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Abstract

The small-scale topography of surfaces critically affects the contact
area of solids and thus the forces acting between them. Although this
has long been known, only recent advances made it possible to reli-
ably model interfacial forces and related quantities for surfaces with
multi-scale roughness. This article sketches both recent and tradi-
tional approaches to their mechanics, while addressing the relevance of
non-linearity and non-locality arising in soft and hard-matter contacts.

1 Introduction

In his pioneering work on kinetic friction between solids, Coulomb [1] argued
that its physical cause must originate from either the interlocking (l’engrenage)
of asperities—which can only be released through deformation, rupture, or by
the raising of some summits over others—or, by the coherence that interfacial
molecules adopt due to their proximity and which needs to be overcome to pro-
duce motion. Coulomb’s assessment certainly contains the most information
in the fewest words on the microscopic processes occurring in tribological con-
tacts and largely summarizes how friction mechanisms are still categorized [2].
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However, it cannot be used to quantify interfacial forces, not even to predict
trends like whether roughness increases or decreases friction. More roughness
generally leads to more plastic and viscoelastic deformation and thus to more
energy loss but it can also reduce the contact area and adhesive or capillary
forces, which lowers friction. A qualitative picture cannot explain either why
the three empirical solid-friction laws are so frequently observed and what
causes their breakdown when they fail. According to them, solid friction is
approximately (1) proportional to load but (2) independent of the apparent
contact area and kinetic friction is less than static friction but otherwise (3)
independent of velocity [3]. The simplicity of these laws, which can be aug-
mented with the Archard-Reyes law of wear stating that the volume of removed
debris is proportional to the work done by friction [4], should not be taken as
a sign that there are universal reasons for their validity or their breakdown.
Nonetheless, it turns out that the surface topography of the bodies in contact
and their change with load and sliding is indeed crucial. Hence, a proper char-
acterization of surface topographies is essential [5]; see also the recently posed
surface-topography challenge [6].

The (average) height spectrum of many free-standing surfaces[7–9], in
particular those obtained after fracture or sandblasting [10], can be cast as

C(q) ∝
{
1 + (q/qr)

2
}−1−H

, (1)

where C(q) is the absolute square of the Fourier transform h̃(q) of the surface
height, q is a wave vector, q its magnitude, and qr is the so-called roll-off wave
vector. H is called the Hurst exponent. It generally lies between zero and one,
usually H ≲ 1. At very large q, C(q) must be cut off, ultimately because nature
truncates roughness at the atomic scale. The approximate power-law depen-
dence of the height spectra for qr ≲ q < qatomic makes the surface topography
be self-similar on small length scales. Surface profiles then look statistically
similar to the eye when rescaling the height with a magnifying factor ζ1/H when
in-plane coordinates are magnified with ζ, as is shown in Fig. 1. In real space,
the squared height deviation from a given point r increases with increasing dis-
tance according to ⟨{h(r)− h(r+∆r)}2⟩ ∝ ∆r2H . A process closely related to
randomly rough surfaces is the random walk leading to Fick’s diffusion, which
can be described with a Hurst exponent of H = 0.5.

It is rather straightforward to exploit the mathematical description of self-
similar surfaces in models describing their contact mechanics. This has been
achieved with great success for linearly elastic, non-adhesive bodies. How-
ever, systematic extensions to topographies not obeying the random-phase
approximation remain scarce. Likewise, attempts to account rigorously for non
linearity and non-locality as they arise due to plastic deformation of nomi-
nally flat surfaces or the coupling between viscoelasticity and adhesion are
rather new. Some of the recent developments will be detailed in the following
sections after a brief review of the state of the art of contact models and their
limitations.
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Fig. 1 Computer generated, self-similar surface with Hurst exponent H = 0.8 at different
magnifications and a root-mean square gradient of ḡ = 1 at the finest scale. The inset shows
experimental data of a H ≈ 0.75 surface, which was produced for Ref. [5]. Great Britain’s
west coast has the same fractal dimension as a one-dimensional, H ≈ 0.75 surface [11, 12].

2 Rough-contact models and their limitations

Greenwood and Williamson (GW) [13] pioneered the attempts to account for
the effect that microscopic random roughness has on the mechanics of nom-
inally flat surfaces. Their model assumes asperities to have a given radius
of curvature and a Gaussian height distribution and, most critically, to act
independently of each other. Once an asperity touches a (rigid) counterface,
it deforms according to single-asperity characteristics, e.g., Hertzian contact
mechanics in the original elastic GW model, but later modifications included
adhesion [14] and perfect plasticity [15]. The respective laws are then used
to relate the deformation of the asperity, the force acting on it, and its true
contact area with the counterface.

An intriguing prediction of many GW-inspired “bearing-area models” when
applied to random, non-adhesive surfaces is that their real contact area often
turns out to be (quasi) linear in the load L at small ratios of true and nomi-
nal contact areas, ar = A/A0, irrespective of the local asperity law (elastic or
elastic-perfectly plastic) so that the mean pressure in true contact, pc = L/A,
is approximately constant. Despite their generic failures, which will be touched
upon further below, rigorous simulations of rough, elasto-plastic, and non-
adhesive contacts using J2 plasticity [16], as well as dislocation dynamics
simulations [17], confirm that A is linear in L at small ar. Corrections are
at most logarithmic in L, as long as the true contact contains a statistically
significant number of microscopic contact patches.

Assuming the local interfacial shear stress τs to increase linearly with local
pressure p squeezing two surfaces against each other,

τs = τ0 + αp, (2)

leads to Amontons’ law, i.e., to the linearity between the friction force F =
τsA and normal load L. Here, τ0 and α are system-dependent parameters, in
addition to the proportionality factor linking A and L. Thus, under the given
assumption, the friction coefficient µ ≡ F/L assumes a constant value of

µ = α+ τ0/pc (3)
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at small ar, where pc is the load-insensitive ratio of load and true contact area.
To what extent Eq. (2) is reasonably accurate or highly flawed certainly

depends on the system of interest. The behavior of simple boundary lubri-
cants, i.e. very thin layers of lubricants, keeping hard surfaces from intimate
mechanical contact turns out to be consistent with Eq. (2), as can be seen
from simulations of generic bead-spring polymers confined between atomically
smooth surfaces [18] or from experiments of single-asperity contacts, in which
the adhesion between two curved mica surfaces is screened through the use of
appropriate electrolytes [19].

In these cases, τ0 can be loosely associated with an adhesive (offset) stress
and α can be given a geometric interpretation in terms of hard-sphere interac-
tions. However, Bowden and Tabor’s [3] original use of Eq. (2) in their attempt
to rationalize friction coefficients for metal-on-metal contacts may be too sim-
plistic [20]. They related τs and pc to the shear strength and flow strength
(or hardness) of the two metals in contact, respectively. This poorly reflects
the scale-dependence of plasticity and real hardening laws, even if the hard-
ness of materials and its dependence on grain size allows important guidelines
for the friction coefficient in contact between metals to be rationalized, as
Chandross and Argibay neatly summarized recently [20]. Other non-local dis-
sipation mechanisms, like viscoelastic losses cannot be reconciled with Eq. (2)
either, as will be discussed further below. Nonetheless, Amontons’ law may
still hold when Eq. (2) is violated. One explanation would be that the increase
of contact area with load at small nominal pressures is mainly due to a rescal-
ing of the prefactor of the contact-patch-size distribution rather than to the
extension of its tail to larger patch areas. Thus, predicting contact-patch distri-
butions correctly is a critical requirement for a quantitative contact-mechanics
approach.

One reason why bearing-area models (BAMs) are problematic is that they
neglect the elastic coupling between asperities, i.e., they ignore that surface
points near the highest peak are pushed down much more than distant points.
As a consequence, BAMs overestimate the mean gap between solids and predict
contact to be too localized near high peaks, as is revealed in Fig. 2. It compares
the contact topography formed by an elastic solid and a rigid, randomly rough,
computer-generated surface as obtained in (a) a rigorous boundary-element
method (BEM), (b) an experiment bringing an elastomer in contact with a
3D-printed version of the surface, and (c) a generic BAM assuming the highest
3% of the indenter points to be in contact. The generic BAM misses many of
the small patches revealed both experimentally and in rigorous simulations, in
particular to the right of the black circle. Moreover, BAM leads to distincly
less rugged contact edges than numerically rigorous approaches.

A new approach to contact-mechanics [22], see Bo Persson’s summary of his
theory in this issue [23], also finds contact area to be linear in load at small ar
but it remains accurate beyond the linear regime. Specifically, for frictionless
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Fig. 2 Gap and contact topographies obtained at ≈ 3% relative contact area in the contact-
mechanics challenge [21]. The central panel (experiment) shows contact lines sobtained with
a total internal reflection method using a printed, scaled-up surface. The left and right panels
show the gap obtained using a boundary-element method (BEM) and a generic bearing-
area (BAM) model, respectively. White color indicates contact, while black circles highlight
a detail of the contact area to facilitate comparison. Reproduced with permission from
Ref. [21], except for the BAM panel on the right, which was drawn for this article.

elastic surfaces, it predicts contact area to obey

ar = erf{
√
πp/(E∗ḡ)}, (4)

where E∗ = E/(1− ν2) is the contact modulus of the solid (when both bodies
are deformable, their inverse contact moduli add, as in a series coupling of
springs), E the Young’s modulus, ν the Poisson’s ratio of the elastic material,
and ḡ is the (combined) root-mean-square (rms) height gradient of the surfaces.
While the theory was originally derived for ideal random roughness, see Eq. (5),
it makes astonishingly accurate predictions on the relative contact area if ḡ is
averaged only over the true contact area [24], even in the limiting case of single
asperity contacts, which are the polar opposite to ideal random roughness.

Although Persson’s contact mechanics theory is not exact, it generally
predicts central interfacial properties much more accurately than BAMs. For
instance, the probability of having contact a distance q−1

s ≲ ∆r ≲ q−1
r away

from a point of contact, decays with 1/∆r1+2H in Persson’s theory [25]. This
agrees with numerical results of a rigorous BEM, while a generic bearing-area
model finds a faster decay according 1/∆r2+2H [26]. Another example for the
accuracy of Persson’s theory is its ability to predict how the mean gap, ūg,
decreases with increasing load [27]. This was also revealed in the contact-
mechanics challenge, where Persson’s prediction agreed with the results of
numerically rigorous BEMs, while GW-inspired models agreed with each other
but not with the correct reference, as is demonstrated in Fig. 3(a). Rescuing
BAMs is possible [28] but requires the elastic coupling between contact spots
as well as their coalescence to be included, which is arguably a more complex
task than to simply code or run a BEM.

Failing to predict the mean gap as a function of load is particularly detri-
mental for the estimation of leakage, as described by the Reynolds’ thin-film
equation, which assumes the local resistance to fluid flow to increase with the
inverse third power of the gap. Traditional BAMs easily overestimate leakage
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Fig. 3 (a) Mean gap as a function of pressure for three bearing-area models (BAM, red
symbols), Persson’s contact-mechanics theory (grey line), two rigorous boundary-element
methods (BEM, blue symbols), and a scaled down all-atom model (open diamonds). Adopted
from Ref. [21]. (b) Relative leakage current j/j0 versus relative contact area ar for topogra-
phies computed with a BAM and a BEM. Symbols represent full solutions of the Reynolds
equations, while lines assume an effective-medium approximation (EMA) to it. Adopted
from Ref. [29].

by several orders of magnitude even far away from the percolation thresh-
old, as can be seen in Fig. 3(b) [29]. In contrast, the Reynolds flow can be
estimated quite accurately using an effective medium theory taking the gap
distribution function from either BEM, Persson’s theory, or even experimental
data, acquired for example via digital image correlation [30], as input.

An important property to deduce from the dependence of the mean gap
on pressure is the contact compliance defined as χ = −∂ū/∂p, or its inverse
the better-known contact stiffness. χ turns out to be proportional to first
estimates of the interfacial resistance to heat flow and electric current, as
well as to the interfacial shear compliance [31, 32]. This is because for elastic
solids the mentioned properties can be calculated in similar ways from similar
second-order partial differential equations so that proportionality coefficients
are merely products or ratios of materials constants.

The complete system can be seen as a series coupling of solid A, the inter-
face, and solid B, whose respective compliances or resistances add up to a
combined value. However, corrections are needed to obtain accurate estimates
for the conductivities. Radiative heat transfer, mainly through evanescent
waves, add to the heat conductance, while oxide layers or other layers adsorbed
on top of metals, increase the electric resistance [32]. Estimating the perti-
nent corrections requires the gap distribution or the contact area to be known,
which can be deduced from quantitative theories and simulations or even from
experiments.

Thus, while bearing-area models provide an intuitive framework with
which trends can be rationalized, Persson’s theory is quantitative. However,
Persson’s theory has been rigorously tested predominantly on elastic solids
and indenters with “ideal” random roughness. Although we expect it to be
applicable (potentially with appropriate modifications) to other systems, the
need for quantitative tools remains. At present, computer simulations are our
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best chance to model rough interfaces with a small number of uncontrolled
approximations.

3 Computational approaches to roughness

To model surface-topography effects numerically, height profiles must be
acquired first. Ideally, though unlikely, a friendly experimentalist willingly
shares artifact-free data defined on a large matrix. In the real word, modelers
fall back to computer-generated virtual surfaces, which can have the advan-
tage to be periodic thereby allowing finite-size or (hyper-) surface effects to be
minimized. There are many different ways to generate height functions, h(r),
representative of randomly rough surfaces, the simplest one being to set their
(complex) Fourier coefficients to

h̃(q) ∝
√

C(q) exp{2πiw(q)}, (5)

where w(q) is an independent, uniform random number on [0, 1].
Surfaces generated with Eq. (5) produce, on average, a Gaussian height

distribution. However, machined or worn surfaces, as those described in the
accompanying article by Aghababaei et al. [33], tend to have skewed height
distributions, because tops get flattened while valleys are less affected by plas-
ticity. To reproduce simultaneously height distributions and spectra, a surface
can be set up producing the correct spectrum, then the n-th highest point
be assigned the height that the n-th highest point (of a discretized surface)
is supposed to have, where n runs through all point indices. The resulting
surface is Fourier transformed, its spectrum rescaled to the target spectrum
and the procedure iterated until deviations from the target are tolerable [34].
Other constraints violating the random-phase approximation can certainly be
realized in a similar fashion.

In the simplest interaction model, surfaces are assumed to be impenetrable,
or alternatively, one can use a quickly increasing overlap potential emulating
finite-range repulsion and, if applicable, adhesive interactions. Next, the sur-
face displacements must be related to the stresses acting on the surface. A
point force acting normally onto a surface of a semi-infinite, linearly elastic
solid leads to a displacement that decays as 1/r from the point of action. This
dependence can be expressed quantitatively through the equation

σ̃(q) = −qE∗ũ(q)/2 (6)

in terms of the Fourier transforms or coefficients of stress, σ̃(q), and surface
displacement field, ũ(q). Eq. (6), can be generalized in many different ways so
that in addition to normal displacement and stresses other effects [35] can be
considered such as those due to finite-thickness [36] and viscoelasticity [37].
Polonsky and Keer [38] pioneered the fast Fourier transform (FFT)-based solu-
tion of contact problems by exploiting the sparseness of the stress-displacement
coupling represented in Eq.(6). In their original approach, the stresses at the
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nodal points in real space were continuously adjusted to yield a value of zero
in non-contact while satisfying the non-overlap constraint. Later investiga-
tions [35–37] assume the displacements to be dynamic degrees of freedom,
which either relax to the minimum in the fastest possible way, or propagate
according to viscoelastic properties, which can be achieved by coupling each
ũ(q) mode to an appropriate set of Zener or related rheological elements [37].
While BEMs are typically limited to linear (visco-) elasticity, they can be cou-
pled to discrete-dislocation dynamics (DDD) allowing plasticity, as described
in DDD, to be included effectively [39]. Moreover, a recent reformulation of the
Mindlin fundamental solution in a Fourier representation, allowed continuum
plasticity to be described at a similar complexity as with Fourier-accelerated
BEMs, that is, with a numerical complexity scaling as O(N lnN), where N is
the number of surface grid points [40].

The type of questions that can be addressed within the above-described
methods include (1) do two rough surfaces deform elastically so that they—
using Coulomb’s words—form a coherence that needs to be overcome to initiate
sliding, (2) what contact stiffness κ does a mechanical interface produce, or,
(3) at what point does roughness “kill” adhesion? Succinct answers in the
framework of linearly elastic bodies and ideal random roughness would be
(1) yes, but if elastic asperity interlocking were the only friction mechanism,
friction coefficients would be tiny [41, 42], (2) κ would be approximately linear
in the nominal pressure p at small p and increase roughly exponentially with
p at large p [27, 43]—these trends can be deduced (in parts visually) from the
data shown in Fig. 3(a)—and (3) when the reduced surface energy γ̃ = γ/vflela
falls below approximately 0.5 [44], where γ is the surface energy and vflela is the
elastic energy in full contact per unit area [44].

Answer (3) may require a bit more elaborate explanation. The transition
between high and low adhesion is rather abrupt only for short-range adhesion
and precise values remain difficult to predict [44, 45]. However, it can be noted
that true contact at zero or marginally tensile loads occurs dispersed across
a nominally flat interface if γ̃ ≳ 0.5 but typically only in the vicinity of the
highest peak when γ̃ ≲ 0.5 [44]. We leave it up to the reader, so to speak
as a bonus problem, to demonstrate that the latter finding is consistent with
the observations that large asteroids, which are made up of (large!) fractured
rubble particles having a density close to that of silicate rocks, i.e., ≈ 2 t/m3,
have a natural upper spinning period exceeding 2.3 hours. An elaborate master
solution to the problem is given in Ref. [46].

Similar questions as those just answered for ideal elasticity still wait for an
answer when the contacting bodies are more complex, for example, when their
energy dissipation occurs internally and not only in the immediate vicinity of
the contact or in a lubricant keeping the solids from making intimate contact.
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4 A critical challenge: non-local effects

As already mentioned, a point force acting on the surface of a semi-infinite,
linearly elastic body, be it normal or parallel to the surface, leads to a displace-
ment, which merely decays with the inverse distance from that point. This
long-range deformation is at the root of many complications, including the
inappropriateness to formulate contact mechanics as a theory of variables that
can be defined as averages of local quantities like rms height h̄ or rms height
gradient ḡ. While the contact area of repulsive, linearly elastic contacts can
be estimated reasonably well from Eq. (4) having the (resolution-dependent)
ḡ as the only topographic parameter, the elastic energy is a (weighted) sum
or integral over wave vectors. Such sums are needed when calculating, for
example, vflela = (E∗/4)

∑
q q|h̃(q)|2 (valid for a frictionless contact) or the

load-displacement relation in Persson’s theory [47]. They cannot be reduced
to averages over locally defined variables like h̄2 or ḡ2, for which the prefactor
E∗/4 in the vela sum would have to be omitted and the term q in the summand
be replaced with 1 and q2, respectively.

The just-mentioned non-locality is at the root of why dissipative or irre-
versible processes are frequently also non-local and moreover scale-dependent,
in which case a frequently stressed argument for the validity of empirical fric-
tion laws, specifically Eq. (2), can be problematic. For example, in an initially
elastic description of contact between two metals, maximum shear stresses, or
rather maximum deviatoric stresses, max(J2), occur a certain distance away
from the interface, so that plastic deformation—assuming J2 plasticity to be
valid—is not triggered by the deviatoric stresses J2 at the interface but in the
bulk [48]. A potential reason for meaningful deviations from classical friction
and wear laws can arise when the superposition of subsurface stress fields of
adjacent contact spots becomes significant, i.e., large enough to trigger the
deep propagation of subsurface cracks, as observed in atomistic simulations
during the transition from mild to severe wear [49].

When a detailed plasticity description is needed at scales too small for
continuum plasticity to be applicable, it must be kept in mind that plastic
deformation in crystalline metals is carried by dislocation glide, which has two
important implications. Firstly, plasticity requires not only J2 to exceed a crit-
ical value but also the presence of defects serving as dislocation sources. It is
the random distribution of these defects in the body that can lead to a non-
symmetric plastic response, even when the loading is symmetric. Secondly,
the Peach-Koehler force drives dislocations away from the region, where they
were generated [17]. As a consequence, plastic deformation is not confined to
the region where high stresses occur and can result in complex shear bands,
as those depicted in Fig. 4(a). Their generation requires energy, whereby they
contribute to dissipation during indentation but also during sliding. Interaction
between extending shear bands leads to additional superposition of subsur-
face stress fields, and increases the risk of crack nucleation at the intersection
between bands, where dislocations form strong junctions and stress release
through plasticity is hindered.
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Fig. 4 Examples of processes leading to dissipation outside the interface. (a) A metal
crystal indented by a rough, rigid surface: plastic shear bands, broader than the contact
areas, extend deep into the material. Black T-symbols represent dislocations. The rough
indenter is stretched in z−direction by a factor 10 to better visualize its roughness. Adapted
from Ref. [17]. (b) A sinusoidal adhesive indenter sliding past a viscoelastic foundation.
The sliding velocity increases from top to bottom, while the viscoelastic response of the
foundation transitions from short- to long-ranged. Courtesy of Nicola Menga and Giuseppe
Carbone.

When contacts are soft and adhesive, non-local effects arise due to the inter-
play between adhesion and viscoelasticity. In adhesive soft-matter rolling [50]
or sliding [51], dissipation is due to the difference between the energy gained
when the contact closes at its leading edge, and the energy lost when the
contact opens at its trailing edge. Depending on the loading speed, signifi-
cant dissipation can take place far away from the contact edges [52], that can
be viewed as crack tips. This is because the viscoelastic solid acts like a soft
elastic solid both in the immediate vicinity of the crack and far away from
it, while the viscous response dominates at intermediate distances from the
crack tip [52–54], which led De Gennes to coin the term viscoelastic trum-
pet [55]. The transition from short-ranged to long-ranged viscoelasticity can
be observed on the contact profile of the viscoelastic foundation in Fig. 4(b),
where a sinusoidal tip slides at increasing velocities from top to bottom.

An important consequence of the dissipation due to a sliding adhesive con-
tact is that the relaxation time of the system can be dramatically enhanced
compared to the elastomer’s intrinsic relaxation times, in particular when the
adhesion is short-ranged. This effect causes large demands on simulations,
since reproducing the bulk viscoelasticity and crack dissipation simultaneously
would require small interaction ranges and thus extremely fine discretization.

An additional non-local dissipation mechanism of rough surfaces arises
from multistability, i.e., at a given mean relative distance between two solids,
different microscopic surface configurations exist. A generic example would
be a parabolic indenter with small-scale sinusoidal roughness [56]. Individual,
microscale asperities can discontinuously snap into or out of contact and they
do not immediately jump back to their old position after tip-velocity inversion.
As for any other instability, the energy loss is approximately the difference
between the potential energy just before the instability and a short time after
it, that is, after the instability-induced vibrations have calmed down [57].
This mechanism can lead to significant dissipation during quasi-static motion
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and, in the words of Coulomb, occurs whenever an interface has discontinu-
ously adjusted the coherence of relevant degrees of freedom, whether they are
molecular or coarse-grained, e.g., asperity-sized in nature.

The difficulty in modeling adhesive multistability lies in the need for
short-ranged adhesion [58], which entails the necessity for an extremely fine
discretization to avoid spurious effects [59]. Sanner and Pastewka found a
rather compelling solution to this problem for spherical indenters with small-
scale roughness [60] by mapping it onto a crack-front model with quenched
disorder [61], which can prove useful to describe the motion of a contact line
of a liquid droplet on a substrate [62]. To this end, they firstly exploited the
possibility to express the elastic energy of a singly-connected contact domain
as a function of its contour [63]. Secondly, they mapped the effect of sur-
face roughness onto a local surface energy by using an effectively fractional
and thus non-local height gradient. Specifically, they interpreted the inverse
Fourier transform of

√
qE∗/4 h̃(q) as the square-root of a local energy density.

Using this crack-front approach, BEM-based solutions could be reproduced
quite closely. More importantly, they found a rather flat force-displacement
curve on retraction, as is characteristic for spherical indenters with small-scale
roughness, which are retracted from a soft, adhesive foundation [64, 65], as
can be seen in Fig. 5.

Fig. 5 (a) Comparison of the force-displacement relation as obtained in a crack-front model
and a full BEM. (b) Visualization of the contact contour and the effective surface energy.
From Ref. [60].

5 Conclusions

Modeling phenomena involving surface topography-induced processes has
come a long way, in particular describing those that Coulomb envisioned to be
responsible for the friction between solid bodies. What can be seen as partic-
ularly impressive is that there is an increasing number of accurate theoretical
and computational tools, that use as input materials properties, besides the
surface topography, and give as output realistic predictions. This is certainly
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a breath of fresh air compared to the art of “post-diction”, where the model-
ing requires a significant fraction of the final result to be used as input, as is
frequently the case, for example, when describing the outcome of an atomic-
friction-force microscope experiment with the Prandtl model. At present, not
only the contact response of elastic bodies can be predicted with accuracy,
but important steps forward have been made also in the modeling of both
soft and hard-matter contacts. The modeling of viscoelastic and of micro-scale
metal contacts has brought forward the importance of non-local effects, namely
dissipation processes occuring at a distance from the interface, and thus the
relevance of explicitly modelling the solids.

Unfortunately, we could only scratch the surface and had to omit quite a few
success stories, like the experimental study reproducing the displacement field
of the contact-mechanics challenge to within roughly 10% of the rms-gap [66],
detailed comparisons between theory or experiments of the elasto-plasticity
in spherical tips with microscale roughness [67], or the leakage through seals,
which was at least touched upon in an article of this MRS Bulletin [23].

Fortunately, we’re not done yet. Despite all progress, we are not aware of
studies successfully reproducing adhesive hysteresis when viscoelasticity and
roughness-induced multi-stability both contribute substantially. It may sound
simple, but we believe it to be a quite ambitious endeavor to not only match
final displacement fields of real surfaces but also their time dependence. Like-
wise, we are not aware of macroscale contact plasticity simulations where
micro-scale effects are incorporated, and where the frictional response is an
emergent behavior. Finally, as detailed in the article by Aghababaei et al. [33],
the modeling of surface evolution has just started. Modeling of and comparing
to or even better predicting experiments monitoring simultaneously topogra-
phy changes and friction forces, as Korres et al. [68] achieved, represents the
ultimate challenge.
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[59] Wang, A., Zhou, Y., Müser, M.H. Lubricants 9(2), 1–30 (2021). https:
//doi.org/10.3390/lubricants9020017

[60] Sanner, A., Pastewka, L. J. Mech. Phys. Solids 160(104781), 104781
(2022)

[61] Gao, H., Rice, J.R. J. Appl. Mech. 56(4), 828–836 (1989)

[62] Joanny, J.F., Robbins, M.O. J. Chem. Phys. 92(5), 3206–3212 (1990)

[63] Rice, J.R. J. Appl. Mech. 52(3), 571–579 (1985)

[64] Benz, M., Rosenberg, K.J., Kramer, E.J., Israelachvili, J.N. J. Phys.
Chem. B 110(24), 11884–11893 (2006)

[65] Dalvi, S., Gujrati, A., Khanal, S.R., Pastewka, L., Dhinojwala, A., Jacobs,
T.D.B. Proc. Natl. Acad. Sci. U. S. A. 116(51), 25484–25490 (2019)

[66] Bennett, A.I., Rohde, S., Harris, K.L., Schulze, K.D., Urueña, J.M., Pite-
nis, A.A., Ifju, P.G., Angelini, T.E., Müser, M.H., Sawyer, W.G. Tribo.
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