5 shows the correct trends in the sense that the Fpull decreases and Vhys increases407
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Figure 13. Maximum tensile force Fpull and dissipated energy Vhys as a function f the mesh size ∆a.
Fpull and Vhys are normalized to the values deduced from the JKR solution, while ∆a is normalized to
the critical JKR contact radius in a displacement driven separation.

with decreasing mesh size ∆a. However, neither asymptotic quantity converges to its exact value,408

which can be deduced from the JKR solution, even if errors are not large. Thus, to be sure about the409

asymptotic values, either µρ has to be chosen sufficiently small from the beginning, or it has to be set410

to two different numbers, which then yield identical asymptotics.411

5. Conclusions and Outlook412

The three main aims of this paper were (i) to provide a comprehensible theoretical framework413

describing the formation and failure (brittle fracture) of an adhesive, periodically repeated interface414

under constant normal stress and the subsequent energy hysteresis, (ii) to deduce generally applicable415

rules for the construction of cohesive-zone models from the theoretical framework, and (iii) to apply416

the schemes obtained for the contact between two ideally flat surfaces to uneven surfaces.417

A particular focus of our work was the much overlooked approach to contact and the question at
what separation an initially flat elastomer approaching a substrate with short but finite-range adhesion
becomes unstable to the formation of surface ondulations. This happens when the negative curvature
of a cohesive-zone model (CZM) exceeds qE∗/2, where q is the wavenumber associated with a surface
undulation. The ramification for the numerical modeling is that a mesh size should not exceed the
scale within which an elastomer would want to ripple during the approach to contact, which leads to
the condition

max
{
−γ′′(g)

}
.

E∗

∆a
, (33)

∆a being the mesh size of an element into which the surface is discretized. This inequality can be418

used to either define the mesh size or to (re)define the CZM. In this work, we used it to set the419

range of interaction ρ in a CZM whose functional form was that of the Morse potential, which yields420

the proportionality ρ ∝
√

γ∆a/E∗. Using a proportionality factor of µρ = 0.5, see also Eq. (11), no421

undesired instabilities show on the approach curve, while they do occur for µρ = 1.422

The usual procedure when modeling adhesive contacts is to ask the question at what tensile423

stress a mesh element is going to detach [4,10,43]. The common argument is that it does so when424

the energy released during the detachment process exceeds the work of adhesion, which in turn425

leads to the condition σmax
tens ≈

√
2E∗γ/∆a, which—when applied to a continuous, twice differentiable426

CZM—can be readily translated to Eq. (33). Table 1 gives a summary of choices made by different427

authors, however, translated to the proportionality factor µρ used for the Morse potential.428

A compromise needs to be made when choosing the prefactor µρ. For the approach curve, the429

proportionality factor is chosen at best as small as possible. However, when it is made too small,430
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Table 1. Values for µρ implicitly used in different cohesive zone models.

model year µρ

Dugdale [3] (1960) 0.798
Hillerborg [12] (1976) 0.5
Irwin [13] (1997) 0.886
Falk et al. [14] (2001) 0.532
Hui et al. [15] (2003) 1.09
Popov et al.[16,17] (2015) 0.729

artificial instabilities and thus energy hysteresis ensue that are not present on the continuum solution.431

Unfortunately, if the proportionality factor is above a critical value, the continuum solution cannot432

be reached even for ∆a → 0. Thus, a relatively safe choice should be to set the prefactor such that a433

flat-on-flat geometry reveals no undesired instabilities. It appears as if excellent choices have been434

made in the literature so that the range of interaction is made small enough to lead to the (almost) best435

possible convergence while being large enough to converge to the correct value.436

The trouble of Eq. (33), as it comes to modeling adhesion in the zero-range or continuum limit,437

is that the range of adhesion can only be chosen as ρ ∝
√

∆a. This poor scaling is particularly438

problematic for the determination of adhesive hysteresis, because the lost energy density γhys scales439

only with ρ2/3 so that γhys has corrections that cannot disappear more quickly than with O( 3
√

∆a),440

which for a two-dimensional surface implies an O( 6
√

N) converge with the number of grid points441

N = (L/∆a)2. We believe that it is this poor scaling why even a world-leading adhesion simulator like442

Pastewka [33] abstained from making a direct comparison of approach and retraction of an elastomer443

from a randomly rough tip and instead has resorted to Persson’s contact-mechanics theory [30] to444

rationalize the observed compression/decompression hysteresis.445

A common solution to reducing the continuum-corrections during the approach is to simulate446

adhesion directly only during retraction, which, however, requires a contact shape optimization to447

be done, in particular, during the formation of the contact. Such an approach is relatively “cheap”448

for bodies of high symmetry, such as bodies of revolution. However, it would be prohibitively449

expensive when applied to irregular surface structures. Moreover, modeling adhesive interfaces with450

discontinuous stress-displacement relations could scarcely be applied to time-dependent problems,451

such as bulk visco-elastic hysteresis, which can add to adhesive losses.452

The findings for flat-on-flat geometries also apply to uneven surfaces, where the adhesive energy453

hysteresis γhys scales similarly unfavorably with mesh size for Hertzian and randomly rough contacts454

as for flat-on-flat geometries. In particular, we found that quite large Tabor parameters of µT distinctly455

exceeding ten, are needed to model the approach curve for an adhesive Hertzian indenter, while the456

retraction curve can be modeled quite accurately with a Tabor parameter as small as µT = 2.457

In our simulations, the elastomer’s surface facing the indenter was displacement controlled,458

which is difficult to achieve experimentally due to bulk elasticity. However, this mode of operation459

should be seen as a bonus allowing additional insight into the dynamics of adhesion to be gained.460

For example, a critical (tensile) stress σc can be determined at which the elastomer’s surface flattens461

out upon retraction in addition to the maximum tensile stress, or, pull-off stress, which is measured462

when the retraction is load driven. Moreover, it may be useful to know the tensile stresses in the463

simulation of adhesive process during detachment processes, since any local grid point in an adhesive464

simulation is always in between being displacement and load-driven so that knowledge of the tension465

as a function of separation is often needed even at those separations that would be macroscopically466

unstable in a load-driven operation.467

To prevent this study from acquiring an even more unbearable length than the one it already468

has, we did not include our (preliminary) results on the adhesion between randomly rough surfaces.469

However, it may be in place to justify a posteriori the use of exponential functions to describe repulsion470

and attraction by presenting—also as a teaser for future work— a “measured” cohesive-zone law,471
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which was obtained by simulating a randomly rough surface in contact with an elastomer. The472

“microscopic” range of interaction used was ρ = 0.23 hstd, where hstd is the standard deviation of the473

height. For this relatively long-range interaction, only a small hysteresis was observed. Roughness did474

not only decrease the adhesion from its “microscopic” but also the range of repulsion were increased475

by 60% compared to its microscopic value and the range of adhesion by a factor close to 4.476
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Figure 14. Measured cohesive zone-law resulting from a simulation between, for approach (red
circles) and retraction (blue crosses). The full line is a fit to the mean value of the compression and
decompression curve, which assumes two exponential functions. Compressive stress is expressed
in units of the (fitted) maximum tensile stress, and the mean gap ug is stated in units of the height
standard deviation.

This outlook on pull-off forces between randomly rough surfaces suggests that integrating out477

roughness effects at the small scales reduces not only the adhesion to be used in a cohesive-zone model478

but also increases the rate of interaction. Both effects combined substantially reduce the stiffness of479

the contact problem. A true challenge, however, will be to coarse grain the cohesive-zone models so480

that adhesive hysteresis, including preload effects on the pull-off force, as observed, for example in481

structured micro pillars [39], can be modeled.482
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Appendix A488

The analytical treatments of the defect patterns presented in this section are not fully from489

first principles, i.e., from using solely the stress-displacement relation introduced later in Eq. (A5).490

The spatial stress and displacement profiles observed in the simulations for thin and thick ridges,491

respectively, enter the calculations. Both profiles turn out proportional to
√

1− (x/ac)2. Meaningful492

approximations to this proportionality yield similar results, i.e., functions that are zero for |x| > ac)493

while symmetric, positive, and continuous otherwise. Numerical constants in the final results change494

only slightly.495
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Appendix A.1 Thin-ridge limit496

In this section, we derive an expression for the aymptotic v̂(α→ 1) dependence for thin ridges497

starting from the (known or rather observed) stress profile σ(x) in a thin ridge. Towards this end, we498

calculate the mean gap u0 from σ(x) and then equate u0σ0/2 with the work done by the indenter to499

deform the elastic body.500

The stress in the thin ridge satisfies

σ(x) =
4σ0

π

√
1− (x/ac)2 Θ(ac − x). (A1)

For the following calculations, we chose the domain such that 0 < 2x ≤ L and placed the ridge501

symmetrically around x = 0 so that only the cosine Fourier transform of stress σ̃c(q) and displacement502

fields ũc(q) are needed. Here ac = ᾱL/2 is the half length dimension of thin ridge. The following503

convention for the Fourier transform is used504

σ(x) = ∑
n=0,1,...

σ̃c cos(qn x) (A2)

σ̃(qn) =
2− δn,0

L

∫ L/2

−L/2
dx σ(x) cos(q x) (A3)

with qn = n/(2πL). Thus,

σ̃c(qn) = 2 (2− δn,0) σ0
J1(qnac)

qnac
. (A4)

Using the general relation for the Fourier transforms of stress and displacement,

σ̃(qn) =
qn E∗

2
ũ(qn), (A5)

which is valid for (frictionless) semi-infinite solids, the mean separation between the two surfaces is505

obtained as506

u0 =
1
L

∫ L/2

−L/2
dx {u(0)− u(x)} (A6a)

= ∑
n 6=0

ũc(qn) (A6b)

=
8 ac σ0

E∗ ∑
n 6=0

J1(qnac)

(qnac)2 (A6c)

≈ 4σ0L
πE∗

∫ ∞

πᾱ
dq′

J1(q′)
q′2

(A6d)

≈ 4σ0L
πE∗

{
− ln(πᾱ)

2
+ c
}

for πᾱ� 1, (A6e)

where the constant c was deduced numerically to be c ≈ 0.30797. In Eq. (A6), J1(x) denotes a Bessel507

function of the first kind, for which J1(x) ≈ x/2 when x � 1. This approximation proves useful to508

determine the prefactor of the ln(πᾱ) term. Moreover, the ∑n f (qn) was approximated with an integral509

L
2π

∫ ∞
0 dq f (q).510

Eq. (A6e) can be solved for σ0 so that using vela = u0 σ0/2

vela =
π

−4 ln(πᾱ) + 8c
E∗u2

0
L

(A7)

is obtained.511
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Appendix A.2 Thick-ridge limit512

For the thick-ridge limit, we proceed similarly as for the thin-ridge limit. However, we now
chose the center-of-mass of the non-contact pattern to coincide with x = 0 and define āc as half of the
non-contact width. Moreover, we now observe the displacement to satisfy

u(x) =
4u0

π

√
1− (x/āc)2 Θ(āc − x). (A8)

Using the cosine Fourier transform, the results for the stress obtained in Sect. A.1 can be used again so
that

ũc(qn) = 2 (2− δn,0) u0
J1(qnac)

qnac
. (A9)

Thus, the elastic energy stored in the defect pattern is513

vela =
E∗

4 ∑
n=1,2,...

qn ũ2
c(qn) (A10a)

= 4E∗u2
0 ∑

n=1,2,...

J2
1 (qnac)

qna2
c

(A10b)

≈
2 E∗u2

0 L
π a2

c

∫
dq′

J2
1 (q
′)

q′
(A10c)

=
E∗u2

0 L
2 π a2

c
(A10d)

Since ac = (1− α) L/2, it follows that

v̂ela =
2

π(1− α)2 . (A11)

514
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