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We investigate the generic dielectric properties of solids in the split-charge equilibration (SQE)
formalism, which contains the regular charge equilibration (QE) method as a limiting case, but
augments it with a bond hardness term. It is shown that QE always mimics ideal conductors, while
any positive bond hardness used in SQE turns the solid into a dielectric. Crystals with simple cubic
and rocksalt structure are considered explicitly. For these symmetries, we solve the continuum limit
of the SQE formalism analytically. As a result, we provide simple analytical expressions for how
dielectric constant and penetration depth of the electrostatic field depend on atomic hardness, bond
hardness, and the lattice constant. This mapping may prove useful not only for force field parame-
terization but also for solving dieletric responses on coarse-grained scales. Successful comparison of
numerical data to analytical solutions is made, including those containing discretization corrections.

I. INTRODUCTION

Assigning meaningful atomic charges to atoms is an
important aspect of force field development, as long-
range interactions crucially depend on the charge of an
atom [1–3]. This task is difficult when dealing with het-
erogeneous media, such as interfaces between silicon and
silica, as one cannot know what effective charge to give
to atoms near the interface prior to a simulation. Similar
comments apply to many other chemically heterogeneous
systems, which is why there is a broad interest in assign-
ing atomic charges that reasonably reproduce the electric
fields generated by the systems of interest.

The schemes of assigning atomic charges can be
roughly divided into two categories, atom-based and
bond-based approaches. In the atom-based methods [4,
5], which are also known as charge-equilibration (QE)
methods, partial charges are chosen such that they min-
imize the potential energy function Vpot

Vpot =
∑

i

(κi

2
Q2

i + χiQi

)

+ VC, (1)

typically under the constraint that the net charge is neu-
tral. Here, Qi is the charge of atom i, κi and χi are its
hardness and electronegativity, respectively, and VC is
the (potentially screened) Coulomb interaction between
the charges plus their coupling to electrostatic potentials
originating from additional sources. An attractive as-
pect of QE methods is that their functional form can be
motivated from density functional (DFT) theory argu-
ments [4, 6, 7]. Moreover, the values for κ and χ can
be determined from measurable atomic parameters, i.e.,
electronegativity and ionization potential. Thus these
parameters should be transferable in principle.
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One disadvantage of the QE method is that non-integer
charges can be transferred between two atoms across
large distances, e.g., hydrogen and fluorine would be as-
signed partial charges even if the chemical bond of the
HF molecule were broken. This charge transfer is in con-
trast to the observation that both atoms become neutral
at large separation, as the ionization potential of hydro-
gen exceeds the electronegativity of fluorine. The abil-
ity of atom-based QE methods to invoke such non-local
charge transfer is responsible for the improper scaling of
the polarizability of simple alkane chains with the de-
gree of polymerization [8, 9], i.e., the dielectric response
is automatically that of a conducting polymer. This re-
sult implies that condensed phases of QE systems are
also conducting and that the electrostatic fields near the
surfaces are parallel to the surface normal. Hence, QE
methods will generally not give accurate approximations
of electrostatic fields near dielectric clusters and solids,
because it ignores the two transverse components that
tend to be present in the electrostatic fields produced by
real dielectrics.

In newer atomic charge-transfer approaches, some but
not all of the discussed problems have been cured. For ex-
ample, in the quadratic valence-bond model (VBM) [10]
the electronegativity difference between two atoms is
made a function of distance, thereby producing the cor-
rect dissociation limit of diatomic molecules [11]. How-
ever, a small externally-imposed difference in the elec-
trostatic potential, which could be due to a third par-
ticle, would still induce non-local charge transfer [12].
In the fluctuating charge model and generalizations
thereof, [13, 14] non-local charge transfer is suppressed
by constraining the charge in individual molecules, which
requires ad-hoc assumptions on the bonding situation and
makes it conceptually difficult to include bond breaking
into the approach.

In order to remedy the non-local charge transfer prob-
lem, bond-based descriptions were developed in which
charge can only be transferred between two bonded
atoms [8, 14]. If the charge transferred from atom j and
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atom i is denoted by qij , then the net charge of atom i is

Qi =
∑

j

qij , (2)

where qij = −qji. In bond-based approaches, the hard-
ness is associated with the charges, qij transferred across
a bond, rather than with the atoms. Thus, the term
∑

i κiQ
2
i /2 in Eq. (1) is replaced with

∑

ij κs,ijq
2
ij , where

the sum runs over all bonds involving atoms i and j,
and κs denotes the bond hardness. An advantage of
pure bond based descriptions is that κs can be made dis-
tance dependent, whereby charge transfer across large
distances can be suppressed. However, a pure bond de-
scription loses the attractive feature of QE approaches
that the parameters κ and χ are motivated from DFT.
Moreover, the polarizability of alkane chains with the de-
gree of polymerization exhibits the wrong scaling in the
limit of small chains [9].

Recently, the split-charge equilibration (SQE) ap-
proach was proposed, which combines the ideas of atom-
based and bond-based approaches in one model. In its
simplest or default variant, Vpot can be expressed as

Vpot =
∑

i,j>i

κs,ij

2
q2
ij +

∑

i

(κ

2
Q2

i + χiQi

)

+ VC. (3)

In this variant SQE retains the parameters κ and χ
that are motivated from DFT, but also includes the phe-
nomenologically added bond hardness term, κs, which
penalizes charge flow between two atoms. The SQE
model can be parameterized to produce the correct disso-
ciation limits of molecules by turning the bond hardness
into a distance-dependent term [12, 15], and it shows
more accurate scaling with the degree of polymerization
than other charge equilibration schemes [9], thereby rem-
edying the problems associated with charge-transfer po-
tentials mentioned so far. Lastly, the SQE approach con-
tains the pure bond and pure atom type approaches as
limiting cases by setting either the atomic or the bond
hardnesses to zero, respectively. For these reasons, the
SQE formalism is a promising avenue to accurately de-
scribe atomic charge transfer in classical force fields.

In this work, we wish to elucidate another advantage
of the SQE method, namely, the ability to tune the di-
electric response of a solid by turning on the pure bond
hardness term in the formalism, without having to re-
sort to reverse mapping schemes beforehand, such as
reverse Monte Carlo [16]. Charge equilibration meth-
ods are usually parameterized for molecules in the gas
phase. While the methodology has been applied to the
condensed phases, in particular in molecular dynamics
simulations, we are not aware of an attempt to determine
the two most important phenomenological dielectric ma-
terials constants, namely the dielectric constant and the
penetration depth, from the QE or SQE model parame-
ters. It is the intention of this work to fill this gap. We
will do this by a combination of analytical and numerical
work, in particular, we investigate the dielectric response

of a simple cubic and rocksalt lattice to an external field.
This will be done by investigating the continuum limit of
the SQE model, which can be solved analytically.

II. THEORY

In this section, we discuss the generic dielectric prop-
erties of our ordered one-component (simple cubic) and
two-component (rocksalt) systems. To do this, we first
calculate the expected charges for the sublattices of the
rocksalt structure and discuss the stability of the solu-
tion as a function of the model parameters, which are
the lattice constant, a, the Madelung constant, αM, and
the split-charge parameters. Next, we introduce notation
required for the later analytical sections, in which we de-
rive the continuum limit of the SQE approach and its
solution. Special attention is payed to the response of a
dielectric solid in a capacitor geometry, from which one
can derive simple analytical expressions for the dielec-
tric constant and the penetration depth. Our treatment
will also include discretization corrections that move our
treatment beyond the continuum limit.

Generalization to more complicated compositions and
geometries can be made in a straightforward fashion, and
therefore conclusions we draw on our very simple model
systems should remain valid for other two component
structures. The main difference between simple and com-
plex geometries would be that dimensionless factors in
the equations would turn out differently for other crys-
tal geometries and that coupling between next-nearest
neighbors would lead to similar changes in wavelength-
dependent properties as they do in problems related to
lattice dynamics.

A. Atomic charges for the rocksalt structure

For a strictly period rock salt crystal it is a straight-
forward procedure to calculate the atomic charges, be-
cause each split charge is identical, except for a sign,
i.e., qij = ±qs, where we chose qs to be positive. In the
rocksalt structure, where each atom has six neighbors of
opposite charge, the atomic charges are Qi = ±6 qs, de-
pending on the ion type. If αM denotes the Madelung
constant, and Nn = 6 the number of nearest atoms, then
the energy per atoms v is given by

v =
Nn

4
κsq

2
s +

1

2
κ(Nnqs)

2− αM

4πε0

(Nnqs)
2

a
±∆χ

2
Nnqs, (4)

where ∆χ is the electronegativity difference of the two
species occupying the two sublattices and κ is the average
value of κCl and κNa, where we have indexed κ with the
symbols Na and Cl to distinguish the two different species
on the sublattice.

The system is positive definite and hence stable if the
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prefactor to the term quadratic in qs is positive, i.e., when

Nnκs + 2κN2
n −

αM

πε0

N2
n

a
> 0 (5)

in which case v can be minimized by requiring that
∂v/∂qs vanishes and thus

Q = ± N2
n∆χ

Nnκs + 2κN2
n − αM

πε0

N2
n

a

. (6)

Generalization to other two-atomic crystals remain rel-
atively simple, as long as each atom has a well-defined
position in the unit cell so that Madelung constants can
be defined.

B. Notation and Convention

In this section, we will define some of the notation and
convention used throughout the remainder of the paper.
Lattice points will be indexed with three indices (l,m, n)
such that

1

a
Rlmn = l ex + m ey + n ez, (7)

when they are explicitly indexed. Unless mentioned oth-
erwise, the indices l,m, and n will run from one to Nx,
Ny, and Nz, respectively, which will be taken to be in-
finity in the analytical calculations.

The split charge flown from atom (l + 1)mn to atom

lmn will be denoted as q
(1)
lmn and likewise the split charge

flown from atom l(m + 1)n to lmn will be denoted as

q
(2)
lmn, etc. With this notation the charge on atom lmn

can be written as

Qlmn = q
(1)
lmn−q

(1)
(l−1)mn

+q
(2)
lmn−q

(2)
l(m−1)n+q

(3)
lmn−q

(3)
lm(n−1)

(8)
This notation will allow us to map the diagonalization
procedure of the split charge formalism onto an eigen-
mode problem of lattice vibrations in the simple cubic
(or rocksalt) crystals. Please note that this mapping is
not critical to the results but a matter of rather large
convenience.

The assumption of the continuum limit in the SQE
model is that the qlmn are smooth functions of their in-
dices so that it is meaningful to define continuous func-
tions q(R) reflecting the split charges at the lattice sites.
Interpreting Eq. (8) as a finite difference version of a gra-
dient, one can also describe charges as smooth functions
of R via

Q(R) = a∂αqα(R). (9)

Note that Q(R)/a3 corresponds to the charge density,
ρ(R), i.e., Q(R) is the charge contained in an appropri-
ately chosen elementary cell around a given lattice point.

In reciprocal space, Eq. (9) reads

Q̃(k) = iakαq̃α(k) (10)

in the continuum limit, where we have assumed the sum-
mation convention over identical Greek indices. For lat-
tices other than simple orthorhombic lattices, explicit
summation would be required, because the orientation
of the split charges would not align any longer with the
Cartesian coordinate axis and the continuum limit cal-
culations would be more cumbersome to be carried out.

In analogy to lattice problems, one could associate the
qα(R) as vibrations in the α-direction. The κs would
then correspond to on-site springs, while the κ would
reflect springs between two nearest-neighbor particles.
These springs would not only have a longitudinal com-
ponent but also transverse (i.e. bending) components of
identical magnitude.

If one wants to take into account the discreteness of the
lattice and its periodicity when relating the split charge
field and the charge density, then the term kα in Eq. (10)
should be replaced with the following expression:

kα →
2

a
sin

(

kαa

2

)

. (11)

While the lattice constant a was used to define the unit
of length, we will formally write the number density of
atoms, n, as n = 1/a3. In the bulk, there are three split
charges per atom on average, so that one can define the
split-charge density as ns = 3n. The number density of
the split charge with a given index is the same as the
atomic density.

Lastly, we would like to define the prefactors for the
Fourier series coefficients:

qβ(R) =
∑

k

q̃β(k)eikαRα (12a)

q̃β(k) =
1

N

∑

R

qβ(R)e−ikαRα . (12b)

The same convention for Fourier transformation will be
used for the charges Q(R) and their Fourier transform

Q̃(k). This way Q̃(0) corresponds to the average charge.

C. Diagonalization of the split-charge energy

In this section, we will express the energy of the split-
charge model in reciprocal space. We start by setting
up the energy in real space. Realizing that the energy
of a split charge in an electrostatic field E(R) due to
external charges (not to be confused with external field)
is −qα(R)Eα(R), we can write

V =
∑

R

κ

2
Q2(R) +

κs

2
qα(R)qα(R)− qα(R)Eα(R)

+
1

8πε0

∑

R,R6=R′

Q(R)Q(R′)

|R−R′| (13)

The last summand is the Coulomb interaction energy,
VC, which can be represented with the help of the Ewald
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summation. For analytical calculations, it is most con-
venient to express VC entirely in reciprocal space. With
our convention of the Fourier series and by reducing the
k vectors to those that lie in the first Brillouin zone (BZ)
of the simple cubic lattice, we obtain

1

N
VC =

1

4πε0 a

∑

k ∈ 1. BZ

αM(k) (14)

with

1

4π
αM(k) = lim

αE→∞
− αE√

2π
3

+
∑

G

exp
(

−a2|k + G|2/2α2
E

)

a2|k + G|2 , (15)

where G are reciprocal lattice vectors.
Two important limiting cases for our wavevector de-

pendent Madelung constant αM(k) are:

α̃M(k) =

{

4π/(ka)2 for k → 0
−αNaCl

M for k = π
a
(1, 1, 1)

(16)

where αNaCl
M = 1.748 is the “regular” Madelung constant

for the rocksalt lattice. It is the minimum value of αM(k)
for the simple cubic structure, and hence when the stabil-
ity condition in Eq. (5) is violated, the system exhibits an
instability into the rocksalt structure. More information
on the wave vector-dependent Madelung constant can be
found in the next section.

Doing the Fourier transform on the remaining terms
in the SQE potential energy yields

1

N
V =

∑

k

1

2

(

κ +
α(k)

4πε0a

)

Q̃∗(k)Q̃(k)

+
1

2
κsq̃

∗
α(k)q̃α(k)− q̃∗α(k)Ẽα(k). (17)

Here, it is important to keep in mind that the Q̃(k) are
related to the Fourier coefficients of the split charges via
Eqs. (10) and (11). Thus, energy is minimized if:

Ẽα(k) = {eαβ(k) + κsδαβ} q̃β(k) (18)

where

eαβ(k) = 4

(

κ +
αM(k)

4πε0 a

)

sin

(

kαa

2

)

sin

(

kβa

2

)

(19a)

→
(

κ +
1

ε0 a

)

a2kαkβ for k → 0. (19b)

Thus, one can calculate the response of the split-charge
model to a field produced by external charges. It is
worth pointing out that the solution is not unique unless
κs > 0, as different split-charge distributions can yield
the same charge distributions when the bond hardness is
zero. It is furthermore worth pointing out that it is in-
structive to reproduce the stability criterion for the rock-
salt lattice from the formalism developed here. The dif-
ference in χNa and χCl can be represented by an (added)

electrostatic field of magnitude ∆χ/a at the wavevector
k = (π/a)(1, 1, 1). Using this wavevector, Eqs. (19a)
and (18) with the appropriate value of α(k) stated in
Eq. (16), one can see that one will only get a (physically
meaningful) positive restoring force on the split charge
when Eq. (5) is satisfied.

D. Wavelength-dependent Madelung constant

In this section, we present and discuss the numerical
work on the estimation of αM(k), which we needed to
calculate the discretization corrections. The bare data is
shown in Fig. 1. The comparison to the continuum limit
and the Madelung constant of the rock salt lattice are
successful. However, the range in which the continuum
solution is appropriate turns out fairly small.

Γ Σ Μ Ζ X S R Λ Γ ∆ X

-80

-60

-40

-20

0

(a
k)

2 α M
(k

)

4π

3π2αNaCl

numerical data
4π[1−0.22578 (ak)

2
]

4π[1-0.22578(ak)
2
+0.0037{(ak)

4
+K

4
}]

FIG. 1: Wavelength-dependent Madelung constant αM(k)
times the squared wave vector k (in units of the lattice con-
stant a) along selected paths in the first Brillouin zone of the
simple cubic lattice. The continuum limit of that expression is
4π, which is shown as the upper dotted line. The value asso-
ciated with the Madelung constant (times π[1, 1, 1] squared)
is represented with the lower straight dashed line. Estimates
for the two first leading-order corrections are included as well.
K4 is the fourth’ order cumulant defined in Eq. (20).

In Fig. 1 we also show the leading-order corrections
to the continuum solution. The first symmetry-allowed
correction is of order k2. Including that direction leads
to a fair representation of α(k) throughout the first Bril-
louin zone, although the instability associated with the
rock salt lattice is overestimated slightly. Including the
second symmetry allowed correction leads to essentially
quantitative agreement. These terms are the k4 term,
and a term, which is related to the cubic anisotropy, i.e.,
the fourth-order cumulant, K4,

K4 = −(ka)4 +
3

2

3
∑

α=1

(kαa)4. (20)

To summarize, α̃M(k) can be described rather well
throughout the first Brillouin zone in simple cubic and
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rocksalt structures with the equation

1

4π
α̃(k) = 1− α(ak)2 + β{(ak)4 + K4}, (21)

where α = 0.2257(8) and β = 0.003(7).

E. Dielectric constant and penetration depth

In this section, we will consider a constant electrical
field, parallel to the z-axis and solve the split charge
equations in the continuum limit. From the results, one
can calculate the dielectric constant and the penetration
depth. To mimic the condition of a periodically contin-
ued capacitance geometry, which we use in the simula-
tions, see Sec. IIIA, we write the electrostatic field on
the domain −(1 + ε)zm < z < (1 + ε)zm (with ε → 0) as

E(R) = ez {E0 −E0zmδ(z ± [1 + ε]zm)} (22)

and repeat this field along z direction with period 2zz.
The presence of the δ functions in Eq. (22) turn the exter-
nal electrostatic potential into a function that is periodic
in space and that allows for a direct comparison with the
numerical solutions of the problem. The Fourier series
coefficients of the z-component of the E-field satisfy

Ẽ3(k) =

{ −2E0, kx = ky = 0, kz = 2πn
(1+ε)zm

, n ∈ �

0, else.
(23)

Assuming the continuum limit, allows one to rewrite
Eq. (18) as

Ẽα =

{(

κa2k2 +
1

ε0 a

)

kαkβ

k2
+ κsδαβ

}

q̃β (24)

for the given wavevector of interest. Assuming the ca-
pacitor geometry described in the precedent paragraph,
we can chose, Ẽα(k) = −2E0δk10δk20δ3α, kα = kδ3α and
q̃α = q̃sδ3α, one can invert this last (matrix) equation to
yield:

q̃s(k) =
−2E0

κa2k2 + 1
ε0a

+ κs

. (25)

Thus, for k → 0, the term related to κ disappears with
k2, which means that there is no restoring force to an
external electrostatic field and charge flows as long un-
til the external electrostatic field is compensated by the
polarization charge, i.e., the system behaves metallic.

The macroscopic or long wave length response in the
presence of a finite bond hardness (dielectric) divided by
that of the metal (κs = 0) is

q̃s, dielectric

q̃s, metallic
=

1/ε0a

κs + 1/ε0a
(26)

for small k. In the absence of periodic boundary con-
ditions, i.e., for real capacitor geometries, this ratio ex-
presses the percentage of the external field that is anni-
hilated by the polarization response of the system, which

is complete annihilation for κs = 0, and thus

εr = 1 +
1

ε0aκs
. (27)

When solving the response of the dielectric with given
E3(z), solutions would be obtained by finding the roots
in the denominator of Eq. (25). These roots are

ak1,2 = ±i

√

1

κ

(

κs +
1

ε0a

)

(28)

The absolute values of these roots are an inverse length-
scale, which can be associated with a correlation or pen-
etration depth, δ, for which we thus find

δ = a ·
√

ε0aκ

1 + ε0aκs
. (29)

Eqs. (28) and (29) allow one to chose effective values
for the “free” parameters of the SQE model, as to best
reflect the dielectric properties of a given material. Since
εr is “fixed” by the choice of κs, the δ can be used to “fine-
tune” effective values for κ. Embedding more specific
behavior into the SQE model, such as different functional
forms of the dispersion, would require the introduction
of split charges beyond nearest-neighbor split charges.

F. Discretization corrections

As can be seen in Sect. IID, the range in which the
continuum approximation describes the wave vector de-
pendent Madelung constant αM(k) accurately is rather
limited. When the first correction is included, it is still
relatively simple to solve the continuum model and at
the same time, αM(k) is obtained quite accurately in a
fair fraction of the first Brillouin zone. To include the
corrections, we use

αM(k) = 4π
[

1− α(ak)2
]

, (30)

where α ≈ 0.22578 for the simple cubic lattice,
One can proceed as in the previous section, except that

Eq. (24) is replaced with

Ẽα =

{(

κa2k2 +
1− α(ak)2

ε0 a

)

kαkβ

k2
+ κsδαβ

}

q̃β .

(31)
The roots in the prefactor to q̃β in this equation, from
which the penetration depths was calculated, are now

δ = a ·
√

ε0aκ− α

1 + ε0aκs
, (32)

and thus discretization corrections reduce the penetra-
tion depth, which will be particularly apparent when κ
is very small.

When κ is sufficiently small, the penetration depth be-
comes imaginary. For small κ, the values for κs must
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be sufficiently large to guarantee the stability of the di-
electric. In that case, the denominator on the r.h.s. of
Eq. (25) does not tend to have poles in the first Brillouin

zone, which means that the ratio of q̃s(k) and Ẽ(k) is
essentially constant. This in turn implies that for the
capacitor geometry considered here, split charges are al-
most constant through the material, that is, charge only
builds up in the last layer on the surface.

III. COMPARISON TO NUMERICAL

SOLUTIONS OF THE SQE MODEL

A. Model system and method

In our numerical calculations, we consider a simple cu-
bic lattice of SQE charges. The distance between nearest
neighbors, a, is used to define the unit of length, i.e.,
a = 1. This means that the atomic number density of
the simple lattice n = 1/a3 and consequently a number
density of split charges of ns = 3n. The solids in our cal-
culation are typically composed of 10× 10× 100 atoms.
While the numerical solutions could have been simplified
substantially, e.g., by making use of the fact that the
atomic charges in each layer are identical, we felt it was
sufficient to use our house-written, “not-special-purpose”
molecular dynamics code.

Periodic boundary conditions are invoked in all three
spatial dimensions. The size of the simulation box is
10a × 10a × (100 + ε) a, that is, we investigate a sand-
wich structure with the sandwich normal parallel to the
z direction. The extra-margin in the z direction breaks
the bonds between different periodic images, thus, there
are no split-charges across the boundary in z direction.
There are two reasons why we chose the dimension par-
allel to z only marginally larger than the actual crystal:
First, it reduces the computational time, but more im-
portantly, it also appears to reduce finite-size effects. In
another set of simulation, i.e., whenever we want to as-
certain the external field, the length of the vacuum slab
was increased to that of the dielectric.

As the potential V is bilinear in the split charges,
we can use molecular dynamics on them within an ex-
tended Lagrangian scheme to find their optimum values.
For this purpose, the split charges are assigned a mass
mij = κij + κi + κj , which moves the characteristic fre-
quency of an oscillation to roughly unity. The equations
of motion are damped with a term −mij γ q̇ij , where the
damping constant is typically chosen to be 1/2. This
choice for γ renders the motion to be very slightly un-
derdamped. The molecular dynamics time step is chosen
to be ∆t = 2π/20, so that one typical oscillation is de-
composed into 20 time steps. (For large ratios of κ/κs

smaller dampings are preferential to avoid overdamping
of long-wavelength modes.) For calculations, where κ is
similar to or larger than κs, the system is essentially re-
laxed after 20 time steps, for smaller ratios, more time
steps have to be carried out.

B. Results

In this section, we will test the analytical predictions
with the numerical solutions of the model system that
is described in the previous section. We start the test
of our analytical results by comparing a measurement
of the penetration depth from simulations to those ob-
tained in the regular continuum solution. The equation
for the penetration depth is given in Eq. (29) and from
this equation, one can find the spatial or z-dependence
to be

ρ(z) ∝ sinh(z/δ), (33)

where we could make use of the problem’s symmetry by
placing the center of mass of the simulation cell into the
origin of the coordinate system, i.e., the charges decay
exponentially into the system from both surfaces at a
rate proportional to 1/δ. In Fig. 2 we demonstrate that
this prediction is accurate within symbol size, at least for
the investigated value of δ = 10 a. Three cases are shown
explicitly: One metal (κs = 0), one dielectric with an
extremely small polarizability (κs = 200), and one case in
between. As the continuum solution becomes better with
increasing δ one can state that the continuum solution is
applicable for δ ≥ 10 a.
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FIG. 2: (Color online.) Comparison of numerical data and
theory on the z-dependence of the charge density. In the cal-
culations, the numbers of layers was 100, and thus zM = 50 a.
κ was chosen such that the penetration depth δ = 10 a re-
mained constant, which makes the normalized charge density
ρ(z)/ρ(zM) collapse onto a single curve. The shaded area
reflects the (normalized) surface charge from the continuum
limit treatment. There is no adjustable coefficient in the the-
ory.

Next, we want to test the equation for the dielectric
constant, i.e., Eq. (27). To do this, the electrostatic field
is measured inside the solid at atomic sites (neglecting
the on-site charge) and at the vertex points of the el-
ementary cells, where the contribution of eight nearest
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identical charges would cancel exactly. The atomic-site
value and the average of the eight vertex points are aver-
aged, which gives a fair estimate of the electrostatic field
in one elementary cell. Unfortunately, we cannot simply
associate the external field with the externally applied
electrostatic field. The reason is that due to the periodic
boundary conditions, it is not defined if the vacuum slab
or the dielectric slab are within the capacitance. In other
words, surface effects prevail in an infinitely repeated ar-
ray of capacitances. In order to yet determine the exter-
nal field we increased the vacuum slab and calculated the
electrostatic field with the same (Ewald summation) sub-
routines as those that were used to produce the charges.
Changing the cutoffs in real and reciprocal states did not
alter the results. Some data of the z dependence on E
is shown exemplarily in Fig. 3(a). It can be shown that
the electrostatic field remains constant outside the mate-
rial and decays to another constant value within, which
is greater than zero for positive values of κs. For κs = 0,
the total field inside the material decays exponentially,
mimicking the response of an ideal conductor.
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FIG. 3: (Color online) Normalized z-component of the elec-
trostatic field in the capacitor geometry as a function of z
(normalized on half the thickness, zM, of the dielectric) for
different values of κs. Here, the bulk capacitor material is
Nz = 60 layers thick and placed in a simulation box 2Nza
units long. The system is subjected to a constant externally
applied field oriented along the z-axis with magnitude Eapp.
The atomic hardness of the material is fixed at ε0aκ = 4.

In order to measure εr, the dielectric constant, we use
the equation

εrEint = Eout. (34)

The ratio Eint/Eout is determined from data that is
shown in Fig. 3(a) and from related data. Results for
εr are shown in Fig. 4. The error between simulation and
prediction was less than 0.1% in all cases investigated,
where κs > 0. It could always be reduced by reducing
the controllable errors in the numerical calculations, such

as by increasing the system size, improving the cutoffs in
the Ewald summation, or relaxing the system for a longer
time, providing evidence that Eq. (27) is exact.
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FIG. 4: Dielectric constant εr as a function of κs for two
different values of κ. The inset shows the same data as the
main figure but on a shifted lin-log graph.

Lastly, we wish to demonstrate that the dispersion or
finite discretization correction to the Madelung constant
can be used to improve the spatial variation of the elec-
trostatic field. This is done in Fig. 5, where the charge
density of a conductor with small penetration depth δ
is shown. For the selected parameters, the regular con-
tinuum treatment overestimates δ by almost 50% while
including the corrections to α(k) up to second order re-
duces the error to less than 1 % for the chosen param-
eters. Numerical errors, in particular due to the Ewald
summation, become relevant when the induced charges
are very small, which is apparent in the linear-logarithmic
representation. However, as before, errors are control-
lable by increasing the cutoffs, relaxation times, etc.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we used continuum theory and numer-
ical methods to investigate the dielectric properties of
the split charge formalism, which contains the regular
charge equilibration method as a limiting case when the
bond hardness is set to zero. In the other limit, i.e., when
the atomic hardness is set to zero, SQE corresponds to
pure bond-type charge equilibration approaches. For sys-
tems that can be described as simple cubic or rocksalt
structures we find that the dielectric constant follows the
equation

εr = 1 +
ns

9ε0αs
, (35)

where we have rewritten Eq. (27) by introducing the term
αs = κsa

2, which is the (dipole) polarizability associated
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FIG. 5: (Color online) Atomic charges near the surfaces as a
function of the distance from the surface, where the surface
is located at ∆z = 0. Squares are numerical data. Long-
dashed (red) and solid (blue) lines represent the predictions
by the continuum treatment with and without corrections.
The inset is a linear-logarithmic plot of the main figure. In
the data shown, ε0aκ = 3/2π and κs = 0, which is close to
the point at which the dielectric response becomes unstable.

with a split charge, and where we expressed the split
charge density ns as 3/a3. Eq. (35) has the same struc-
ture as a truncated density expansion of the Clausius
Mossotti relation, see Ref. 17 for a pedagogical derivation
of that relation. However, for the split charge model, the
expansion truncates after the first-order term in density.
An interesting consequence of Eq. (35) is that the dielec-
tric constant diverges in the limit of zero bond stiffness,
which implies that regular charge equilibration methods
produce the same electrostatic fields as metals.

Besides predicting correctly the dielectric constant as
a function of the microscopic parameters of the SQE
model, we also find that the penetration depth is pre-
dicted correctly by the continuum approach, although
discretization corrections are required when the charac-
teristic length scales approach values in the vicinity of the
lattice constant. Another feature that corrections to the
continuum solutions capture correctly, at least for simple
cubic systems, is the point in the Brillouin zone where
the dielectric response first shows an instability upon a
decrease in lattice constant, i.e., the system becomes un-
stable at the largest reciprocal lattice vector contained
in the first Brillouin zone. Such instabilities are often
deemed as unphysical, but solid H2, for example, becomes
infrared active under high pressure. [18] That situation, if
rationalized within an SQE model, would require restor-
ing terms that couple to the fourth moments of split or
net charges, and it might be worth pursuing these higher-
order terms for systems under large pressure.

An appealing property of the split charge method is
that the “adjustable” parameters can be parameterized

directly from experiments. The dielectric constant (at
least its high-frequency/electronic part) translates di-
rectly into a value for κs and the atomic hardnesses follow
from atomic data for electronegativity and ionization en-
ergy. Alternatively, one may want to use a value for κ
that best reflects the penetration depth on which the ex-
ternal electrostatic field decays to the value inside the
solid.

It is difficult to speculate how much the SQE model
can improve existing force fields, in particular, how much
better electrostatic interactions will be modeled near sur-
faces, as compared to, for example, current implementa-
tion of the regular QE approach in CHARMM [19] or the
REAX force field [20]. However, given the results in the
original SQE work [15], it seems as though its advantages
are particularly strong when two chemical moieties are in
close vicinity, e.g., the electrostatic potential (ESP) sur-
face of a water methane dimer was found to have an error
of 59% with regular QE, which was reduced to 29% with
SQE. Of course, when electrostatic field lines are parallel
to a dielectric surface, much further improvement is to
be expected, because the regular QE model behaves like
a metal and thus excludes these transverse components,
while SQE has the ability to mimic dielectrics.

One challenge that the SQE model will certainly face
in molecular dynamics simulations is that extended La-
grangian schemes are not straightforwardly applicable
when κs diverges during bond breaking. A large κs will
induce high-frequency oscillations unless the “split charge
mass” were made time dependent and adjusted according
to changes in κs. Thus, we expect future implementations
of the SQE method into simulation software to be based
on regular minimization techniques.

We would like to summarize our discussion by formu-
lating a list of requirements for charge-transfer potentials.
They should have the following features: (i) adjustable
dielectric constant, (ii) adjustable penetration depth of
the electrostatic field, (iii) retain, at least in principle, the
parameterization of κ and χ from atomic principles, (iv)
produce the correct dissociation limit for broken chemical
bonds without invoking externally-imposed charge neu-
trality constraints, and show the correct scaling of the
polarizability with the degree of polymerization for poly-
mer chains in the limit of (v) long chains and (vi) short
chains. Pure atom-based charge equilibration approaches
violate (i), (iv), and (v), while pure bond-based charge
equilibration approaches (in which the bond hardness di-
verges when the bond breaks) violate (ii), (iii), and (vi).
The split charge method does not violate any of the cri-
teria, which is why we would argue that it bears great
potential for the use in classical force fields. Of course, as
argued in, for instance in Ref. [14], it will be necessary to
include on-site, atomic polarization to also reflect polar-
ization normal to the bonds. Corrections of this type can
be added to the split-charge model in the same way as
they can be added to regular charge fluctuation models.



9

[1] S. W. Rick and S. J. Stuart. Rev. Comp. Chem., 18:89,
2002.

[2] J. W. Ponder and D. A. Case. Adv. Protein Chem., 66:27,
2003.

[3] S. Patel and C. L. Brooks. Mol. Simulat., 32:231, 2006.
[4] W. J. Mortier, K. van Genechten, and J. Gasteiger. J.

Am. Chem. Soc., 107:829, 1985.
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