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The orientational diffusion of a nitrogen moleculg N a three-dimensional crystal of argon atoms

is studied by using the reaction coordinate formalism and the Bennett—Chandler approach. To
study the two-dimensional orientational diffusion the reaction coordinate formalism has to be
generalized to multichannel reactions. The rate coefficient for the motion between the six stable
orientational states is determined from correlation function expressions, which include corrections
to transition-state theory due to recrossings of free energy barriers. At high temperatures the
simulation results are compared with results obtained by standard molecular dynamics methods. At
low temperatures the transmission coefficient is computed and the dependence of the plateau value
upon the density of the surrounding argon matrix and upon the isotopes, chosen to form the N
molecule, is investigated. @995 American Institute of Physics.

I. INTRODUCTION scribed as a one channel process. If the stable orientations
are parallel to thex, y and z axes, the transition of a

In the field of condensed mattéchemical) physics, x-oriented state to g-oriented state can be direct or it can be
there is much experimental and theoretical interest in detembtained by passing througtzeoriented state. Therefore we
mining the rate constants of transitions between differenhave to find a formulation of the reaction taking into account
global or local(metg-stable states, separated by a free en-all reaction channels.
ergy barrier much larger than thermal energy. Standard The aim of the paper is to show how a reaction coordi-
molecular-dynamic§MD) methods are not appropriate to nate for multichannel reactions can be constructed. The focus
determine these rate constants if the time window of thdies on the application on the reorientation dynamics of a
simulation is in the ordefor smallej of typical relaxation nitrogen molecule B which is embedded in a fcc crystal,
times. composed by point atoms. Once the reaction coordinate has

For this reason Bennétiand Chandlér introduced a been defined, we derive the phenomenological and the mi-
nonstandard MD method, able to compute tfest dynam-  croscopic rate equations. The transmission coefficients, ob-
ics at rare events in condensed phase. A particular way teined by the rare event technique, are compared at high
implement this method, called the blue-moon enserflide, temperatures to those, obtained by standard MD simulation.
to constrain the total system at the top of the free energyt low temperatures the transmission coefficient is computed
barrier separating twémetaj stable states. This is done by and the dependence of the plateau value upon the density of
constraining a suitable functiog of the configurational the surrounding argon matrix and upon the isotopes, chosen
space(the reaction coordinateo a given valuet™>. All co- to form the N, molecule, are investigated.
ordinates are left free to equilibrate while the system is kept
at the transition state. At a suitable set of initial tintes
along the constrained equilibrium trajectory, the constraint i
released and new momenta are sampled. Equilibrium rate  One of the main problems in the description of activated
constants can now be measured with a MD program if thgyrocesses is the definition of an appropriate reaction coordi-
probability density at the transition state is known. nate £&. Sometimes the choice of the reaction coordinate is

In the Bennett—Chandler approach the equilibration aguite obvious. However, even though the reaction coordinate
the transition state and the determination of the probabilitys known, the question arises which valile corresponds to
density at the transition state are worked out in a Montahe transition state, namely at which value f the free
Carlo (MC) program, whereas the blue-moon ensemble enenergyF(T,¢') has a saddle poinE(T,¢’) is defined by
ables one to carry out all the computations by MD.

Up to now, rare event techniques have been applied only  p(T ¢/)= —k,T In f dr e HOKsT sT&(T)—¢'],
to one-channel reactions. Some particular applications are
trans-gauche isomerization reactions in liquid buthne, (1)
chemical reactiornsof the typeA+BC=AB+C, linear dif-  with H(I"), the Hamiltonian, a function of all phase space
fusion of vacancies in cryst&l$ as well as protdh’ or  coordinates and the Dirac delta function.
electrort®! transfer reactions in solutions. An illustrative simple example of the construction of the

Two-dimensional orientational diffusion cannot be de-reaction coordinate is the case of adiabatic proton transfer in

4I. MULTICHANNEL-REACTION COORDINATE
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FIG. 1. Minimal total potentiaV, (in units of Kelvin for fixed orientations, defined by the anglésand ¢.

a linear molecule(whose orientation defines the axes, function of 9 and ¢ in Fig. 1, whereby the translational
where a suitable choice @fis the quantum mechanical ex- coordinates are chosen such that the total potential energy is
pectation value of the protorzssoperator for a given configu- minimized. Note, that at low temperaturéé,(d,¢) is
ration of the solvent moleculdsin the case of homonuclear closely related to the free enerdy(T,d,¢), because the
molecules¢"™=0, due to inversional symmetry, while for integration over the translational degrees of freedom reduces
heteronuclear molecules’™ would have to be determined to Gaussian integrals. In Fig. 1, it can be seen, that one
numerically by an estimation of the probability dengitf{¢),  barrier is located atp=/4, in other words it is located at
which, in statistical mechanics, is given by x2=y2.

Now the three stable states can be defined. It is conve-
p(&)=e FIFT.O] /J dg’e—ﬁ[mé’)], 2) nient to call a state

H . 2 2 2 2
The value of¢, wherep(&) has a minimum correspond to the x oriented if : x*>y" andx“>z%,

value of £'S. For an efficient way to compute(T,&) see y oriented if : y?>z? andy?>x2, ®)
Ref. 2 for the Bennett—Chandler approach and Refs. 3, 12 for ) ) . .

In the case of two-dimensional orientational diffusion it this in mind, it is furthermore possible to define a func-
the reaction coordinate should be closely related to theion ¢ describing direct transitions. This function is only an
angles and ¢, describing the orientation of the rotator im- jntermediate step toward producing one scalar reaction coor-

purity. To fix the idias we choose the same model of a recenfinate. Keeping in mind, that they transition across the line
Monte Carlo study? where the orientational degrees of free- 2_y2 has to fulfill Z2<x? andz2<y? a suitable choice of

dom had been treated in a classical and quantum mechanigal
way. The preferred orientations of the molecule have been

detected ford=m/2 with ¢=0, m, for ¥=m/2 with p=r/2, _[X®-y? for Z2<x® and Z2<y?,
3n/2, and ford=0, 7. Hence, the states will be classified as &= y?=2z? for x?<y? and x*<Z7?, (4)
X, y, andz oriented states and the orientational diffusion will 722—x? for y?<z? and y?<x?,

be described by a multichannel process. We do not diStin\7vhich represent they, yz, andzx transitions respectively in
guish betweentx and —x oriented states, because of the P V. ya P y

; : . the same interva{—1,1). Now, to disentangle the range of
inversional symmetry of the nitrogen molecule. Thus the . " . .

; . values representing the three transitions, let us simply intro-
number of stable states to be taken into account is automati:

cally reduced from six to three. duce suitable constang,, &/, andé&Z,. By choosing
The first step in finding the reaction coordinate—in this &, =0,¢f,= —2,&5,=2 (5

case a function ofy and ¢—is to find the saddlepoint or

better the saddlelines of the free energy surface. In generaq,nd

this has to be done numerically. In our case, it is sufficient to §§y+ x2—y? for z22<x?®> and z°<y?,

take advantage of the cubic symmetry. The transition lines = & +y2—22 for x2<y? and x2<Z2, ©6)

can be only ak’>=y?, zZ2=x?, andy®= z?, wherebyx, y, and 3’

z are the Cartesian components of the normalized vector,

indicating the direction of the molecule. In order to demon-one is now able to characterize the orientational state of the

strate the cubic symmetry, we plot the total potentiglas a  system by the value of the functioh The scalar reaction

£ +22—x% for y’<z?® and y?<x?,
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coordinate¢, which describes uniquely the oriented state ofturbations by spontaneous fluctuations in thermal equilib-
the system, can now be written in compact form as rium. If the external perturbationH,, given by H,
_l . . .
et 22 2 2 2 2 £, .2 2 =E?:1é,uj6j0(—t), is switched off at tim&=0, than the
€= (& tXEmy) 00 =20) 0y = Z) + (&), +y"~Z") dissipative response of the system is

X 0(y?—x2) (22— x?) + (£5,+ 22— x2) 0(Z2— y?) 1
X 0(x2—y?), @) Acion(t)= —ﬁj; Gij(t)dp;  with
with 6(@) the Heavyside step function. éij(t):<A0i(t)A0]‘(0)>, a1

¢ is a function, that maps the sphere on a line in the . o _
following manner: Ifé=0 the system is on the-y transition ~ Where the matrixG;;(t=0) is invertible. All 5u;’s can be
line, for 0<&<2 it is in anx-oriented state, for-2<g<0 a  expressed by inverting the matr&(t) at timet=0:

y-oriented state is found, and so on. According to these re- n-1
marks,_ the probabiliti(_esx, ¢y, andc,, that the system is 5ﬂj<n:—kBTE éj_kl(O)Ack(t=O). (12)
either in ax, y, or z oriented state, have to be written as =k
c=(6) with 6,=0(&6(2— &), Inserting Eq.(12) in Eq. (11) yields:
n-1n-1
=(0 ith 6,=0(2+¢&)6(—¢), 8 - =
&=(0y) with  6,=62+86(-8) ® tenm=3 3 6,08 (0)ac0), 13

c,=(6,) with 6,=06(é—2)+6(—¢-2),

where (@) denotes a thermodynamical averaging accordin
to the relevant ensemble and wherel,2,3 can beused
instead ofx,y,z so that>;c;=1.

On the transition lineg is not defined at the eight points,
wherex?=y?=72. On the rest of the unity sphere this func-
tion is not defined either for the line€>y?=2% and per-
mutations of this equation. Since a point on a line and a lin
on a surface have both zero measure, it is sufficient,&leat
well defined at all other points, in order to get well-defined
averages in a computer simulation. ~ d - ~

Equation(8) gives an instruction on how to measure the ~ Kjj(t)=— Fn kzl Gik(t)G[jl(O), (14
concentrations of the orientational states with the help of the -
reaction coordinate. Hence the formalism of rate equation fofr else, performing the time derivative, by

Remember thatc,(t) is given by 1—=""!Ac(t), so that

%he dissipative response is completely described by(Ej).
Equation(13) already tells us, how to compute the phe-

nomenological rate constant matri defined in Eq.(10),

by standard MD simulation. If the motion is activated, then a

time scale separation between the relaxation processes and

other internal degrees of freedom exists, and the phenomeno-

Efogical Ki;'s are given by the plateau values of the time

derivatives(with opposite sighof Eq. (13) by:>®

n—1

the one channel reactions can now be easily extended to the n—1

multichannel case. Kij()= 2, (A6,(1)A6(0))Gy;H(0). (15
k=1

lll. RATE EQUATIONS IV. APPLICATION TO TWO-DIMENSIONAL

The phenomenological rate equation, which is a Iinear-ORIENTATIONAL MOTION

ized version of the master equation, can be written down |y thjs section, the discussion is restricted to the example
formally for any multichannel reaction: of a N, impurity in a fcc argon crystal. The phenomenologi-
cal rate equation can be simplified because of the cubic sym-
(9)  metry, which leads tk,,=k,=etc. If, furthermore, it is
used, thatc,+c,+c,=1, the phenomenological rate equa-
with c; the probability for the system to be in the statend  tion, Eq.(9), becomes diagonal:
Kj; the (i,j) component of the phenomenological rate con- Ci(H)=—2ke+ik(1—c,) with k=3k (16)
stant matrixK. k;; gives the probability, per unit time, that A v X
the system goes fron to i, if it is located atj. In the  From this differential equation it is easy to see, that
following discussion, the;’s are assumed to be expressed by Aci(t)=e XAc,(0) with c®=1. (17)
the reaction coordinate E¢g). ' ' s
If the system has been pertubated by an external force dthe phenomenological rate constdntdefined in Eq(16),
timest<O0, the initial deviationAc;(t=0) of c;(t) with re-  has obviously the meaning of an inverse relaxation time.
spect to its equilibrium value® will decay according to In the microscopic formulatiork has to be replaced by a
ho1 time-dependerk(t), whose plateau value at small times cor-
_ —Kt responds tk. To do this, we use Eq15) and the fact that,
A°i<“(”‘j§1 (& 7)ijAci(0), 19 gue to Gyx(t) + Gy (1) + Gy(t) =0 and G,,=G,, (cubic
symmetry, the off diagonals oG;;(t) are equal to-G;;(t)/
2. This leads to

n n
C‘:,Zl Kijc; with Kii:_zl i 6ij +Kji

where one has to taken into account tE@Llch(t)zo.
In a microscopic approach, a Green—Kubo reldft@an )
be used to express the dissipative response to external per- k(t)=(A68;(t)A6;(0))/{A6;(0)A6;(0)) (18
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i being eitherx, y, or z. For the next step;, = 3 is used and 0.4
the definition of4, in Eq. (8) is inserted in Eq(18). This
leads to

k(t)=(£(0)A0(2— £(0)) A 6,(1)) s—0-( S(£(0)))

+(E(0)AB(£(0)A by(1)) =2+ (8(2— £(0)))].
19

(®),—o denotes a conditional average f&+0 and(&(£(0))) is
the probability density at thg-y transition. Both quantities
have to be determined separately, according to the methods
existing for one channel reactions. Of course, the analogous
statements are valid fc(.)sc:z_gnd for(é(_z_— §(0)))._ - « Monte Carlo

Although only one transition coefficierk(t) is men- 0.0 4 4
tioned in Eq.(19), we are clearly dealing with a multichannel “30 20 -1.0 00 10 20 30
reaction, because the first term of the right-hand side of Eq. 13
(19) refers to thex-y transition and the second refers to the
z-X transition. Furthermore th&(t) matrix can be recon- FIG. 2. Probability densityp(&) of the reaction coordinate &=10 K,
structed by just knowing the functideg(t), as in the phenom- obtaine_d by MC simulatior{200 000 averag¢sand by the quasiharmonic
enological case. approximation.

The whole computational treatment can now be carried
out as for the case of one channel reactions.

quasi harmonic approximation |

—V(0,0))], with Vy(3,¢) the total potential for giverd,¢

and totally relaxed translational degrees of freedom, see be-
V. COMPUTATION AND RESULTS low. Clearly, this relation completely breaks down at the
'solid—liquid phase transition, but in the solid phase, this ap-
proximation works surprisingly well, even at “high” tem-
geratures, where the reorientational motion of the molecule
will later turn out to be not activated, see Fig. 2.

The model system refers to a fcc argon crystal. One o
its atoms is replaced by a,Nmolecule. The molecule is
treated as a rigid unit of two nitrogen atoms, separated by

distancedyy=1.09 A. Interaction takes place by the stan- The functionV(9,¢) was obtained in a zero tempera-

- I = 6 6—
dard Lennar.d Jones potentia(r) =4e(o/r)?[(o/r)"—1]. ture MC program, chosing some representative values of
The potential parameters have been chosen fo bgnd for the (fixed) orientation of the N molecule. The
€arar=0.927-10"21 J, €,,y=0.691x10"2L J, op P '

23.405 A, andoay=3.357 A. If not mentioned other- obtained values are fitted to the equation:
wise, the masses ara,, =40 amu,my=18 amu, and the Vo(9,¢0)=Vo(0,0)+a(1—x*—y*—z%
lattice constant ig,=5.3 A.

Now, we brie?ly describe our implementation of the Th(1-x0-y*=2%) +e(x?y?2?), (20
Bennett—Chandler approach. At the top of the above defined, y, z being the components of the normalized director.
free energy barrier, the equilibration of the system is carriedEquation(20) can be interpreted as an expansion of the local
out within a Monte Carlo(MC) program. Every fifth MC cubic potential. The maximal relative error between the
step the whole configuration has been written out. Such given values and the fit function is of the order of 2%. This
configuration is the input configuration of a MD program, in procedure enables us to integrate functions as mentioned in
which the initial momenta are chosen according to theEq. (1) with a quasizero discretization error and with a qua-
relevant equilibrium distribution. Functions of the type sizero statistical error.

&(0)A60,(£(0))6,(&(t)), see Eq.(18), have then be com- We now present some results, obtained with the proce-
puted for every input configuration with four different initial dure defined above. At thermal energies, comparable to or
momenta distributions. The total observation time ishigher than the free energy barrier, standard MD should be
tpe~2X10 1% s, We obtained small statistical error bars, be-still sufficient to compute the rate constak(t). At these

ing approximatively 1% large, by averaging 1000 configura-temperatures, one does not deal really with an activated pro-
tions. cess, but nevertheless the rare event technique can still be

For the time propagation in the MD program, the Verletapplied. Investigations at higher temperatures are therefore
algorithm has been used. The elementary time step has beeaseful to check whether or not the rare event technique has
chosen beAt=1.08x10 1% s. The total computational ef- been correctly implemented. They are also a test for the ap-
fort for the determination of the full rate constant, containingproximations, if present. In Fig. 3, we presex{t) for two
the plateau value of the transmission coefficient, therefordifferent temperatures=60 K andT=20 K. The two stan-
corresponds to about 200 000-MD steps and 2500-MC stepdard MD curves are obtained with a computational effort of

The probability density at the transition staié £0)]) 200 000-MD steps each. The CPU time needed for these
has been obtained by performing a quasiharmonic approxeomputations at high temperatures compares to the CPU
mation of the translational degrees of freedom. This result§ime needed for the “rare event” computations at any tem-
in  exp[—B(F(T,9,¢)—F(T,0,0))]=exp[— B(Vo(T,¢) perature.
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FIG. 3. The full rate constari(t), for T=60 K andT=20 K (inlet). 0.6 L 1 L
0.0 1.0 12 2.0
t [10 7]
) In Flg. 4_' we present the transmission coefficieit), FIG. 5. Same as Fig. 3 for low lattice constant0.87 andhigh lattice
which is defined as constanta=1.00. a is measured in units of the experimentally observed
. lattice constant of pure argon at=0 K.
k(t)=k(t)/ lim k(t). (21)
t—o*

The plateau value ok(t) gives the deviations between the seen more clearly in the case of the low lattice constant. This
full rate constant and transition state theory value. In Fig. 4neans that the time scale separation is better.

we comparex(t) for T=60, 20, 10, 5, 4, 2 K, all obtained We have also studied, @t= 2 K, the effect of the chosen

by the method presented and a statistical effort as mentiongdotope on the transmission coefficient. In order to obtain
above. A clear separation between molecular time scales angear effects we choose very high and very low masses of the
the reorientation time scale only is observable for temperamyestigated isotopes, namely ten times bigger and ten times
tures, kg T<<0.2F (T,£79)~3kgK. Furthermore, we want to  smaller than the mass of natural nitrogen. Even if such ex-
examine how the density influences the plateau value ofreme cases of the N atom do not exist in nature, they can
«(t). To do this, the temperature is fixed B2 K and the  exist in a computer simulation. As demonstrated in Fig. 6,
lattice constang is varied. We choosa=1.0 and 0.88,,  the high mass case results in a plateau value close to one,
with ay=5.30 A, theexperimentally observed lattice con- \hile in the low mass case it is close Jowhich represents
stant of pure argon =0 K. In Fig. 5 we report the result. the |ower bound due to the three times degenerated stable
The plateau value ok(t) only changes in the order of 5%, qrientational state. One can conclude for the case of activated
although the total potential energy of the dense crystal aljegrientational motion that the plateau value wft) in-
ready is slightly positive. However, a drastic decrease of th@reases with increasing mass of the rotator impurity. This

microscopic time scale can be observed indicating an inregylts in the following inequality for the isotope dependent
creased mechanical modulus. Also the platead(df can be || rate:

I I l - 1.0 '.. “‘AA“‘WMWMM
L]
J 08 " °, -
. 0099000e,,
v, . _ i v ...“...ﬁ v-.....a
o... v
—_ T+ . .°o.. ) 06 F~ -1
C o4t X% Y e, *eend] SN . :
K x)S( +++ ., ] < v ‘v
% . e, 04F T v ™ -
0.2 5K )Sss( +++ ..'- -1 . N v . vv'wvm""yvvv"v"“"'v
+. L | v Y VyyyTYVy,
B e 5K &Xx +++ "-....‘ vy v W 7
2 10K Naskes ++lem v m,, = 140. amu
0.0 20K xww,(\ 0.2 r . " :mN—146amu 4
- - N T .
X 60 K B vy 4
1 1 1 1 ) hA S v my =1.40 amu
-0.2 L L ! ! v
0.0 1.0 2.0 0.0 . L L
t  [10"g] 0.0 1.0 2.0
t  [107%]
FIG. 4. The transmission coefficient(t) [see Eq.(21)], for T=2, 5, 10,
20, 60 K. FIG. 6. Same as Fig. 3 for various “isotopes” of the Molecule.
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