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The orientational diffusion of a nitrogen molecule N2 in a three-dimensional crystal of argon atoms
is studied by using the reaction coordinate formalism and the Bennett–Chandler approach. To
study the two-dimensional orientational diffusion the reaction coordinate formalism has to be
generalized to multichannel reactions. The rate coefficient for the motion between the six stable
orientational states is determined from correlation function expressions, which include corrections
to transition-state theory due to recrossings of free energy barriers. At high temperatures the
simulation results are compared with results obtained by standard molecular dynamics methods. At
low temperatures the transmission coefficient is computed and the dependence of the plateau value
upon the density of the surrounding argon matrix and upon the isotopes, chosen to form the N2
molecule, is investigated. ©1995 American Institute of Physics.
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I. INTRODUCTION

In the field of condensed matter~chemical-! physics,
there is much experimental and theoretical interest in de
mining the rate constants of transitions between differ
global or local~meta!-stable states, separated by a free
ergy barrier much larger than thermal energy. Stand
molecular-dynamics~MD! methods are not appropriate
determine these rate constants if the time window of
simulation is in the order~or smaller! of typical relaxation
times.

For this reason Bennett1 and Chandler2 introduced a
nonstandard MD method, able to compute the~fast! dynam-
ics at rare events in condensed phase. A particular wa
implement this method, called the blue-moon ensemble3 is
to constrain the total system at the top of the free ene
barrier separating two~meta-! stable states. This is done b
constraining a suitable functionj of the configurational
space~the reaction coordinate! to a given valuejTS. All co-
ordinates are left free to equilibrate while the system is k
at the transition state. At a suitable set of initial timest i ,
along the constrained equilibrium trajectory, the constrain
released and new momenta are sampled. Equilibrium
constants can now be measured with a MD program if
probability density at the transition state is known.

In the Bennett–Chandler approach the equilibration
the transition state and the determination of the probab
density at the transition state are worked out in a Mo
Carlo ~MC! program, whereas the blue-moon ensemble
ables one to carry out all the computations by MD.

Up to now, rare event techniques have been applied o
to one-channel reactions. Some particular applications
trans-gauche isomerization reactions in liquid butan4

chemical reactions5 of the typeA1BC
AB1C, linear dif-
fusion of vacancies in crystals6,7 as well as proton8,9 or
electron10,11 transfer reactions in solutions.

Two-dimensional orientational diffusion cannot be d
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scribed as a one channel process. If the stable orientatio
are parallel to thex, y and z axes, the transition of a
x-oriented state to ay-oriented state can be direct or it can be
obtained by passing through az-oriented state. Therefore we
have to find a formulation of the reaction taking into accoun
all reaction channels.

The aim of the paper is to show how a reaction coord
nate for multichannel reactions can be constructed. The foc
lies on the application on the reorientation dynamics of
nitrogen molecule N2 which is embedded in a fcc crystal,
composed by point atoms. Once the reaction coordinate h
been defined, we derive the phenomenological and the m
croscopic rate equations. The transmission coefficients, o
tained by the rare event technique, are compared at hi
temperatures to those, obtained by standard MD simulatio
At low temperatures the transmission coefficient is compute
and the dependence of the plateau value upon the density
the surrounding argon matrix and upon the isotopes, chos
to form the N2 molecule, are investigated.

II. MULTICHANNEL-REACTION COORDINATE

One of the main problems in the description of activate
processes is the definition of an appropriate reaction coord
nate j. Sometimes the choice of the reaction coordinate
quite obvious. However, even though the reaction coordina
is known, the question arises which valuejTS corresponds to
the transition state, namely at which value ofj8 the free
energyF(T,j8) has a saddle point.F(T,j8) is defined by

F~T,j8!52kBT ln E dG e2H~G!/kBT d@j~G!2j8#,

~1!

with H(G), the Hamiltonian, a function of all phase space
coordinates andd the Dirac delta function.

An illustrative simple example of the construction of the
reaction coordinate is the case of adiabatic proton transfer
42730)/4273/6/$6.00 © 1995 American Institute of Physicsct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Minimal total potentialV0 ~in units of Kelvin! for fixed orientations, defined by the anglesq andw.
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a linear molecule~whose orientation defines thez axes!,
where a suitable choice ofj is the quantum mechanical ex
pectation value of the protonsz operator for a given configu-
ration of the solvent molecules.8 In the case of homonuclear
moleculesjTS50, due to inversional symmetry, while for
heteronuclear moleculesjTS would have to be determined
numerically by an estimation of the probability densityp(j),
which, in statistical mechanics, is given by

p~j!5e2b@F~T,j!# YE dj8e2b@F~T,j8!#. ~2!

The value ofj, wherep(j) has a minimum correspond to the
value of jTS. For an efficient way to computeF(T,j) see
Ref. 2 for the Bennett–Chandler approach and Refs. 3, 12
the blue-moon ensemble.

In the case of two-dimensional orientational diffusio
the reaction coordinate should be closely related to t
anglesq andw, describing the orientation of the rotator im
purity. To fix the ideas we choose the same model of a rec
Monte Carlo study,13 where the orientational degrees of free
dom had been treated in a classical and quantum mechan
way. The preferred orientations of the molecule have be
detected forq5p/2 with w50, p, for q5p/2 with w5p/2,
3p/2, and forq50, p. Hence, the states will be classified a
x, y, andz oriented states and the orientational diffusion wi
be described by a multichannel process. We do not dist
guish between1x and2x oriented states, because of th
inversional symmetry of the nitrogen molecule. Thus th
number of stable states to be taken into account is autom
cally reduced from six to three.

The first step in finding the reaction coordinate—in th
case a function ofq and w—is to find the saddlepoint or
better the saddlelines of the free energy surface. In gene
this has to be done numerically. In our case, it is sufficient
take advantage of the cubic symmetry. The transition lin
can be only atx25y2, z25x2, andy25z2, wherebyx, y, and
z are the Cartesian components of the normalized vec
indicating the direction of the molecule. In order to demon
strate the cubic symmetry, we plot the total potentialV0 as a
J. Chem. Phys., Vol. 103, NDownloaded¬31¬Oct¬2002¬to¬129.100.171.121.¬Redistribution¬subje
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function of q and w in Fig. 1, whereby the translational
coordinates are chosen such that the total potential energy
minimized. Note, that at low temperaturesV0(q,w) is
closely related to the free energyF(T,q,w), because the
integration over the translational degrees of freedom reduc
to Gaussian integrals. In Fig. 1, it can be seen, that on
barrier is located atw5p/4, in other words it is located at
x25y2.

Now the three stable states can be defined. It is conv
nient to call a state

x oriented if : x2.y2 and x2.z2,

y oriented if : y2.z2 and y2.x2, ~3!

z oriented if : z2.x2 and z2.y2.

With this in mind, it is furthermore possible to define a func
tion j̃ describing direct transitions. This function is only an
intermediate step toward producing one scalar reaction coo
dinate. Keeping in mind, that thexy transition across the line
x25y2 has to fulfill z2,x2 andz2,y2 a suitable choice ofj̃
is

j̃5H x22y2 for z2,x2 and z2,y2,
y22z2 for x2,y2 and x2,z2,
z22x2 for y2,z2 and y2,x2,

~4!

which represent thexy, yz, andzx transitions respectively in
the same interval~21,1!. Now, to disentangle the range of
values representing the three transitions, let us simply intr
duce suitable constantsjxy

] , jyz
] , andjzx

] . By choosing

jxy
] 50,jyz

] 522,jzx
] 52 ~5!

and

j5H jxy
] 1x22y2 for z2,x2 and z2,y2,

jyz
] 1y22z2 for x2,y2 and x2,z2,

jzx
] 1z22x2 for y2,z2 and y2,x2,

~6!

one is now able to characterize the orientational state of th
system by the value of the functionj. The scalar reaction
o. 10, 8 September 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4275M. H. Müser and G. Ciccotti: Two-dimensional orientational motion
coordinatej, which describes uniquely the oriented state
the system, can now be written in compact form as

j5~jxy
] 1x22y2!u~x22z2!u~y22z2!1~jyz

] 1y22z2!

3u~y22x2!u~z22x2!1~jzx
] 1z22x2!u~z22y2!

3u~x22y2!, ~7!

with u~d! the Heavyside step function.
j is a function, that maps the sphere on a line in

following manner: Ifj50 the system is on thex-y transition
line, for 0,j,2 it is in anx-oriented state, for22,j,0 a
y-oriented state is found, and so on. According to these
marks, the probabilitiescx , cy , and cz , that the system is
either in ax, y, or z oriented state, have to be written as

cx5^ux& with ux5u~j!u~22j!,

cy5^uy& with uy5u~21j!u~2j!, ~8!

cz5^uz& with uz5u~j22!1u~2j22!,

where^d& denotes a thermodynamical averaging accord
to the relevant ensemble and wherei51,2,3 can beused
instead ofx,y,z so thatS ici51.

On the transition linesj is not defined at the eight points
wherex25y25z2. On the rest of the unity sphere this fun
tion is not defined either for the linesx2.y25z2 and per-
mutations of this equation. Since a point on a line and a
on a surface have both zero measure, it is sufficient, thatj is
well defined at all other points, in order to get well-defin
averages in a computer simulation.

Equation~8! gives an instruction on how to measure t
concentrations of the orientational states with the help of
reaction coordinate. Hence the formalism of rate equation
the one channel reactions can now be easily extended to
multichannel case.

III. RATE EQUATIONS

The phenomenological rate equation, which is a line
ized version of the master equation, can be written do
formally for any multichannel reaction:

ċi5(
j51

n

Ki j cj with Ki j52(
l51

n

kild i j1kji , ~9!

with ci the probability for the system to be in the statei and
Ki j the (i , j ) component of the phenomenological rate co
stant matrixK. kji gives the probability, per unit time, tha
the system goes fromj to i , if it is located at j . In the
following discussion, theci ’s are assumed to be expressed
the reaction coordinate Eq.~8!.

If the system has been pertubated by an external forc
times t,0, the initial deviationDci(t50) of ci(t) with re-
spect to its equilibrium valueci

eq will decay according to

Dci,n~ t !5 (
j51

n21

~e2K̃t! i jDcj~0!, ~10!

where one has to taken into account that( j51
n Dcj (t)50.

In a microscopic approach, a Green–Kubo relation14 can
be used to express the dissipative response to external
J. Chem. Phys., Vol. 103, NDownloaded¬31¬Oct¬2002¬to¬129.100.171.121.¬Redistribution¬subje
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turbations by spontaneous fluctuations in thermal equi
rium. If the external perturbationHp , given by Hp

5( j51
n21dm ju ju(2t), is switched off at timet50, than the

dissipative response of the system is

Dci,n~ t !52b (
j51

n21

G̃i j ~ t !dm j with

G̃i j ~ t !5^Du i~ t !Du j~0!&, ~11!

where the matrixG̃i j (t50) is invertible. All dm j ’s can be
expressed by inverting the matrixG̃(t) at time t50:

dm j,n52kBT(
i5k

n21

G̃jk
21~0!Dck~ t50!. ~12!

Inserting Eq.~12! in Eq. ~11! yields:

Dci,n~ t !5 (
j51

n21

(
k51

n21

G̃i j ~ t !G̃i j
21~0!Dck~0!. ~13!

Remember thatDcn(t) is given by 12( i51
n21Dci(t), so that

the dissipative response is completely described by Eq.~13!.
Equation~13! already tells us, how to compute the ph

nomenological rate constant matrixK̃, defined in Eq.~10!,
by standard MD simulation. If the motion is activated, then
time scale separation between the relaxation processes
other internal degrees of freedom exists, and the phenom
logical K̃ i j ’s are given by the plateau values of the tim
derivatives~with opposite sign! of Eq. ~13! by:2,15

K̃ i j ~ t !52
]

]t (
k51

n21

G̃ik~ t !G̃k j
21~0!, ~14!

or else, performing the time derivative, by

K̃ i j ~ t !5 (
k51

n21

^Du i~ t !Du̇k~0!&G̃k j
21~0!. ~15!

IV. APPLICATION TO TWO-DIMENSIONAL
ORIENTATIONAL MOTION

In this section, the discussion is restricted to the exam
of a N2 impurity in a fcc argon crystal. The phenomenolog
cal rate equation can be simplified because of the cubic s
metry, which leads tokxy5kzx5etc. If, furthermore, it is
used, thatcx1cy1cz51, the phenomenological rate equa
tion, Eq. ~9!, becomes diagonal:

ċi~ t !52 2
3kci1

1
3k~12ci ! with k53kxy . ~16!

From this differential equation it is easy to see, that

Dci~ t !5e2ktDci~0! with ci
eq5 1

3. ~17!

The phenomenological rate constantk, defined in Eq.~16!,
has obviously the meaning of an inverse relaxation time.

In the microscopic formulation,k has to be replaced by a
time-dependentk(t), whose plateau value at small times co
responds tok. To do this, we use Eq.~15! and the fact that,
due to Gxx(t)1Gxy(t)1Gxz(t)50 and Gxy5Gxz ~cubic
symmetry!, the off diagonals ofGi j (t) are equal to2Gii (t)/
2. This leads to

k~ t !5^Du i~ t !Du̇ i~0!&/^Du i~0!Du i~0!& ~18!
o. 10, 8 September 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4276 M. H. Müser and G. Ciccotti: Two-dimensional orientational motion
i being eitherx, y, or z. For the next step,cx5
1
3 is used and

the definition ofux in Eq. ~8! is inserted in Eq.~18!. This
leads to

k~ t !5 9
2@^j̇~0!Du~22j~0!!Dux~ t !&j50•^d~j~0!!&

1^j̇~0!Du~j~0!!Dux~ t !&j52•^d~22j~0!!&#.

~19!

^d&j50 denotes a conditional average forj50 and^d~j~0!!& is
the probability density at thex-y transition. Both quantities
have to be determined separately, according to the meth
existing for one channel reactions. Of course, the analog
statements are valid for^d&j52 and for ^d~22j~0!!&.

Although only one transition coefficientk(t) is men-
tioned in Eq.~19!, we are clearly dealing with a multichanne
reaction, because the first term of the right-hand side of
~19! refers to thex-y transition and the second refers to th
z-x transition. Furthermore theK̃(t) matrix can be recon-
structed by just knowing the functionk(t), as in the phenom-
enological case.

The whole computational treatment can now be carr
out as for the case of one channel reactions.

V. COMPUTATION AND RESULTS

The model system refers to a fcc argon crystal. One
its atoms is replaced by a N2 molecule. The molecule is
treated as a rigid unit of two nitrogen atoms, separated b
distancedNN51.09 Å. Interaction takes place by the stan
dard Lennard-Jones potentialv(r )54e(s/r )6[(s/r )621].
The potential parameters have been chosen to
eArAr50.927•10221 J, eArN50.691310221 J, sArAr

53.405 Å, andsArN53.357 Å. If not mentioned other-
wise, the masses aremAr540 amu,mN518 amu, and the
lattice constant isa055.3 Å.

Now, we briefly describe our implementation of th
Bennett–Chandler approach. At the top of the above defi
free energy barrier, the equilibration of the system is carr
out within a Monte Carlo~MC! program. Every fifth MC
step the whole configuration has been written out. Suc
configuration is the input configuration of a MD program,
which the initial momenta are chosen according to t
relevant equilibrium distribution. Functions of the typ
j̇(0)Dux(j(0))ux(j(t)), see Eq.~18!, have then be com-
puted for every input configuration with four different initia
momenta distributions. The total observation time
tobs'2310212 s. We obtained small statistical error bars, b
ing approximatively 1% large, by averaging 1000 configur
tions.

For the time propagation in the MD program, the Verl
algorithm has been used. The elementary time step has b
chosen beDt51.08310214 s. The total computational ef-
fort for the determination of the full rate constant, containin
the plateau value of the transmission coefficient, theref
corresponds to about 200 000-MD steps and 2500-MC ste

The probability density at the transition state^d@j~0!#&
has been obtained by performing a quasiharmonic appro
mation of the translational degrees of freedom. This resu
in exp[2b(F(T,q,w)2F(T,0,0))]'exp[2b(V0(q,w)
J. Chem. Phys., Vol. 103, NDownloaded¬31¬Oct¬2002¬to¬129.100.171.121.¬Redistribution¬subje
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2V0(0,0))], with V0(q,w) the total potential for givenq,w
and totally relaxed translational degrees of freedom, see
low. Clearly, this relation completely breaks down at th
solid–liquid phase transition, but in the solid phase, this a
proximation works surprisingly well, even at ‘‘high’’ tem-
peratures, where the reorientational motion of the molec
will later turn out to be not activated, see Fig. 2.

The functionV0(q,w) was obtained in a zero tempera
ture MC program, chosing some representative values oq
and w for the ~fixed! orientation of the N2 molecule. The
obtained values are fitted to the equation:

V0~q,w!5V0~0,0!1a~12x42y42z4!

1b~12x62y62z6!1c~x2y2z2!, ~20!

x, y, z being the components of the normalized directo
Equation~20! can be interpreted as an expansion of the loc
cubic potential. The maximal relative error between th
given values and the fit function is of the order of 2%. Th
procedure enables us to integrate functions as mentione
Eq. ~1! with a quasizero discretization error and with a qu
sizero statistical error.

We now present some results, obtained with the proc
dure defined above. At thermal energies, comparable to
higher than the free energy barrier, standard MD should
still sufficient to compute the rate constantk(t). At these
temperatures, one does not deal really with an activated p
cess, but nevertheless the rare event technique can stil
applied. Investigations at higher temperatures are theref
useful to check whether or not the rare event technique h
been correctly implemented. They are also a test for the
proximations, if present. In Fig. 3, we presentk(t) for two
different temperaturesT560 K andT520 K. The two stan-
dard MD curves are obtained with a computational effort
200 000-MD steps each. The CPU time needed for the
computations at high temperatures compares to the C
time needed for the ‘‘rare event’’ computations at any tem
perature.

FIG. 2. Probability densityp(j) of the reaction coordinate atT510 K,
obtained by MC simulation~200 000 averages! and by the quasiharmonic
approximation.
o. 10, 8 September 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4277M. H. Müser and G. Ciccotti: Two-dimensional orientational motion
In Fig. 4, we present the transmission coefficientk(t),
which is defined as

k~ t !5k~ t !/ lim
t→01

k~ t !. ~21!

The plateau value ofk(t) gives the deviations between th
full rate constant and transition state theory value. In Fig
we comparek(t) for T560, 20, 10, 5, 4, 2 K, all obtained
by the method presented and a statistical effort as mentio
above. A clear separation between molecular time scales
the reorientation time scale only is observable for tempe
tures,kBT,0.2F(T,jTS)'3kBK. Furthermore, we want to
examine how the density influences the plateau value
k(t). To do this, the temperature is fixed atT52 K and the
lattice constanta is varied. We choosea51.0 and 0.85a0 ,
with a055.30 Å, theexperimentally observed lattice con
stant of pure argon atT50 K. In Fig. 5 we report the result
The plateau value ofk(t) only changes in the order of 5%
although the total potential energy of the dense crystal
ready is slightly positive. However, a drastic decrease of
microscopic time scale can be observed indicating an
creased mechanical modulus. Also the plateau ofk(t) can be

FIG. 3. The full rate constantk(t), for T560 K andT520 K ~inlet!.

FIG. 4. The transmission coefficient,k(t) @see Eq.~21!#, for T52, 5, 10,
20, 60 K.
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seen more clearly in the case of the low lattice constant.
means that the time scale separation is better.

We have also studied, atT52 K, the effect of the chose
isotope on the transmission coefficient. In order to ob
clear effects we choose very high and very low masses o
investigated isotopes, namely ten times bigger and ten t
smaller than the mass of natural nitrogen. Even if such
treme cases of the N atom do not exist in nature, they
exist in a computer simulation. As demonstrated in Fig
the high mass case results in a plateau value close to
while in the low mass case it is close to13, which represent
the lower bound due to the three times degenerated s
orientational state. One can conclude for the case of activ
reorientational motion that the plateau value ofk(t) in-
creases with increasing mass of the rotator impurity. T
results in the following inequality for the isotope depend
full rate:

FIG. 5. Same as Fig. 3 for low lattice constanta50.87 andhigh lattice
constanta51.00. a is measured in units of the experimentally obser
lattice constant of pure argon atT50 K.

FIG. 6. Same as Fig. 3 for various ‘‘isotopes’’ of the N2 molecule.
o. 10, 8 September 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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4278 M. H. Müser and G. Ciccotti: Two-dimensional orientational motion
k1
k2

,Am2

m1
with m2.m1 , ~22!

m1 , m2 the masses of the isotopes, respectively. Therefor
deviation from the usual classical lawk1 /k25Am2 /m1

cannot always be attributed only to quantum isotope effe
but it may also have its origin in purely classical memo
effects.

VI. SUMMARY AND OUTLOOK

The reaction coordinate formalism has been develop
and applied for the first time to a multichannel reaction. T
application, a computer simulation study, has been conc
trated on the thermally activated reorientational diffusion
a N2 impurity in a fcc argon crystal. The plateau in the tran
mission coefficient is only clearly observable at thermal e
ergies smaller than 0.2 times the free energy barrier. While
given temperature, the plateau value does not dep
strongly on the density, it is sensitive to the mass of t
isotopes, chosen to form the molecule.
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