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Abstract

The Green’s function molecular dynamics method, which enables one to study the
elastic response of a three-dimensional solid to an external stress field by taking into
consideration only the surface atoms, was implemented as an extension to an open
source classical molecular dynamics simulation code LAMMPS. This was done in
the style of fixes. The first fix, FixGFC, measures the elastic stiffness coefficients for
a (small) solid block of a given material by making use of the fluctuation-dissipation
theorem. With the help of the second fix, FixGFMD, the coefficients obtained from
FixGFC can then be used to compute the elastic forces for a (large) block of the
same material. Both fixes are designed to be run in parallel and to exploit the
functions provided by LAMMPS.
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Programming language: C++
Computer: All
Operating system: Linux
RAM: Depends on problem
Number of processors used: 1 to N
Supplementary material: LAMMPS 22 Jan 2008 version plus our fixes
Keywords: elastic stiffness coefficients; Green’s function; elastic semi-infinite solid;
molecular dynamics
PACS: 68.35.Ja, 46.55.+d, 02.70.Ns
Classification: 7.7 Other Condensed Matter inc. Simulation of Liquids and Solids
External routines/libraries: MPI, FFTW 2.1.5
Subprograms used: LAMMPS version 22 Jan 2008

Nature of problem and solution method:
Using molecular dynamics to study elastically deforming solids imposes very high
computational costs because portions of the solid far away from the interface or
contact points need to be included in the simulation to reproduce the effects of
long-range elastic deformations. Green’s function molecular dynamics (GFMD) in-
corporates the full elastic response of semi-infinite solids so that only surface atoms
have to be considered in molecular dynamics simulations, thus reducing the prob-
lem from three dimensions to two dimensions without compromising the physical
essence of the problem.

Restrictions:
The mean equilibrium positions of the GFMD surface atoms must be in a plane and
be periodic in the plane, so that the Born-von Karman boundary condition can be
used. In addition, only deformation within the harmonic regime is expected in the
surface layer during Green’s function molecular dynamics.

Running time:
FixGFC varies from minutes to days, depending on the system size, the numbers of
processors used, and the complexity of the force field.
FixGFMD varies from seconds to days depending on the system size and numbers
of processors used.
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LONG WRITE-UP

1 Introduction

Many physical processes that are commonly associated with an interface of an
elastic solid can be strongly affected by long-range elastic deformation in the
bulk of the solid. Examples include the contact mechanics or friction between
elastically deformable bodies with rough surfaces [1–5]. In order to properly
include the effect of long-range elastic deformation with molecular dynamics
(MD) or related atomistic simulation techniques, it is typically necessary to
have the linear size normal to the interface be as large as the largest length
scale on which roughness can be found. In simulations, this is typically the
linear lateral (direction parallel to the interface) size L of the interface. An all-
atom simulation of such large blocks would require significant computing time
and memory, frequently making it unfeasible to study systems of meaningful
size.

Green’s function molecular dynamics (GFMD) [4] is a method that can reduce
the computational cost significantly while remaining numerically accurate.
The main idea behind GFMD is that all internal (harmonic) modes of an
elastic body can be integrated out leading to effective interactions of those
atoms whose degrees of freedom couple to an external force [6]. That is to say,
one calculates renormalized interactions between surface atoms. Thus the full
elastic response of semi-infinite solids is incorporated so that only the surface
atoms have to be considered in molecular dynamics simulations.

We describe in this paper the physical background of Green’s function molec-
ular dynamics and present an implementation into a classic molecular dy-
namics simulation code LAMMPS [7–9], which is done in the style of fixes.
In LAMMPS, a “fix” is any operation that is computed during a time step
which alters some property of the system. Essentially everything that hap-
pens during a simulation besides potential force computation, neighbor list
construction, and some forms of output, is a “fix” [9]. Our first fix, FixGFC,
measures the elastic Green’s functions, from which elastic stiffness coefficients
are calculated by making use of the fluctuation-dissipation theorem. FixGFC
is called at the end of each N ’th time step (N to be specified by user) after
equilibration has occurred. Our second fix, FixGFMD, first reads in the out-
put produced in a previous run using FixGFC and then extrapolates the data
to the appropriate system size during the initialization. It then computes the
elastic forces inside an elastic manifold during each time step. FixGFMD is
called after the computation of all other forces. As an alternative to reading
in the elastic stiffness coefficients, FixGFMD can also make use of analytical
solutions for simple cubic lattices with given spring couplings [10,11].
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In the remaining part of this paper, the GFMD methodology and its im-
plementation into LAMMPS are sketched. Some technical issues are high-
lighted, which were not addressed in the original literature [4]. We also present
some applications which we used to test our implementation of the fixes into
LAMMPS.

2 Theoretical background

In this section, the theoretical background behind GFMD will be reviewed.
Some aspects of GFMD are presented in more detail in Ref. [4], in particu-
lar those pertaining to a sparse representation of the stiffness coefficients in
the Brillouin zone. However, a more in depth derivation of the fluctuation-
dissipation relation we used will be given here. New technical issues arose
while implementing GFMD into LAMMPS and while extending the method-
ology from simple Bravais lattices to lattices with basis. Those issues will be
discussed in the next section.

Consider a system of bi-linearly coupled (harmonic) displacements {ui}, whose
potential energy V is given by

V =
∑

i,j

1

2
φijuiuj, (1)

where φij = φji. The Green’s function coefficients are defined as the second
moments of the displacements,

Gij = β〈uiuj〉, (2)

where β = 1/kBT and 〈· · · 〉 denotes the ensemble average. In thermal equilib-
rium, the distribution of {ui} will follow Boltzmann statistics. Thus the prob-
ability to find a given configuration {ui} will be proportional to exp(−βV )
and

Gij =
β

Z(β)

∫
du1 · · ·duNuiuje

−βV , (3)

where Z(β) =
∫

du1 · · · duNe−βV is the partition function. By expressing ui in
terms of the eigenvectors of the Φ matrix (the matrix whose components are
φij), one can easily show [12] that the second moments of the displacements
ui (Green’s function coefficients Gij) satisfy

Gij = β〈uiuj〉 = [Φ−1]ij . (4)

The equivalent relation in reciprocal space is derived at the end of this section.
Thus Eq. 4 provides a feasible way to accurately construct the Φ matrix
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provided that a sufficiently large number of independent observations of {ui}
in thermal equilibrium are known.

For harmonic system, the integrand of the partition function Z(β) is a high-
dimensional Gaussian distribution. Integrating out individual degrees of free-
dom will leave the Boltzmann factor of the remaining terms in a Gaussian
form ∫

dune
−βV ∝ e−βV ′

, (5)

where V ′ = 1
2

∑
i6=n,j 6=n φ̃ijuiuj and φ̃ij = φij − φinφjn/φnn. V ′ and φ̃ij are the

effective renormalized potential energy and spring constants, respectively. In
this fashion, all degrees of freedom that do not couple directly to any external

force can be eliminated. In the given context of a semi-infinite elastic solid in
contact with an adsorbate or a substrate, it will be reasonable to assume that
only the first layer interacts with the adsorbate and/or substrate, respectively.
The effect of all other layers can be incorporated in the single Green’s function
layer.

The procedure described above to eliminate harmonic degrees of freedom ap-
plies to periodic and non-periodic systems alike. However, the method is better
suited for periodic systems due to their translational invariance, which allows
for a sparse representation of the effective interactions, i.e., instead of calcu-
lating the effective spring constants between individual surface atoms in real
space, it is more efficient to assess them in reciprocal space. This is because
modes with different wave vectors do not couple with each other in periodic
systems with harmonic degrees of freedom. If un is the displacement vector of
atom n with mean equilibrium position R0

n in real space, its Fourier transform
is defined as

ũ(q) =
1√
N

∑

n

un exp(−iqR0
n). (6)

The spring constant matrix in reciprocal space Φ̃ would be reconstructed
according to Eq. 4 as

Φ̃αβ(q) = [G̃−1(q)]αβ, (7)

where the Green’s function in reciprocal space reads

G̃αβ(q) =
1

kBT
〈ũα(q)ũ∗

β(q)〉. (8)

Here “∗” denotes the complex conjugate. Thus, for three-dimensional simple
crystals with N atoms in the interface, one only has to acquire and diago-
nalize N matrices each having dimension 3 × 3, instead of accumulating and
diagonalizing one large 3N × 3N Green’s function matrix.

Once the Φ̃ matrix has been obtained, the elastic force on atoms in the Green’s
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function layer can be readily obtained by

f̃α(q) = −
∑

β

Φ̃αβ(q)ũβ(q), (9)

where ũα(q) is the α component of the displacement field expressed in recip-
rocal space defined in Eq. 6. By transforming f̃α(q) back into the real space,
one will obtain the corresponding elastic force f(r) in real space.

While we do not consider deviations from perfect crystallinity here, we would
like to mention that it will be possible to conduct simulations with local inho-
mogeneities by using Green’s functions reflecting the long-wavelength behavior
plus local perturbations, which would need to be augmented by local interac-
tions. Algorithms have been developed for instance in the context of lattice
cavities in Ref. [13].

In the remainder of this section, we will derive the fluctuation-dissipation
relation which forms the basis for our approach. Consider a crystal in which
the (effective) interaction potential between atoms is given by

V =
1

2

∑

n,n′

∑

α,α′

Φα,α′

n,n′un,αun′,α′. (10)

Here n enumerates the elementary cells and α the Cartesian coordinates of
the atoms contained in an elementary cell. For periodic systems, the (renor-

malized) force constants Φα,α′

n,n′ only depend on the relative vector ∆R0
n,n′ =

R0
n −R0

n′.

Using the definition of the Fourier transform in Eq. 6 for the displacements,
one can substitute unα with

∑
q ũα(q) exp(iqR0

n)/
√

N and thus,

V =
1

2N

∑

q,q′

∑

α,α′

ũ∗
α′(q′) ũα(q)

∑

n

ei(q−q′)R0
n

︸ ︷︷ ︸
Nδ

q,q′

∑

∆R0

n,n′

Φα,α′

n,n′ e
−iq′∆R0

n,n′

︸ ︷︷ ︸
Φ̃

αα′(q′)

(11)

=
1

2

∑

q

∑

α,α′

ũα(q)Φ̃α,α′(q)ũ∗
α′(q). (12)

Inserting identities in the form of δαβ =
∑

γ UαγU
∗
γβ , where the Uαγ is the αγ

components of a unitary matrix, one can rewrite Eq. 12 as

V =
1

2

∑

q

ũβ(q)Uβγ︸ ︷︷ ︸
ûγ(q)

U∗
γαΦ̃αα′(q)Uα′γ′

︸ ︷︷ ︸
Φ̂

γγ′

U∗
γ′β′ũ∗

α(q)
︸ ︷︷ ︸

û∗

γ′
(q)

(13)

where we have assumed the summation convention in Greek indices. Now
assume that U represents the unitary transformation that diagonalizes the
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Φ̃ matrix so that the components of û can be interpreted as independent
eigenmodes. (This transformation exists because Φ̃ is a symmetric positive
definite matrix; Φ̃ at Γ point is special, it may have zero eigenvalues but
is still symmetric.) Consequently, the equipartition theorem applies for each
component in ûγ and thus,

kBT
[
Φ̂−1

]

αα′

= 〈ûα(q)û∗
α′(q)〉 (14)

Setting Ĝαα′ =
[
Φ̂−1

]

αα′

and transforming back into the original coordinate

system yields

G̃αα′ =
1

kBT
〈ũα(q)ũ∗

α′(q)〉 . (15)

Note that Eq. 15 differs from the related Eq. 13 in reference [4], where a typo
was made by placing the complex conjugate sign over the first term on the
right-hand side. The error seems irrelevant for systems without basis, however,
when the index α runs over the Cartesian components of more than one atom,
the difference becomes noticeable.

In practice, it is easier to measure absolute atomic positions rather than dis-
placements. As is seen in Eq. 8, the measurement of the Green’s functions
requires the evaluation of the atomic displacement, ũα(q) = R̃α(q) − R̃0

α(q),
where R̃α(q) is the instantaneous position of surface atoms in the recipro-
cal space, and R̃0

α(q) is the corresponding mean equilibrium position, which
satisfies

R̃0
α(q) = 〈R̃α(q)〉. (16)

Consequently, the Green’s function in Eq. 8 could then be expanded as

G̃α,β(q) = 〈ũα(q)ũ∗
β(q)〉 (17)

= 〈[R̃α(q) − R̃0
α(q)][R̃β(q) − R̃0

β(q)]∗〉
= 〈R̃α(q)R̃∗

β(q)〉 − 〈R̃α(q)〉R̃0∗
β (q)

− R̃0
α(q)〈R̃∗

β(q)〉 + R̃0
α(q)R̃0∗

β (q)

= 〈R̃α(q)R̃∗
β(q)〉 − R̃0

α(q)R̃0∗
β (q)

= 〈R̃α(q)R̃∗
β(q)〉 − 〈R̃α(q)〉〈R̃∗

β(q)〉.

Thus by replacing 〈ũα(q)ũ∗
β(q)〉 with 〈R̃α(q)R̃∗

β(q)〉 − 〈R̃α(q)〉〈R̃∗
β(q)〉, the

instantaneous positions are evaluated rather than the displacements. This also
reduces roundoff errors, aided by the fact that 〈R̃α(q)〉 is expected to be zero
in equilibrium for q 6= 0.

7



3 Notes on implementation and technical issues

In this section, a few technical issues will be discussed, which arose while
implementing the GFMD method into the open source package LAMMPS [7–
9]. The main points are related to (i) what procedure is done in which fix, (ii)
how to deal with lattices with basis, (iii) how to deal with non-orthorhombic
lattice, (iv) how to reduce finite-size and anharmonic effects, (v) and how to
interpolate the stiffness coefficients from small systems to large systems.

3.1 FixGFC and FixGFMD

The measurement of effective elastic stiffness coefficients based on the fluctuation-
dissipation theorem was realized in FixGFC. It takes the instantaneous posi-
tions of surface atoms in the equilibrated system, and transforms them into
reciprocal space to get the Green’s functions. After every given number of
measurements, the elastic stiffness coefficients are calculated and written to a
binary file as well as a text log file.

The FixGFMD, however, does the real job for Green’s function molecular
dynamics. It reproduces the effective elastic force on a single layer of atoms
from the bulk material that has now be integrated out, by utilizing the effective
elastic stiffness coefficients — either read from the binary file produced in
FixGFC or calculated from the analytic solutions for simple cubic systems
[10,11]. At each time step, it computes the displacements u(r) of all atoms
in the manifold and transforms them into the reciprocal space yielding ũ(q),
and multiplies ũ(q) by the Φ̃ matrix, the resultant elastic force in reciprocal
space f̃(q) is then transformed back into the real space and added to the
corresponding atoms in the manifold.

In both fixes, the Fourier transformations are realized by calling subroutines
from FFTW 2.1.5 (http://www.fftw.org) The FFTW libraries are therefore
required when compiling LAMMPS together with current extensions.

3.2 Lattices with basis

When dealing with a non-primitive lattice, i.e., a lattice with basis, one simply
extends the indices α in uα (and therefore G̃αβ , Φ̃αβ and so on) to kα, where
k runs over all atoms in the unit cell. For a lattice with basis, one may be
tempted to generalize the kernel of the Fourier transformation in Eq. 6 from
exp(−iqR0

n) to exp(−iqR0
n,k), where R0

n,k is the equilibrium position of the
k’th atom in the n’th cell. Doing this would result in new transformation
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matrices and new force constant matrices in reciprocal space, but yielding
exactly the same elastic force during Green’s function molecular dynamics.
Consequently although this procedure is legitimate, it introduces unnecessary
extra floating point operations during the execution of the code. We therefore
recommend the kernel ussing exp(−iqR0

n), as in Eq. 6.

3.3 Non-orthorhombic lattices

The use of non-orthorhombic lattices may invoke difficulties regarding periodic
boundary conditions. As an example, consider a triclinic solid placed into
an orthorhombic simulation cell, as shown in Fig. 1. As is clear from the
figure, triclinic solids may lead to skewed periodic boundary conditions. As
a consequence, one risks having inconsistent periodic-boundary conditions for
the solid and its FFT representation.

A

A’ A"

Fig. 1. (Color online.) Demonstration of potential difficulties associated with peri-
odic boundary conditions. If the solid has a non-orthorhombic lattice (dotted, blue
line) and is then placed into an orthorhombic simulation cell (solid, red line) in
which the periodic boundary conditions are expressed in terms of that (red) cell,
the periodicity of the FFT representation (same as the original non-orthorhombic
(blue) lattice) would be different from the one imposed during MD (red orthorhom-
bic cell).

Such inconsistency in periodicity would make the resultant elastic force incor-
rect during GFMD when an external force is applied to the GFMD manifold.
For example, the periodicity of simulation box (the orthorhombic cell) would
require that forces on atom A and its image A′ be the same, while the FFT
representation would require A and A′′ to share the same force. As a result,
the force on A′ and A′′ would be wrong, except in very special circumstances.

The solution to this problem is to simply adopt non-orthorhombic geometry for
everything in the simulation (for example, by specifying a non-orthorhombic
box when data is read in in LAMMPS) instead of placing it into an orthorhom-
bic box. Thus the periodicity in the simulation cell and its FFT representation
will be the same.
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3.4 Finite size and anharmonic effects

The system size dependence of the measured elastic stiffness coefficients is
another crucial issue that requires special attention. The finite size effect is
mainly observed on effective elastic stiffness coefficients at the Γ-point, in that
the eigenvalues corresponding to translational motions (acoustic eigenvalues)
of the Φ̃ matrix at Γ (i.e., q = 0) are of finite values instead of zero. Generally
these finite values decrease as the system size increases. As a result, the finite
size effect stiffens the measured Φ̃(Γ).

Such “stiffening” is not expected since translational motions do not introduce
internal interactions. To eliminate/reduce this finite size effect one could, of
course, measure the effective elastic stiffness coefficients with a large enough
simulation cell. However, it is neither efficient nor necessary. Instead, we prefer
to adopt an alternative way that will reduce the finite size effect satisfactorily.
First, the eigenvalues Λ and the corresponding eigenvectors Q of the measured
Φ̃(Γ) are computed. Second, the acoustic eigenvalues are set to zero (in prac-
tice, in order to avoid numerical problems, they are divided by 108 for systems
with basis), while the remaining ones are kept untouched, yielding Λ̃. Finally,

the original Φ̃(Γ) is replaced by Φ̃′ = QΛ̃Q
−1

. In effect, such treatment ac-
tually resets Φ̃(Γ) to be zero for systems without a basis while modifies the
elements of Φ̃(Γ) slightly for system with a basis, making its acoustic eigen-
values close to zero, thus eliminating the finite size effect significantly.

Opposing the finite size effect, the anharmonic effect softens the measured
Φ̃ at all q points. There is no general method, such as the rescaling used
in eliminating finite size effects, to reduce the anharmonic effect. One could
however reduce the temperature used in the measurement, making the system
more “harmonic” to produce reliable effective stiffness coefficients.

3.5 Interpolation of stiffness coefficients to larger systems

Frequently, the size of the single layer used in GFMD is greater than that of
the surface layer used in the stiffness coefficients measurement. It is therefore
necessary to have some method to get the stiffness coefficients from the mea-
sured ones with a high precision. This is feasible since in reciprocal space, the
Φ matrix is continuous and periodic with a periodicity of 2π/a. Provided the
simulation boxes share the same symmetry, Φ does not depend on the system
size other than the finite size effect discussed above — for larger system, one
simply has a denser q mesh.

In our previous implementation [4], use of the phonon dispersion-like prop-
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erties of the stiffness coefficients were made. Although this method works in
most situations it may be unfeasible to get all the symmetry allowed coeffi-
cients for each given system, in particular when several atoms are contained in
the basis. Instead, one would like to have an interpolation scheme. In this re-
gard, the bicubic spline interpolation method is a good choice. However, one
difficulty is that the stiffness coefficient can have a cusp. Noticing that the
cusp always lies at q = 0 in the reciprocal space, we adopted a mixed scheme
to perform the interpolation: bi-linear interpolation is employed for points in
the immediate vicinity of q = 0, while bi-cubic interpolation is used for all
other points where no cusp appears.

4 Applications

In this section, three test runs will be presented to demonstrate the validity
and usage of the implemented fixes.

First, we take a simple cubic (2+1)-dimensional solid (we will integrate out the
1-dimension perpendicular to the interface leaving a 2-dimensional surface) as
an example to measure its stiffness coefficients by FixGFC. While simple cubic
solids are not very common in nature, they constitute good test systems as
there is an analytical solution of the stiffness coefficients available. Saito[11]
derived the exact Green’s function for a simple cubic solids of lattice constant
a = 1 (reduced units are used in this example, i.e., the units of length, mass,
and energy are taken as unity) with nearest and second-nearest harmonic
interaction

E =
1

2

∑

[i,j]

kij(rij − r0
ij)

2, (18)

where kij = 1, r0
ij equals 1 and

√
2 for nearest and second-nearest neighbor

pair, respectively. [i, j] runs over all nearest and second-nearest neighbor pairs.
A simple cubic lattice with size 16× 16× 16 was constructed, whose topmost
layer was held fixed while the others were free to move. Periodic boundary
condition was applied in the x and y (planar) directions. The system was
then equilibrated at a temperature of 0.005 for 500,000 molecular dynamics
steps. The time step was set to be 0.005. The Green’s function of the bottom
layer (surface atoms) was measured every 20 time steps during the following
simulation procedure.

The diagonal components of the obtained stiffness coefficients along the major
symmetry directions in the Brillouin zone are shown in Fig. 2. The analytic
solution for a semi-infinite system by Saito[11] is also shown as lines. One
observes that, first, the stiffness coefficients obtained are similar to phonon-
dispersion curves. This is expected for a system without a basis. Secondly, be-
cause of the pure harmonic interactions, anharmonic effects are not observed.
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Fig. 2. Numerical (symbols) and analytical (Ref. [11], lines) results of the diagonal
components of Φ̃αβ(q) for simple cubic crystal lattice along the major symmetry
directions in the surface Brillouin zone. The inset shows a magnification of the
vicinity of Γ-point.

However, finite-size effects are clearly seen. At the Γ point, the measured
Φ̃αβ ’s are of small but finite values, while the analytic solutions give exactly
zero (see inset of Fig. 2). Thirdly, cusps are found for all diagonal components
around the Γ-point. Last but not least, other than at the Γ point, the coef-
ficients computed by FixGFC, based on the fluctuation-dissipation theorem,
agree very well with the analytic ones. Similar agreement is also found in the
off-diagonal components, which are not shown here. Such agreement confirms
the feasibility of using the fluctuation-dissipation theorem to determine the
stiffness coefficients, as well as the validity of the current implementation,
FixGFC.

We now take a hexagonal lattice as another example to further illustrate the
measurement of effective elastic stiffness coefficients, but for a (1+1) dimension
system. Two models with sizes of 16 × 18 and 64 × 74, respectively, were
constructed, as in the previous case, with the topmost layer (actually, it is a
line of atoms for our (1+1)-dimensional system) fixed and the others free. The
interaction between atoms was described by a Lennard-Jones potential

E = 4ǫ

[(
σ

r

)12

−
(

σ

r

)6
]
, r < rcutoff (19)

with σ = 1, ǫ = 1 cutoff at 2.5. Figure 3 shows the elastic stiffness coefficients
obtained as a function of wave number q. As expected the elastic stiffness
coefficients have a periodicity of 2π in the reciprocal space. The elastic stiffness
coefficients, other than at the Γ point, do not show notable size-dependence.
The finite size effect is clearly seen for Φ̃(Γ). However, after rescaling Φ̃(Γ),
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Fig. 3. Elastic stiffness coefficients for (1+1)-dimensional hexagonal lattice with
Lennard-Jones interaction as a function of wave number q. Symbols are results com-
puted by FixGFC for different system size; solid lines are results interpolated from
those for system size of 16 × 18, after rescaling Φ̃(Γ). The inset is a magnification
of the vicinity of Γ-point.

the interpolated data do not show notable finite size effects. Such observations
give confidence in the reliability of the interpolated elastic stiffness coefficients.

The charm of GFMD lies in its potential to model real materials. As a third
example, we take the (111) surface of Cu to illustrate one of the possible ap-
plications of GFMD, namely the indentation of a surface against an indenter.

Twenty Cu(111) layers (39.7 Å in thickness) with surface dimension of 39.8×
40.9 Å2 (9×16 unit surface cells) were modeled to measure the elastic stiffness
coefficients. This is a typical case whose unit surface cell has a basis with two
atoms. A full atom molecular dynamics simulation was run at 300K based
on an embedded-atom-method (EAM) potential [15] and the elastic stiffness
coefficients were measured by FixGFC on the bottom layer. The diagonal com-
ponents of the obtained elastic stiffness coefficients are shown in Fig. 4. Unlike
the primitive cell cases shown above, the relation between the stiffness coeffi-
cients and q vectors do not show phonon-dispersion-like curves anymore. The
corresponding component for each basis atom, e.g., Φ̃11 and Φ̃44, coincide with
each other. This is expected, as both basis atoms are identical. The anhar-
monic effect is clearly seen here. In the whole reciprocal space, Φ̃’s measured
at 300K are always smaller than those at 100K.

Secondly, another two Cu(111) models were constructed to simulate the in-
dentation of a surface against a cylindrical indenter. The first one consists
of 18 × 32 unit surface cells (79.7 × 81.8 Å2) with only one layer, which is
subjected to GFMD, by invoking FixGFMD, based on the elastic stiffness
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Fig. 4. Elastic stiffness coefficients based on embedded-atom-method potential for
the (111) surface of FCC Cu with 2 atoms per unit surface cell, along the ma-
jor symmetry directions in the Brillouin zone. Symbols and solid lines are results
measured at 100K, while dotted lines are those measured at 300K.

coefficients obtained at 100K. The size of the surface layer is twice as long
in both the x and y directions as that used in the FixGFC measurement,
therefore interpolation of the elastic stiffness coefficients is necessary and per-
formed. A cylindrical indenter was placed along the y direction underneath
the surface layer, and an extra load of −0.01 eV/Å was applied to all atoms
in the layer along the z direction. The second model consists of 18 × 32 unit
surface cells with 40 layers in the z direction (81.4 Å in thickness). Full atom
molecular dynamics simulation based on the EAM potential was carried out
at 0K, with the same indenter placed and same amount of extra load applied
to all atoms on the topmost layer (The extra load could also be added to the
bottom layer, i.e., the layer that is in direct contact with the indenter. The
same result would be obtained).

Fig. 5 compares the final positions of atoms in the layer that is in direct con-
tact with the indenter as well as the normal pressure on these atoms exerted
by the indenter from the full atom MD and GFMD. It is seen that both simu-
lations agree quite well with each other, confirming that the GFMD can indeed
reproduce the contact morphology/mechanics of the all-atom simulation.

Because of the coarse graining in the GFMD, the total number of atoms
considered in the GFMD is significantly reduced — in the present case, 1/40
of the full-atom simulation. In turn, the total simulation time cost in GFMD
is just about 2 seconds, while it is ∼ 4300 seconds for full atom MD. The
saving in computational cost is really amazing.
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Fig. 5. Comparison of (a) the indentation shapes, (b) normal pressure exerted by
the indenter, between full atom MD and Green’s function MD for Cu(111) surface
against a cylindrical indenter; view from the y direction. Only the bottom layer of
the full-atom MD model is shown; the Z axis in (a) is enlarged by 100 times with
respect to X for a better view.

5 Summary

In summary, we present in this paper an implementation of the Green’s func-
tion molecular dynamics, as an extension to the existing open-source classical
molecular dynamics code LAMMPS. It is demonstrated that the implementa-
tion is capable of evaluating the elastic stiffness coefficients precisely based on
the fluctuation-dissipation theorem, and that the subsequent Green’s function
molecular dynamics based on the obtained elastic stiffness coefficients can re-
produce perfectly the contact morphology of the all-atom simulation, while
the computation time is reduced considerably. The implementation of GFMD
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thus enables one to study the contact mechanics of a surface within the elastic
deformation region with high precision as well as low computational costs.
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