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The mean bond length d between a central atom and its nearest neighbors can be estimated from
the position of the first peak in the radial distribution function g(r). However, as we demonstrate
here, this estimate does not allow one to deduce temperature-induced changes in d. Instead, skewness
has to be included into the analysis, which can be achieved, for example, via the skew normal
distribution (SND). Fits to the first peak using the SND give bond length in good agreement with
direct measurements of nearest-neighbor distribution functions in crystals as well as with a Voronoi-
tessellation based detection of nearest-neighbors in liquids. While the location of the first peak
in g(r) may shift to smaller values with increasing temperature for three studied liquids — argon,
copper, and the bulk-metallic-glass (BMG) forming alloy Zr60Cu30Al10 — we find our improved
estimates of d to systematically increase with temperature in all cases. Recent conclusions on
temperature-induced bond contractions in simple metallic or BMG-forming liquids may therefore
have arisen from the neglect of skewness effects.
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I. INTRODUCTION

Radial distribution functions (RDFs or g(r)) are rou-
tinely acquired in simulations and can also be deduced
indirectly from X-ray spectra. An RDF states the prob-
ability density, divided by the mean number density, to
find an atom at a randomly chosen point at distance r
from a central atom. It provides incomplete, yet, useful
information about the local order in liquids and solids
alike. One piece of information sometimes obtained from
the RDF is the mean distance or bond length d between
two adjacent atoms.
In a recent paper [1], Lou et. al. found temperature-

induced bond contractions in metallic melts, which they
deduced from the observation that the maxima of par-
tial RDFs moved to smaller radii upon heating. The
authors correlated their observation with a reduction of
the coordination number Z with increasing temperature
T , which might indeed be meaningful: bonds generally
shorten (roughly logarithmically) with increase of bond
order [2], which is inversely proportional to Z in (simple)
metals. Thus, if structural motifs with low coordination
but large entropy become increasingly likely at high T ,
individual bonds between atoms could shorten on aver-
age. Similar observations were made for simple metallic
liquids and various BMG forming melts [3, 4] as well as
for ionic condensed-matter systems, such as UO2 [5].

Previous studies of temperature-dependent bond
lengths in small molecules revealed that the locations of
the maxima in RDFs can indicate a thermal bond con-
traction while taking averages over the full probability
distributions reveal bond stretching [6, 7]. In a similar
spirit, Ding et al. [8] proposed that the perceived bond
contraction in BMG-forming melts is due to the increase
of peak asymmetry with temperature.
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Two main difficulties arise with the interpretation of
nearest-neighbor peaks in g(r) of condensed-matter sys-
tems, except for crystals at low temperature: contribu-
tions from nearest neighbors and more distant neighbors
to g(r) overlap and individual peaks tend to deviate in a
non-substantial way from Gaussians at elevated temper-
atures. An additional complication for fluids is that an
unambiguous definition of a coordination number is not
possible. It can yet be useful to rationalize the behavior
of fluids in terms of local coordination. For example, the
increasing viscosity of silica melts upon cooling can be
linked to a decreasing number of coordination defects of
silicon atoms [9].

This paper is concerned with the questions of how ac-
curate conventional estimates of the average bond length
are and how they can be improved. Towards this end we
investigate various fits to g(r) as well as to functions that
can be deduced from g(r) such as the function Pr(r) stat-
ing the probability density of finding another atom at any
point with distance r from a central atom. Most impor-
tantly, we study how including skewness into the fitting
of Pr(r) can benefit a meaningful determination of mean
bond lengths and coordination numbers. For crystals, we
can then compare directly the results of our fits to a re-
duced distribution function that only takes into account
the distance between a central atom and its (topological)
neighbors, which one can identify unambiguously as long
as the window of observation is short compared to the
time for two atoms to swap their lattice sites. For liq-
uids, we use Voronoi tessellations in order to discriminate
between nearest and next-nearest neighbors.

The remainder of this work is organized as follows: in
section II we present background on various correlation
functions and the skewed normal distribution function as
well as details on our analysis and simulation methods.
Section III contains results on three investigated model
systems. Conclusions are drawn in the final section IV.
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II. METHODS

A. Radial probability density

In this paper, we do not only consider the usual radial
distribution function g(r) but also the radial probability
density (RPD) Pr(r) introduced above. The mathemati-
cal definition of the RPD for a mono-atomic system can
be written as the following (thermal) expectation value

Pr(r) ≡
〈

∑

n6=m

δ (r − rmn) ,

〉

(1)

where rmn is the instantaneous distance between atoms
m and n. In a three-dimensional system, Pr(r) fluctu-
ates around but on average approaches 4πr2ρ0 at large
r, where ρ0 denotes the mean number density. The usual
RDF, or, g(r), relates to Pr(r) via

g(r) =
Pr(r)

4πr2ρ0
. (2)

The reason why we focus on Pr(r) rather than on g(r)
is that it is the true probability density from which var-
ious quantities of interest can be directly deduced. For
example, the integral over Pr(r),

Z(R) =

∫ R

0

drPr(r), (3)

states the (average) number of atoms lying within a
sphere of radius R having a given atom in its center.
Z(R) can be loosely interpreted as a distance-dependent
coordination number. Likewise, if one restricts the sum
over n on the r.h.s. of equation (1) to (topological) near-
est neighbors, the mean bond length can be directly de-
duced from the first moment of the resulting Prnn(r) via

d =
1

Z

∫ ∞

0

dr rPrnn(r). (4)

Thus, when fitting to the RPD rather than to g(r), an-
alytical results on the first or higher moments of the as-
sumed distribution function can be evaluated analytically
without further numerical integration.

B. Properties of the skew normal distribution and

fitting of individual peaks

Individual peaks of radial distribution functions are
sometimes fitted to Gaussians. The deduced informa-
tion can be quite inaccurate, whenever peaks reveal a
non-negligible skewness, in particular when considering
actual probability densities Pr(r) rather than g(r). The
skew normal distribution (SND) [10, 11] is arguably the
simplest distribution for which the first three moments of
a distribution can be fit simultaneously, while reproduc-

ing the Gaussian distribution in the limit of zero skew-
ness. The SND is defined as

f
(µ,σ,ξ)
SND (x) =

e−(x−µ)2/2σ2

√
2πσ2

[

1 + erf

(

ξ
x− µ

σ

)]

, (5)

where µ, σ, and ξ are the three coefficients determining
the first two moments of the random variable x, that
is, x̄ and 〈(x − x̄)2〉, as well as the skewness γ of its
distribution. Specifically

x̄ = µ+

√

2

π
σξ̃ (6)

〈

(x− x̄)2
〉

= σ2

(

1− 2

π
ξ̃2
)

(7)

γ =
4− π

2

ξ̃3
(

π/2− ξ̃2
)3/2

(8)

with ξ̃ = ξ/
√

1 + ξ2.
In (defect-free) crystals, atoms fluctuate around well-

defined positions so that each neighbor shell contributes
one SND. The total probability density then becomes

Pr(r) ≈
∑

s=1

Zsf
(µs,σsξs)
SND (r), (9)

where Zs is the number of atoms in shell s, starting the
enumeration of s at s = 1 for the nearest-neighbor shell.
Each shell can then be assigned its individual set of pa-
rameters µs, σs, and ξs.

C. Voronoi tessellation analysis

Voronoi tessellations [12] are frequently used to char-
acterize local order in disordered condensed matter such
as liquids and glasses [13]. They allow one to classify the
surrounding of atoms to resemble that of a face-centered-
cubic (fcc) crystal if the Voronoi polyhedra with these
atoms in their centers correspond to rhombic dodecahe-
drons. Similarly, if the local order is comparable to that
of a body-centered-cubic (bcc) crystal, one would expect
polyhedra resembling truncated octahedra.
The rhombic dodecahedrons of ideal fcc lattice sites

have twelve faces perpendicular to the nearest-neighbor

bonds of area 2−7/6 × ρ
−2/3
0 . Voronoi polyhedra of an

ideal fcc lattice is not topologically stable with respect
to infinitesimal perturbations of the lattice points posi-
tions: when thermal fluctuations perturb the ideal fcc
structure, the polyhedra deforms and may have up to six
more faces related to the next-nearest neighbors, and also
twelve polyhedra faces fluctuate in size. For large fluc-
tuations, it may well happen that a face associated with
a next-nearest neighbor is larger than that of a nearest
neighbor. This, however, we find to happen much less
frequently than next-nearest-neighbor bonds to become
shorter than those associated with (topological) nearest
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neighbors. One may therefore conclude that a Voronoi-
based identification of nearest neighbors can be made
more reliable than those based on distances.
The two elemental liquids of interest studied in this

work, namely argon and copper, both have fcc crystalline
reference phases. We want our tessellation scheme to
produce accurate estimation for the correct coordination
number when applying it to an fcc crystal close to melt-
ing. As long as fluctuations in this crystal are small, this
can be achieved by excluding all atoms from the nearest-
neighbor list whose associated face areas are less than an
appropriate fraction f of the mean — or an approxima-
tion of the mean — of the Z = 12 face areas ā belonging
to nearest neighbors.
To fully define how nearest neighbors shall be identi-

fied, we need to come up with a recipe for how to con-
struct ā and we also need to state a meaningful value of f .
There is much ambiguity and perhaps no ideal solution.
The reason is that the situation is even not simple for
crystals: close to melting, fluctuations of the face areas
might be so large that the face of a next-nearest neighbor
is larger than that of a nearest neighbor. In that case,
no criterion solely based on the (instantaneous) Voronoi-
face area will be in a position to categorize the neighbors
correctly. We choose ā as the average value of the 6’th
and 7’th largest face, and pick f to be the ratio of the
areas associated with a small and a large face in bcc
(f = 2/

√
27).

We note that results actually do not depend very sen-
sitively on the details of how ā and f are acquired as long
as they are “reasonable” for the given system. For the
analysis of amorphous carbon with typical coordination
numbers of three or four, our choices would certainly not
work. Yet, we observed that designing a recipe leading to
relatively small values of fā lead to larger estimated co-
ordination numbers and also larger bond lengths than for
larger values of fā, which is easily explained: reduction
of fā leads to the inclusion of more distant atoms, which
extends the long distance tail of the distribution and thus
increases its skewness. However, the way in which Z and
d changed with temperature turns out to be very similar
for all tested scenarios – mainly argon and copper.

D. Investigated systems and potentials

We investigate two simple fluids and one three-
component melt, each of which with an appropriate po-
tential. The first model is a pair potential, namely, a
simple 12-6 Lennard-Jones (LJ) potential representative
of argon. Second, we employ a bond-order potential orig-
inally proposed by Gupta [14], which can be seen as a
generic many-body potential for simple metals. It pro-
duces the (dimensionless) properties — such as the ratio
of shear and bulk modulus or the ratio of vacancy and
cohesive energy — of quite a few metals [15]. It is ar-
guably the simplest potential with which one can model
the logarithmic increase of bond length with coordina-

tion number; this is in contrast to most simple pair po-
tentials like LJ, which tend to decrease d with Z due to
next-nearest neighbor interactions. Lastly, we study the
BMG-forming alloy Zr0.6Cu0.3Al0.1 with an embedded-
atom potential that was specifically designed for Zr-Cu-
Al alloys [16].
All simulations are run in the NpT ensemble, the two

mono-component systems with a house-written code and
the Zr-Cu-Al using LAMMPS [17]. We study the crys-
talline and fluid phases of argon and copper in tem-
perature regimes, in which the respective phase can be
kept (meta-) stable for a few nanoseconds. Since peri-
odic boundary conditions impede nucleation of bubbles,
or crystallization from the surfaces, liquids can be in-
vestigated much beyond their thermodynamic stability,
i.e., fluids can be strongly overheated or undercooled.
Likewise, solid phases can be overheated quite substan-
tially, amongst other reasons, because vacancies cannot
be generated without interstitials, thereby suppressing
the generation of defects necessary for melting. Crystals
are only simulated with ideal particle numbers, e.g., by
setting up 6 × 6 × 6 elementary cells each containing 4
atoms. As a consequence, no (stoichiometric) vacancies
or interstitial defects exist in our simulations cells. For
the BMG-forming ternaries, we consider predominantly
equilibrium melts.

III. RESULTS

A. Solid argon

We first demonstrate in figure 1 that the RPD of
a defect-free solid can be very well represented by a
sum over skewed-normal distributions according to equa-
tion (9), even at very high temperatures. In fact, the
shown data relates to an argon crystal, which is super-
heated roughly 2 K above the solid-liquid transition of
83 K. We note that the skewness effects quickly become
less relevant as the (crystallographic) distance between
the central atom and a neighbor increases. However,
there is also a directional dependence. Specifically, the
skewness parameter for the explicitly shown shells are
ξ1 = 3.44, ξ2 = 0.029, ξ3 = 1.42, and ξ4 = 0.01.
We next address the question of how well different

strategies to deduce bond lengths relate to an “exact
measurement”. The latter is conducted in the crystalline
phase by taking histograms only over those pairs of atoms
that are topological neighbors. This is done as follows:
when atoms are placed onto their crystallographic posi-
tions in the beginning of the simulation, each atom mem-
orizes its neighbors. Averages and histograms are then
acquired over a time that is sufficiently long to produce
very smooth curves but shorter than diffusive time scales
allowing two atoms to swap their place. Although this
analysis cannot be applied to fluids, it reveals unavoid-
able errors in the proposed skewness fits, e.g., those that
occur when only fitting to a part of the nearest-neighbor



4

3 4 5 6 7 8
r (Å)

0

5

10

15

20

25
P

r(
r)

  (
1/

Å
)

argon 85K  (MD)
single-shell Pr(r)
combined    Pr(r)

FIG. 1. Decomposition of the radial probability density Pr(R)
of superheated crystalline argon at 85 K into contributions be-
longing to different neighbor shells according to equation (9).

peak.

The following procedures are conducted to deduce a
mean bond length d: It is associated with or obtained
from (i) the location at which g(r) is maximum, (ii)
the most likely bond length, i.e., the position where
Pr(r) is maximum, (iii) the fit of a Gaussian to Pr(r),
(iv) a Voronoi-tessellation based analysis, (v) the dis-
tance between two adjacent crystallographic positions,
i.e., d ≈ (4〈ρ−1

0 〉)1/3/
√
2 for fcc, (vi) the fit of Pr(r) to

a skew normal distribution, and (vii) the direct averag-
ing as described in the precedent paragraph. Results are
presented in figure 2.
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FIG. 2. Bond length estimates for crystalline argon at various
temperatures based on direct averaging (black circles), SND
fit to the Pr(r) (blue crosses), distance between two crystal-
lographic positions (red pluses), Voronoi-tessellation analysis
(orange squares), fit of a Gaussian to Pr(r) (green triangles
up), position of the first maximumin Pr(r) (purple diamonds)
and position of the first maximum position in g(r) (maroon
triangles down). Dashed lines are drawn to guide the eye.

Figure 2 shows that the SND-based fit to the nearest-
neighbor distribution function reproduces very accu-
rately the direct bond-length measurement. The next
two best approximations are obtained from the crystal-
lographic positions and Voronoi tessellations followed by
a Gaussian fit to the full nearest-neighbor Pr(r). Ther-
mal expansion of the mean bond length is reproduced
semi-quantitatively by either of the two methods. How-
ever, deducing thermal expansion from maxima of Pr(r),
or even worse, from g(r), produces errors close to - and
sometimes exceeding - 100%.

In general, one might not be in a position to generate
histograms resolving what part of g(r) comes from atoms
in which shell. One might not even know the exact oc-
cupation number of the nearest or next-nearest neighbor
shell. In this situation, the coordination number of a shell
becomes an adjustable parameters in addition to the pa-
rameters µs, σs, and ξs. To test how well-informed initial
guesses for the first shell produces reasonable numbers
on local bonding, we pursue a strategy that is similar to
the one that we later take for disordered systems. The
main idea is to first obtain a rough guess for the nearest-
neighbor peak and then to model the “medium-range”
range density oscillation, which finally allows for a reop-
timization of the first peak. Towards this end, we focus
on T = 80 K, which is just a little below the experimental
melting temperature of 83.8 K.
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FIG. 3. Comparison of fits (blue, solid lines) and directly
measured Pr(r) (small, black circles) for argon crystal at T =
80 K. The fits only consider data for r ≤ 5.5 Å. Partials are
also shown, first and second SND-peaks (red, broken line) and
first-neighbor peak (small, green diamonds). The partials are
shifted below to improve the clarity of the figure.

In the case of crystalline argon, with fcc as reference
phase, we proceed as follows: We first restrict the fit-
ting range to r < 4.2 Å and pretend to not know the
precise coordination number. The first iteration leads
to estimates of Z1 = 12.42 and a mean bond length of
d = 3.7396 Å. We next increase the domain of integra-
tion to the second maximum of g(r), i.e., to r ≤ 5.5 Å,
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and adjust Z2, µ2, σ2, and ξ2. Although, we start with
a well-informed guesses, (Z2 = 6, µ2 =

√
2µ1, σ2 = σ1,

and ξ2 = ξ1/2) a very broad, rather skewed distribution
is obtained. The resulting distribution is presented in
figure. 3. We finally readjust the parameters character-
izing both shells and now find Z1 = 12.15, d = 3.9637 Å,
which compares well to the exact results of Z1 = 12,
d = 3.9651 Å. In fact, although we did not include any
information on what part of Pr(r) came from which shell,
the contribution of the nearest-neighbor shell to the total
Pr(r) is reproduced almost exactly. By including infor-
mation on the fluctuations of Pr(r) beyond those parts
that can be clearly identified to belong to the first peak,
initial errors on predicted coordination numbers (3.5%)
and bond lengths (5.7%) could thus be reduced to 1.2%
and 0.03%, respectively.
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FIG. 4. Distribution of nearest-neighbor peak of solid ar-
gon at 75 K as deduced exactly from molecular dynamics
(black lines) as well as from a screw-normal distribution fit
to the first peak (SND) and from a Voronoi analysis (orange
squares).

We applied the same procedure to the crystalline ar-
gon at T = 75 K. The resulting first peak of the Pr(r) for
was then compared to the exact distribution obtained
from molecular dynamics as well as with the Voronoi-
tessellations analysis. From figure. 4 one can conclude
that the three methods agree well. The skewness fit
slightly overestimates the likelihood of small inter-atomic
distances while the Voronoi tessellation underestimates
the true Pr(r) at large distances.

B. Liquid Argon

We repeat our analysis of the RPD of crystalline ar-
gon for the liquid phase. This time, however, one cannot
identify topological nearest neighbors so that the assess-
ment of bond length is not uniquely defined. One may
nevertheless appreciate in figure 5 that an SND fit to the
first peak and the Voronoi-tessellation based analysis give

rather similar estimates for what part of Pr(r) should be
related to nearest neighbors.
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FIG. 5. Full distribution function Pr(r) of liquid argon at
T = 85 K as measured from MD simulations (black line) and
partial distribution functions as deduced from a SND fit to
the nearest-neighbor peak (blue crosses) and from a Voronoi
tessellation (orange squares).

Analysis, such as those presented in figure 5 were re-
peated in a broad temperature regime. The respective
SND-based fits to the first peak in Pr(r) are shown in
figure 6 from a strongly undercooled liquid at T = 55 K
to an overheated liquid at T = 110 K. In this range, the
SND gives a rather accurate representation of the RPD.
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FIG. 6. SND fits (circles) to the first peak of Pr(r) in liquid
(supercooled, stable, and superheated) argon from T = 55 K
to T = 110 K – in steps of 5 K. The SND was adjusted to
the MD data (full lines) in the range r < 4.2 Å. The fits also
target data to smaller radii than those shown.

Different estimates for the bond length in liquid argon
are presented in figure 7. As is the case for solid argon,
the location of the first maximum of g(r) gives reasonable
zero-order guesses for the bond length, but it does not
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reflect the thermal expansion correctly. The maximum-
g(r) analysis gives relatively temperature-independent
values of d slightly exceeding 3.7 Å. Conversely, both
Voronoi-tessellations and the SND-based analysis of the
first RPD peak suggest the expected thermal bond ex-
pansion. Each time, the data is similar to that obtained
for the crystalline reference system.
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FIG. 7. Estimates for the bond length d in liquid (super-
cooled, stable, and superheated) argon using a Voronoi tes-
sellation analysis (red squares), SND fit to the first peak in
Pr(r) (blue crosses), and the location of the maximum in the
radial distribution function g(r) (green triangles).
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FIG. 8. Probability density distribution function Pr(r) of
crystalline (black line) and liquid (blue line) argon. Verti-
cal lines correspond to the position of the first minimum in
the radial distribution function g(r).

Tröger et. al. [18] introduced a method for estimat-
ing the average bond length from RDFs, which we have
not yet discussed. d is set equal to the first moment of
the probability density distribution function Pr(r) on the
interval from zero to the first minimum of the radial dis-
tribution function g(r). An example of the procedure is

illustrated in figure 8. Positions of the first minimum of
g(r) are marked by vertical lines. One can clearly see
that this moment-based method can give quite reason-
able numbers for crystals, since the overlap of the first
and the second peak is relatively small. However, the
position of the first minimum of g(r) in the liquid phase
is located almost (as it is also the case for copper and
probably any other element condensing in fcc) at a posi-
tion that is close to the crystalline second-neighbor peak.
This leads to a significant overestimation of the average
bond length in the liquid. To illustrate this point better,
we provide quantitative results: the current method pre-
dicts an increase of d by 0.25 Åfrom the crystalline stable
phase to the liquid metastable phase at 75 K. Such a large
elongation of the bond length in argon is not physical and
in fact exceeds the bond length increase from an SND fit
or the Voronoi analysis by a factor of six. Moreover, in
some cases this method will give the wrong sign for the
skewness of the distribution. We therefore do not see
the moment-based approach as useful for the analysis of
liquids.

C. Solid and liquid copper

Results on the bond lengths for solid copper reveal
much similarity with those obtained for argon, at least
when using an appropriate reduced unit system. This
could certainly be expected since both elements condense
in the fcc structure. Quantitative differences occur nev-
ertheless. They are surprisingly minor given that the LJ
potential for argon is a two-body potential while that
used for copper is a many-body potential. We abstain
from repeating the detailed analysis of the last two sec-
tions and instead focus on selected results as well as their
analysis.
Figure 9 shows that copper bond lengths appear to

contract thermally when they are evaluated by locating
the maximum of g(r). The effect is particularly strong
for the liquid. However, the more refined estimates based
on Voronoi tessellations or an SND analysis of the RPD
show qualitatively the same behavior as that found in
solids, for which bond lengths can be computed without
ambiguity. In fact, we expect that any elemental metal
or even semi-metal would behave qualitatively similar to
copper in that regard.
We next analyze to what extent the overall thermal

expansion correlates with the bond length increase. To-
wards this end, we show a reduced density ρr(T ) ≡
ρ(T )d3(T )/

√
2 in Figure 10 as a function of temperature.

It is designed such that ρr(T ) would be constant if the
sole effect of temperature would be to increase the bond
lengths without changing any (distribution of) bond an-
gles, vacancy occupancies, local structural motifs, etc.
ρr is normalized such that it is equal to one for an ideal
fcc lattice, i.e., when the bond length estimate d(T ) is
deduced from the crystallographic positions ρr ≡ 1.

When using the mean instantaneous bond length of the
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FIG. 9. Estimates for the bond length d in copper using SND
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0 500 1000 1500 2000
T  (K)

0.7

0.8

0.9

1.0

ρ(
T

) 
d3 (T

) 
/√

  2

crystal exact
liquid SND
liquid Voronoi
liquid max. g(r)
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√
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strictly one – as indicated by the grey, dashed line. Other
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tal (black circles), SND fits to the first peak in Pr(r) (blue
crosses), Voronoi tessellation analysis (red squares), and the
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crystal or the SND-based estimate for d in the liquid, ρr
does not show much of a temperature dependence and
turns out close to the value of one, which one would ex-
pect if local packing were similar to that in fcc. However,
when using the maximum of g(r) to estimate d, ρr falls
much below unity at elevated temperature. When pos-
tulating an fcc-type local order in the liquid, one would
have to conclude that liquid expansion is driven primarily
by the formation of “voids”, as proposed by Bar’yakhtar

et. al. [19]. However, this conclusion is not supported
when estimating d in a more sophisticated fashion such
as through an SND or Voronoi analysis.
The reduced density ρr shows a slight decrease in the

SND and Voronoi analysis with increasing temperature,
indicative of a less tight packing at high T than at low
T . Though the deduced trend is much smaller than when
using the maximum of g(r) for this analysis. In fact, co-
ordination numbers deduced from either SND or Voronoi
in the liquid phase do show a slight decrease with T –
to values of roughly 11 near the melting temperature –
while the maximum g(r) analysis might have tempted
one to believe coordination numbers would be smaller by
as much as 30%. Values of the reduced packing density
greater than one might be seen to contradict the fact
that packings (of hard spheres) cannot be denser than
that of fcc. However, the SND-based predictions of a
reduced packing density exceeding one are allowed since
our atoms are not hard spheres and vibrate thermally.
See also figure 2, where the crystallographic bond lengths
are less than the mean instantaneous bond lengths.

D. BMG-forming Zr-Cu-Al melt

So far, we have only investigated elemental systems.
Compounds, such as BMG forming alloys, might be more
complex and reveal thermally induced bond contraction,
as proposed recently [1]. To investigate this issue, we
consider an equilibrium melt of the generic BMG former
Zr0.6Cu0.3Al0.1.
One difficulty when studying alloys is that the exper-

imentally deduced radial distribution function can be
(roughly) seen as a weighted superposition of individ-
ual partial distribution functions. Only scientists who
run simulations (and experimentalists who can afford to
repeat neutron scattering experiments with different iso-
topes) are in a position to measure each partial distri-
bution function individually. In order to ascertain what
“effective” bond length one might perceive based on the
superposition of individual g(r)’s, we define and study a
distribution function, for which Zr is the central atom,
but all neighbors are assigned the same weight, irrespec-
tive of its chemical nature. Fits to such compound Pr(r)
with skewed Gaussians may not always be justified for
alloys (e.g., there is the possibility for the splitting of
the first peak into a double or triple peak), but for our
system, it was sufficiently good – and yielded similar re-
sults as for the analysis of distribution functions that
were chemically fully resolved into, e.g, Zr-Zr or Zr-Cu
contributions.
As was the case in the elemental systems, we find that

sophisticated methods to estimate bond length suggest
that d(T ) is a strictly increasing function with T , while
analysis of the maximum of g(r) would have again indi-
cated a thermally induced bond contraction, see in fig-
ure 11.
Note that we slightly modified the Voronoi nearest-
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FIG. 11. Estimates for the bond length in BMG-forming melt
between Zr atom and its neighbors using SND fit to the first
peak in Pr(r) (blue crosses), a Voronoi tessellation analysis
(red squares), and the location of the maximum in the radial
distribution function g(r).

neighbor determination for Zr atoms in the alloy, be-
cause the average Zr-Zr, Zr-Cu, and Zr-Al distances are
all different, which leads to a strong deformation of the
constructed nearest-neighbor polyhedra. We therefore
reduced the value of f to f = 0.2 by almost a factor of
two. Individual snapshots gave a more meaningful classi-
fication into nearest and next-nearest neighbors, and, at
the same time, the deduced nearest-neighbor distribution
function resembled somewhat better that deduced of the
SND fits, as shown in figure 12.
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FIG. 12. Distribution function Pr(r) of BMG-forming melt
with Zr atoms being treated as central at T = 950 K as mea-
sures from MD simulations (black line) and partial distribu-
tion functions as deduced from the SND fit to the nearest-
neighbor peak (blue crosses) and from a Voronoi tessellation
(orange squares).

In the case of a three-component system, the Voronoi
construction is certainly more meaningful than the SND

fit (which really should be a superposition of three skewed
Gaussians). The SND nearest-neighbor partial never-
theless reflects the Voronoi partial relatively closely and
might be the sole option of analysis when the only avail-
able information is the static structure factor from which
some estimate for g(r) or Pr(r) needs to be deduced.

IV. CONCLUSIONS

In this article, we critically investigated the validity of
recent speculations that bonds in metallic melts [1, 20]
and BMG-forming melt [3, 4, 21] contract upon a tem-
perature increase. The conclusions had been drawn on
the analysis of how the first maximum position of g(r)
shifts under a temperature change. While our simula-
tions reproduced the apparent bond contraction, i.e., a
shift of the location of the first peak in g(r) to smaller r at
higher temperature, more refined analysis revealed that
“true” bond lengths increased with temperature in all in-
vestigated systems. These results are in agreement with
conclusions drawn by Ding et al. [8], who convincingly
demonstrated that skewness, or, more generally, asym-
metry can lead to a larger first shell than estimates based
on the first maximum of g(r) would convey, see their fig-
ure 5.
To conduct our analysis, we proposed – and tested –

that mean bond lengths can be deduced by fitting in-
dividual peaks of the radial probability function Pr(r)
with the skewed normal distribution, which contains the
Gaussian distribution as a limiting case. Results based on
such fits revealed much similarity with direct bond mea-
surements in crystals but also with bond-length measure-
ments that were deduced from Voronoi tessellations. Us-
ing the SND or Voronoi-tessellations based analysis, we
found that bond lengths in all studied systems, namely
argon, copper, and the BMG-forming Zr0.6Cu0.3Al0.1 al-
loy always expand – in liquid and solid phases alike –
when raising the temperature. While we could describe
the first peak in Pr(r) in liquid argon and liquid copper
relatively close to their boiling point at ambient pres-
sures, we would be reluctant to apply our SND analysis
to systems of even lower density, e.g., those in the vicinity
of a critical point. The reason is that a meaningful vali-
dation against Voronoi tessellations is no longer possible
when a system becomes so rare that internal gas bubbles
occur with a non-negligble probability.
A quantitative difference between argon and the metal-

lic systems is that the skewness effects are somewhat
smaller in argon than in the metals. Specifically, they are
not large enough to fully induce an apparent bond con-
traction in liquid argon but only a (strong) reduction of
the perceived bond expansion. We rationalize this as fol-
lows: The interaction between two argon atoms – when
modeled with LJ potentials – does not depend on the
location of other atoms. This is different for metallic in-
teractions: the bond between two metal atoms becomes
weaker (stronger) when other metal atoms approach (be-
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come more distant) from that original pair. As such the
three or four closest atoms become tightly bonded to a
central atom when other neighbors distance themselves
very far through a large fluctuation. This can lead to a
relatively pronounced peak at a short bonding distance
and large skewness effects in the nearest-neighbor dis-
tribution function. The argument is not specific to the
investigated elements but supposedly applies in similar
form to other metals and potentially even to covalently
bonded systems, such as liquid carbon.

We conclude that the proposed SND analysis of nearest
neighbor distances is a useful tool to assess bond lengths
from radial distribution functions, or, to be precise from

the radial probability distribution. The SND analysis
might be particularly helpful when the full microscopic
information is not at hand but, for example, only the
static structure factor, which does not put one into a
position to conduct Voronoi tessellations.
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