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Carlos Campañá, Martin H. Müser∗, and Colin Denniston†

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada

Yue Qi‡ and Thomas A. Perry
Materials and Processes Laboratory, General Motors R&D Center, Warren, MI 48090-9055

(Dated: September 13, 2007)

We study the contact mechanics of a flat, elastic wall pressed against a rigid substrate with Green’s
function molecular dynamics. The substrate’s height profiles are parameterized from atomic force
microscope topography measurements of two different aluminum-silicon alloys. In both samples,
roughness lives on disparate length scales, i.e., on relatively large scales defined by size and mean
separation of load-bearing silicon particles and on much smaller scales associated with the rough-
ness on top of individual particles. The major differences between the two alloys are their silicon
content and the typical silicon particle geometry. These differences lead to quite different stress
distribution on both mesoscale and microscale in our calculations. A common feature is that the
stress distribution decays exponentially for large stresses σ and not like a Gaussian. Persson’s con-
tact mechanics theory is generalized to the case where contact can only occur on silicon particles.
This generalization predicts relatively accurate microscopic mean square stresses, however it fails to
predict accurate numbers for mean square stresses on the mesoscopic scales. Local overlap models
are not accurate either, because they fail to describe the contact morphology.

PACS numbers: 81.40.Pq,46.55.+d

I. INTRODUCTION

Making liner-less engine blocks cast directly from
lightweight Al-Si alloys with the required wear and scuff-
ing properties continues to be a challenge for the auto-
motive industry. [1] Aluminum is typically protected by
an inert oxide layer, however this layer can be damaged
under higher loads and the strong adhesion tendency of
nascent aluminum to the counter surfaces will acceler-
ate the damage into a scuffing process. An approach to
mitigating this is to include a hard reinforcement in the
alloy, such as silicon. This is very effective under lu-
bricated operating conditions. Liner-less engine blocks
made of a hypereutectic Al-Si alloy typically require a
chemical surface preparation that results in silicon parti-
cles protruding above the nominal surface to reduce wear
damage to the aluminum matrix. [2, 3] Thus, these hard
silicon particles (hardness ≈ 12 GPa) will bear the load,
prevent adhesion, and resist wear damage. [4]
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The wear mechanisms of Al-Si alloys under dry slid-
ing have been reviewed by Deuis et al. [5] Depend-
ing on the applied load, three wear regimes have been
proposed: [6]1) mild wear: wear rates of 10−4 to
10−3 mm3/m under low load; 2) severe wear: wear rates
of order 10−2 mm3/m, often under dry sliding conditions;
3) seizure wear: extensive material transfer occurs at high
temperature and high load. Recently, an ultra-mild wear
regime, where a negligible amount of material is removed
per cycle, gained more attention. Cylinder bores made of
Al-Si alloys are expected to be in this regime if they are
operated under normal engine running conditions. [7]The
contact pressure on Al-Si surface is therefore crucial in
determining the deformation and failure of Al-Si in the
tribological applications.

To improve the wear and scuffing resistance of Al-Si
alloys, many metallurgy design methods, such as heat
treatment, alloying additions, and increasing the silicon
content have been tried to strengthen Al-Si alloys. How-
ever, the origin of improved tribological performance is
not always clear, because the complexity of the surface
topography makes it difficult to predict their contact me-
chanics. Therefore the motivation of this paper is to
understand the load distribution as a function of silicon
particle shape and to provide metallurgical guidance for
alloy development. With such a connection between con-
tact pressure and microstructure, one can improve Al-Si
alloy composition and processing to enhance the wear re-
sistance, and ultimately to develop a linerless aluminum
cylinder block for the automotive lightweight strategy.

Being able to predict the distribution of loads on the
silicon particles and more generally, being able to predict
the pressure distribution in contacts involving an Al-Si
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surface and a flat counter surface bears potential for an
improved design of the surfaces. As a step towards a
better understanding of their contact mechanics, we con-
sider the case of dry contacts. Experimentally-measured
height profiles will be used as an input for a theoretical
analysis that is based on a recently developed Green’s
function molecular dynamics (GFMD) formalism. [8]

The difficulty in the contact mechanics of Al-Si alloys
stems from their complex geometry. Their surfaces are
not self-affine like those of conventional steel surfaces.
Instead they have roughness on disparate length scales as
demonstrated in figures 1 and 2. On large length scales
there is roughness due to the granular structure, i.e., the
typical height and diameter of the silicon particles are
300 nm and 4 − 10 µm, respectively. The spacing in
between the particles is typically in the order of 4 µm.
At short length scales there remains some roughness on
the silicon particles that is due to polishing.

Theoretical models, whether they are phenomenologi-
cal, such as Greenwood-Williamson (GW) [9] or based on
height-difference autocorrelation functions, such as Pers-
son’s theory cannot be used to address the contact me-
chanics of Al-Si surfaces in a straightforward fashion even
in the limit of elastic contacts. For instance, GW ap-
proaches are inappropriate to apply, [7, 10] because they
assume that local surface roughness is parabolic, which
is unjustified in the present context. Even if more real-
istic shapes were assumed, the lack of long-range elastic
deformation in GW will limit the predictive power of this
theory. Conversely, Persson’s theory appears to be gen-
eralizable to the case where contact only occurs on the
silicon particles, as we will outline in the main part of
this paper.

We wish to comment that throughout this paper, the
word pressure will refer to the external load exerted per
unit area onto the elastic solid. The term stress will refer
to the σ33 component of the elastic solid’s full stress ten-
sor. With these definitions, we will use the terms stress
and pressure as synonyms in static equilibrium. More-
over, we will assume that the small-slope approximation
holds in the contact region. Thus, we will usually not
distinguish between the local surface normal and the av-
erage surface normal.

The remainder of the paper is organized as follows:
In Sec. II, we provide experimental details on chemical
composition and treatment of the surfaces along with the
numerical methodology used to solve the harmonic con-
tact problem. A brief description of Persson’s contact
mechanics theory, as well as our extension to surfaces
with granular structure is presented in Sec. III. Results
are presented in Sec. IV and conclusions are drawn in
Sec. V.

II. EXPERIMENTAL DETAILS, MODEL AND

METHOD

A. Experimental detail

Two different types of Al-Si alloys are investigated in
this study. Typical topographies are shown in Fig. 1. In
part (a) of that figure, the tops of the silicon-rich particles
are almost circular while in part (b), they are much more
elongated. In the following, we will refer to the samples
as surfaces with circular or elongated silicon particles,
respectively. Surfaces with circular particles (material
A1955) stem from a hypoeutectic A356 aluminum alloy
containing 7 wt.% Si and 0.3 wt.% Mg and 0.05 wt.% Sr.
Surfaces with elongated silicon particles (material A1934)
are based on a near-eutectic Al-Si alloy with 11.3 wt.%
Si and other alloying components, specifically Cu, Mn,
Fe, Ti, Mg, Sr, Ni, and Zn.

FIG. 1: Online color. Topographies of samples containing
predominantly (a) circular and (b) elongated silicon particles.
Light sections are silicon-rich particles, dark sections primar-
ily aluminum. In both cases, the full 100 µm × 100 µm scan
is shown.

Each specimen was cut from an Al/Si cast ingot into
a plate shape with dimensions of 12mm × 12mm × 3mm
using a diamond saw. The contact surface was ground
with SiC paper of 320 and 500 grit, followed by mechan-
ical polishing with 9 µm, 6 µm, and 3 µm diamond sus-
pensions. A final stage of chemical-mechanical polishing
with colloidal silica was performed to obtain a fine surface
finish and reduce the surface deformation layer created
in the previous mechanical polishing steps. To expose
the silicon particles on the sample surface, the specimen
was chemically etched with 10% NaOH solution for 45
seconds, and then cleaned with 2% HNO for 20 seconds.
The average exposed height of the silicon particles was
measured by an atomic force microscope (AFM) to be
about 350 nm, which was less than 1/10 of the average
particle size. Therefore most of the particles on the sur-
face were still deeply embedded in the aluminum matrix.

Both alloys show silicon particles embedded in the alu-
minum matrix. Height profiles were measured with the
help of an atomic force microscope tip. Measurement
points are separated by 30 nm. The statistical analysis
shows that the silicon particle linear size varies from 2 to
15 µm with an aspect ratio between 1 and 6 in (“circu-
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lar”) A1955 and from 3 to 20 µm with the aspect ratio
between 1 and 10 in (“elongated”) A1934. Details of se-
lected individual silicon particles are shown in Fig. 2. In
those silicon particles, the aspect ratios are 1.1 and 5.2 for
A1955 and A1934, respectively. Further characterization
of the samples will be presented in the results section.

FIG. 2: Details of (a) circular and (b) elongated silicon par-
ticles embedded in an aluminum matrix. Note that the direc-
tion normal to the surface is exaggerated with respect to the
in-plane directions. The height of the asperities is approxi-
mately 300 nm.

B. Model

As mentioned in the introduction, we study a flat elas-
tic manifold that is pressed against a rough wall, whose
height profile is input from experiment. In our calcula-
tions, we mean to exploit the usual mapping for friction-
less contacts, whereby all the roughness can be placed on
one side of the interface while all the elasticity is placed
on the other side.

Our main interest is to model an Al-Si alloy that is
pressed against a chromium counterface, which can be
approximated as locally flat. Since the chromium coun-
terpart is much stiffer and less rough than the Al-Si alloy,
we assume that both the effective modulus and the rough-
ness to be used in the calculation is mainly determined by
the values in the Al-Si alloy. At a first level of approxima-
tion, the Young’s modulus of the Al-Si is calculated with
the combination rule Ealloy = ESicSi + EAlcAl, where the
moduli E are weighted by the volumetric weights (cSi and
cAl) of the two compounds. Assuming ESi = 160 GPa
and EAl = 70 GPa, for the moduli, we obtain almost
identical values for the two alloys, specifically, E = 76
and E = 81 GPa for the samples with circular and elon-
gated silicon particles, respectively.

Excluded volume interactions are assumed between the
flat, elastically-deformable surface and the rough, rigid
surface. Plastic deformation is neglected at this stage of
our work. Whenever the normal stress is high, we would
expect the surfaces to yield locally but not to rearrange so
strongly that it would significantly affect the load carried
by adjacent silicon particles.

C. Method

All calculations presented in this work are based on the
Green’s function molecular dynamics (GFMD) method
that was recently developed by Campañá and Müser. [8]
In GFMD, the three-dimensional elastic solid is mapped
onto a two-dimensional elastic sheet with long-range elas-
tic interactions. Computation of the elastic interaction
within the sheet is relatively inexpensive in reciprocal
space, at least as long as the solid can be approximated
as harmonic and homogeneous. For the system sizes con-
sidered in this work, i.e., linear dimension of 2048 grid
points, the computational gain of GFMD per time step
with respect to an all-atom calculation (which would re-
quire about 2048 layers in the direction normal to the sur-
face) is in the order of 268 (=2048/ln2048). Approaches
in which the system is ever more coarse grained as the
distance from the surfaces increases show a linear gain in
efficiency with increasing the linear dimension per time
step. However, GFMD appears to approach mechani-
cal equilibrium particularly fast and may thus require
fewer steps to converge than approaches that are based
on coarse-graining entirely in real space. It certainly
requires a lot fewer time steps to equilibrate than an
all-atom calculations, as demonstrated in our previous
work. [8]

Periodic boundary conditions are applied to facilitate
the use of the Green’s function methodology. To re-
duce artifacts and discontinuities near the boundaries,
the height profiles are folded with a function that is unity
everywhere, except near the boundaries, where it contin-
uously approaches zero.

As the substrate is rough, the pressure at the inter-
face between the substrate and the opposing surface is
non-uniform. Pressures and their histograms were calcu-
lated and averaged at different levels of magnification -
or coarse-grainedness, that is, at a macroscopic, a meso-
scopic, and a microscopic level. The macroscopic pres-
sure is given by the external load L divided by the area
of the scan A0. The macroscopic pressure distribution
Pmacro(p) is automatically a δ function, i.e.,

Pmacro(p) = δ(p − L/A0) (1)

The mesoscopic pressure associated with asperity i is cal-
culated as the load Fi that i carries divided by its surface
area, Ai. To place a larger statistical weight on larger
silicon particles, the pressure pi is assigned a stochastic
weight proportional to the silicon particle’s area, i.e., the
meso-scale pressure distribution is defined as:

Pmeso(p) =

∑

i Aiδ(p − pi)
∫ ∞

0+ dp
∑

i Aiδ(p − pi)
, (2)

where the normalization in the denominator of Eq. (2)
includes only the load-bearing particles. Asperities were
enumerated with the help of the Hoshen-Kopelman algo-
rithm. [11]
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Finally, the microscopic pressure, pmicro is the value
that one obtains locally when the discretization of the
elastic manifold is much finer than the shortest wave-
length λs on which roughness is found on the surface
profile. The microscopic pressure distribution is given by
a similar expression as that in Eq. (2), however, now i
does not denote a silicon particle but an integration grid
point. In this work, λs is given by the typical size of
the final powder that was used to polish the surface, i.e.,
λs ≈ 50 nm. The experimental resolution of the height
scans is a little higher, that is λresol = 30nm, but there is
not significant roughness associated at scales below λresol.

One can summarize the meaning of macroscopic,
mesoscale, and microscopic pressure as follows: The
macroscopic pressure is the total load divided by the to-
tal area. Mesoscopic pressures are microscopic pressures
averaged over an area associated with a typical particle
area, or simply, the load carried by an individual parti-
cle divided by its area. Microscopic pressures or stresses
are defined as lim∆A→0 ∆L/∆A, where ∆L is the load
carried by an infinitesimally small area element ∆A.

III. THEORY

A. Background

In this work, we will compare our numerically obtained
data to Persson’s contact mechanics theory [12–14] when-
ever a comparison appears appropriate. In order to fa-
cilitate our extension to the structure of Al-Si alloys, we
use the opportunity to sketch a derivation of the theory,
which roughly follows the original treatment. In our pre-
sentation, we will attempt to distinguish between those
steps that are rigorous and those that are approxima-
tions.

The key idea of Persson’s theory is to gradually in-
crease the magnification ζ at which the system is de-
scribed. At magnification ζ = 1, the system is described
at the most coarse-grained level, i.e., at the length scale
of the macroscopic object L. At this level of magnifica-
tion, the pressure distribution is a delta function centered
at the macroscopic pressure, i.e., P (σ, ζ = 1) = δ(σ−σ0).
As ζ increases, spatial features are resolved. In the limit
ζ → ∞, all microscopic details of the system are fully
contained. We will call P (σ) = limζ→∞ P (σ, ζ) a micro-
scopic pressure distribution.

The starting point of the theory is the definition of
the coarse-grained local pressure at magnification ζ, i.e.,
σ(x, ζ). The definition of σ(x, ζ) and thus the magnigfi-
cation is not unique. However, σ(x, ζ) can be interpreted
as the stress that one obtains if the true microscopic nor-
mal stress is averaged over an area (L/ζ)2, which has its
center of mass located at the lateral position x. By def-
inition, the probability distribution P (σ, ζ + ∆ζ) of the
normal stress at magnification ζ + ∆ζ is:

P (σ, ζ + ∆ζ) = 〈δ{σ − σ(x, ζ + ∆ζ)}〉 , (3)

where the average 〈· · · 〉 is an average over different sur-
faces. When changing the magnification, the coarse-
grained stress will change as well, which can be expressed
as:

σ(x, ζ + ∆ζ) = σ(x, ζ) + ∆σ(x, ζ,∆ζ), (4)

where ∆σ(x, ζ,∆ζ) is the (local) change in stress upon
a change in magnification from ζ to ζ + ∆ζ. Express-
ing the expectation value 〈· · · 〉 with an ensemble average
1
N

∑

i over a set of random surfaces, where i enumerates
the different realizations of the random surface and an
integral over the full surface A0, and inserting Eq. (4),
we can rewrite Eq. (3) as

P (σ, ζ+∆ζ) =
1

N

N
∑

i=1

1

A0

∫

d2xδ{σ−σi(x, ζ)−∆σi(x, ζ,∆ζ)},

(5)
where σi(x, ζ) is the microscopic stress in realization i,
at position x and magnification ζ. It is now possible to
replace the ensemble average over i with an average over
the various values that ∆σ can take. The probability
distribution Pr(∆σ) can, and in most cases will, be a
function of the macroscopic stress σ0, the local stress σ,
and of course, the rules for generating the random height
function h(x), as well as the rules for the calculation of
σ(x, ζ). However, due to translational invariance induced
by the ensemble averaging, Pr(∆σ) will not depend on
the lateral coordinate x. We can therefore rewrite Eq. (5)
as

P (σ, ζ + ∆ζ) =

∫

d(∆σ) Pr(∆σ)

×
1

A0

∫

d2x δ{σ − ∆σ − σi(x, ζ)},(6)

which can be identified as

P (σ, ζ + ∆ζ) =

∫

d(∆σ) Pr(∆σ)P (σ − ∆σ, ζ), (7)

provided that A0 is sufficiently large to be self averaging.
We will now discuss some properties of Pr(∆σ). For all

values of ∆ζ, one may require that
∫ +∞

−∞
d(∆σ) Pr(∆σ)

be unity. Moreover, Pr(∆σ) must produce a vanishing
first moment of ∆σ on average, because the average nor-
mal stress is independent of the level of magnification.
However, since Pr(∆σ) is a conditional probability, e.g.,
it can depend on σ in principle, 〈∆σ〉 does not neces-
sarily vanish for each individual value of σ. However, to
simplify the analysis we will assume that 〈∆σ〉 = 0 for
every value of σ. The validity of this approximation will
be discussed in a separate paper.

The knowledge of the leading moments of 〈∆σn〉 are
useful when expanding P (σ −∆σ, ζ) into a second-order
Taylor series with respect to ∆σ, i.e., for small val-
ues of ∆ζ, the right-hand side of Eq. (7) simplifies to
P (σ, ζ) + [∂2P (σ, ζ)/∂σ2]× 〈∆σ2〉, where 〈∆σ2〉 denotes
the expected mean square change of σ when changing the
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magnification from ζ−∆ζ to ζ. Expanding the left-hand
side of Eq. (7) into a first-order Taylor series with respect
to ∆ζ finally yields

∂P

∂ζ
=

1

2

〈∆σ2〉

∆ζ

∂2P (σ, ζ)

∂2σ
. (8)

For the equation to be usable, it is necessary to find an
expression for the function

D(ζ, σ, σ0, ...) =
1

2

〈∆σ2〉

∆ζ
, (9)

which can be associated with a diffusion constant. D
will depend, as alluded to above, on σ, σ0, the rules for
coarse-graining normal stress as well as those for the gen-
eration of the random profile h(x) and the mechanical
properties of the solids. The difficulty is to find good
approximations for D.

In the original treatment, Persson coarse-grained the
description of the normal stress in reciprocal space by
defining an upper cutoff in wavelength. We follow this
procedure here. The idea is that smearing out the stress
in real space over a linear length L/ζ is equivalent to
defining an upper cutoff in reciprocal space at ζq0, with
q0 = 2π/L. The expected squared variance in ∆σ can
then be calculated from

〈∆σ2〉 =

∫ q0(ζ+∆ζ)

q0ζ

d2q
〈

σ̃(q)2
〉

= 2π∆ζ · q0 · (ζq0) ·
〈

σ̃(ζq0)
2
〉

. (10)

In linear response, σ and the displacement field u are
connected linearly via an equation of the form σ̃(q) ∝
qẼ(q)ũ(q) where Ẽ is some generalized elastic constant.

The rather blunt assumption now is that for the pa-
rameterization of the constitutive term 〈∆σ2〉/2∆ζ, it is

possible to replace ũ(q) with the height profile h̃(q) in
the σ(q) ∝ ũ(q) relation. This approximation yields

〈

σ̃(q)2
〉

= q2|E′|2
〈

|h̃(q)|2
〉

/4 (11)

with E′ = E/(1−ν2), E being the elastic modulus and ν
being the Poisson ratio. Thus, D defined in Eq. (9) can
be written as

D =
π

4
ζ3q4

0 |E
′|2

〈

|h̃(ζq0)|
2
〉

(12)

where we have assumed that the stochastic properties of
the height profile are rotationally isotropic, i.e., the vari-
ance in h̃(q) only depends on the magnitude of q. It is
interesting to note that the diffusion coefficient does not
depend on σ in the given approximation, which facili-
tates the solution of the partial differential equation for
P (σ, ζ). If no constraints on the stress diffusion are ap-
plied, the solution for P (σ, ζ) would be analogous to the
solution of the diffusion equation. Hence, the solution
would be

P (σ, ζ) =
1

N
exp

{

−
(σ − σ0)

2

4
∫ ζ

1
dζ ′D(ζ ′)

}

(13)

with the normalization constant

N =

√

4π

∫ ζ

1

dζ ′D(ζ ′). (14)

If the walls are purely repulsive, stresses can only be
greater than or equal to zero. This constraint can be
taken into consideration with the boundary condition
P (σ < 0, ζ) = 0, i.e., σ = 0 plays the role of an ab-
sorbing boundary. The constraint P (σ < 0, ζ) = 0 can
be incorporated with a method of image charges, [15] i.e.,
one Gaussian (or δ function peak) with positive ampli-
tude is placed at σ = L/A and an equivalent peak with
negative amplitude is placed at σ = −L/A. The width of
both Gaussians is then treated according to the scheme
described in Eqs. (13) and (14).

B. Extension to load-bearing particles

The special topography of the aluminum silicon alloys
makes it obvious that load will only be carried on the
silicon particles. Thus the only roughness (or mean-
gradients) that should enter the calculations should be
the roughness associated with the silicon particles. The
“depth” of the aluminum valleys and the roughness in
those valleys will most certainly not influence the pres-
sure distribution. This insight asks for a generalization
for the measure of height-fluctuations that enter Persson
theory.

We pursued two approaches that project on the rough-
ness of the silicon particles. One approach is local,
i.e., stress fluctuations are related to height-gradients
on the silicon particles, the other one is non-local and
potentially more promising. Within the local approach,
one would compute the stress according to the equation
σ = E′∇h/2 on the silicon-rich particles and set it to
zero otherwise. This procedure would yield the following
stress correlation function

〈σ(x)σ(x′)〉 =

(

E′

2

)2

〈{∇h(x)ΘSi(x)}{∇h(x′)ΘSi(x
′)}〉,

(15)
where ΘSi(x) = 1 on top of the silicon particles, while it
is zero in the aluminum valleys. Note that Eq. (15) is the
real space analogue or generalization of Eq. (11), which
is formulated in reciprocal space.

The disadvantage of the local generalization is that
it does not contain any information about height-
differences between different load-bearing entities. We
therefore considered an alternative approach, which is
based on a generalized height-difference correlation func-
tion defined as:

C2(R) =
∫

d2xd2x′δ(R − ∆r)ΘSi(x)ΘSi(x
′){h(x) − h(x′)}2

∫

d2xd2x′δ(R − ∆r)ΘSi(x)ΘSi(x′)
(16)
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with ∆r = |x − x
′|. C2(R) states the expected standard

deviation in height as a function of distances R under
the condition that silicon particles are at the origin x as
well as at the destination x

′. Note that this expression is
equivalent to a regular height-difference auto correlation
function if the surface consists only of silicon.

Once C2(R) is constructed, we suggest exploiting the
regular relations for height-difference correlation func-
tions. These relations enable one to calculate mean-
square gradients associated with the correlation function
C2(R), i.e., it is possible to compute the generalized ex-

pressions for
〈

|h̃(q)|2
〉

from which the stress histograms

for the magnification of interest can be computed. If
we want to know the pressure distribution at a meso-
scopic length scale λm, say a length scale close to the
mean separation between silicon particles, then we in-
tegrate Eq. (13) only up to magnifications associated
with wavenumbers 2π/λm. The relevant relations for the
Fourier transforms will be provided in appendix A.

IV. RESULTS

A. Surface characterization

Contact mechanics strongly depends on the topogra-
phy of the surfaces. Theories use surface characteriza-
tion as an input to predict stress distributions and con-
tact areas. For example, Greenwood-Williamson (GW)
type models [9] are based on asperity height and cur-
vature statistics, while Persson theory is based on two-
point correlation functions. Neither information is suf-
ficient to fully reconstruct the stochastic information on
the surfaces’ topography, which implies that information
contained in neither asperity statistics nor two-point cor-
relation function is sufficient to rigorously predict stress
distributions. Thus neither theory can claim legitimately
to be generally exact. Yet, the information contained in
asperity statistics or in two-point correlation function is
important because it seriously constrains what the real
topography and hence the contact mechanics can be.

We will start our surface characterization with the sur-
faces’ height distribution, which is shown in Fig. 3. Two
peaks occur. The one at small heights can be identi-
fied with the aluminum matrix, while the peak at larger
heights is related to the silicon particles. The two peaks
are separated by about 300 nm for both alloys. Subtle
differences can be seen in the tails of the height distribu-
tion at large values of the height h, i.e., the surfaces of
the alloy producing the more circular-shaped asperities
appears to have the broader tail.

In order to investigate the subtle differences in the tails
of P (h) further, we also calculated the height distribu-
tions of individual silicon particles. The circular particles
had a much greater propensity to have highly polished
tops, i.e., the P (h) of individual particles drops abruptly
at large values of h. Conversely, the material with elon-
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P
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Si

FIG. 3: Height distribution P (h) for the two investigated Al-
Si samples.

gated particles has both highly polished and barely pol-
ished particles, i.e., the P (h) of individual particles some-
times decreases rather slowly at large values of h. This
observation can be understood as follows: in terms of
bulk property, material A1934 with its higher silicon con-
tent and other hard intermetallic phases is harder than
A1955. Thus, A1934 is less susceptible to polishing than
1955, because the polishing was done under the same
loading condition, resulting in the larger degree of pol-
ishing observed in A1955. In terms of surface property,
the exposed particles in material A1934 contain both Si
and other intermetallic phases, which have different resis-
tance to polishing. Thus a larger variation of the surface
roughness on these particles were found.

Besides the differences in morphology and height dis-
tribution between the two samples, there are also differ-
ences related to the in-plane order. This becomes appar-
ent when analyzing the silicon-silicon distribution func-
tion gSiSi(r), which states the probability to be on top of
a silicon particle at a distance r if the origin is placed on
a silicon particle itself. Note that in the limit r → ∞,
gSiSi(r) becomes identical to the relative area that the
particles occupy on top of the aluminum matrix. A com-
parison for the two samples is shown in Fig. 4.

Both samples show interesting features in gSiSi(r),
which reflect the difference in microstructure bewteen hy-
poeuctectic and near-eutectic melts after solidification.
For material A1955, the gSiSi(r) decays in a two-step
process. This is due to the circular particles having a
somewhat bi-modal distribution with one eutectic Al-Si
area surrounded by a few pro-eutectic aluminum domains
(i.e., a dendritic aluminum microstrucre). The first step
in gSiSi(r) corresponds to finding silicon within the eu-
tectic area, and the second step to finding silicon beyond
the pro-eutectic aluminum grains. The load-bearing par-
ticle distribution is more homogeneous for near eutectic
material, since most of all silicon and aluminum phases
crystallized at the same time at the eutectic composition.
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FIG. 4: Silicon-silicon correlation function gSiSi(r) for surfaces
bearing circular and elongated particles.

The gSiSi(r) goes through a minimum before reaching its
r → ∞ plateau value, indicating that it is unlikely to
find another silicon particle at a 4 µm distance. This is
consistent with the spacing between eutectic Si particles,
which is typically on the same order of their particle size.

To complete our surface characterization, we show the
silicon-projected height-difference autocorrelation func-
tion C2(R) in Fig. 5, see also Eq. (16) where C2(R)
is defined. The correlation functions can be described
roughly as follows: At distances r < 3 µm, i.e., on the
silicon-rich particles, C2 grows with a powerlaw. The
Hurst roughness exponent H would be rather small, i.e.,
H ≈ 0.2. (H is frequently used to approximate C2(R)
with a powerlaw ∝ R2H . For a regular random walk,
H = 1/2 holds. Smaller values of H indicate an increased
short-wavelength roughness.) At distances r > 10 µm,
i.e., if height differences are evaluated between two dif-
ferent particles, C2 grows even more slowly, and though
no clear power law is evident, one could argue that the
growth of the height-difference correlation function would
be roughly consistent with a Hurst roughness exponent
H ≈ 0.1. Note that the values for C2(r) at large values
of r are approximately the squared widths of the height
distributions of those peaks in P (h) (see Fig. 3) that are
associated with silicon particles.

B. Contact characterization

Knowing the topography of the surfaces does not al-
low one to determine where contact is going to take
place. When a rough surface is pressed against a flat
counter surface the highest point of the rough surface
will make contact first, whereby the vicinity of this point
will be pushed down and hence perturb the local topog-
raphy. Local overlap models ignore this coupling and
thus predict areas where contact takes places that are
too clustered. For self-affine contacts, this elastic cou-
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FIG. 5: Height-difference correlation function C2(r) for the
two investigated samples. Note that only those height differ-
ences are taken into consideration where origin and destina-
tion are located on silicon particles.

pling makes the contact morphology different than what
one would obtain from an asperity-overlap model. [16]
Here we would like to investigate whether a similar state-
ment holds when the surfaces have roughness on dis-
parate length scales.

Figure 6 contrasts the contact morphology that we
obtain for a normal macroscopic pressure of 5 MPa to
that which we would have obtained in an overlap model.
For this comparison, we assumed that an overlap model
would produce the same relative area of contact as that
found in the numerically-exact GFMD calculations. As
expected, contact is spread over more particles in the nu-
merically exact calculations that include long-range elas-
ticity than if contact had occurred merely based on local
height differences.

FIG. 6: View of the Al-Si surface. White areas indicate sil-
icon particles, while grey areas correspond to the aluminum
matrix. Black points mark the microscopic points of con-
tact. The total area of contact accounts to 0.66%. The nor-
mal macroscopic pressure would correspond to 5 MPa, i.e.,
pmacro = 0.11× 10−3 in our dimensionless units. Figure (a) is
the full GFMD calculation, while (b) is the prediction by an
overlap model.

To quantify the results presented in Fig. 6 further,
we calculated the contact autocorrelation function gcc(r),
which is shown in figure 7 for two different relative con-
tact areas. gcc(r) states the probability of having con-
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tact at a distance r from the origin if there is contact
at the origin. While our statistics are rather limited, we
still feel confident to draw the following conclusions: The
overlap model significantly overestimates the correlation
to have contact at a distance r if there is contact in the
origin. It even appears that the overlap model does not
reproduce the correct behavior for large r, as long as r
is less than the longest wavelength on which roughness
is found. In both cases, i.e., 0.66% and 10% contact
ratio, does the overlap model fail to show the correct
“pseudo-asympotic” behavior, which, as revealed by the
GFMD calculations, would consist of gcc(r) approaching
the value of A/A0 at relatively small values of r. (Here,
“pseudo-asymptotic” behavior referes to the behavior of
a function for arguments that are large compared to the
mesoscopic lengthscales, but smaller than the longest
wavelength on which roughness is found.) The dip in
the overlap model for values of r close to half the simula-
tion cell can be rationalized as follows: The integral of gcc

over the (periodically repeated) domain must be exactly
equal to the real area of contact A. Since overlap models
grossly overestimate contact near the highest peak, this
strict requirement can only be satisfied with the dip at
large values of r. We suspect that overlap models are gen-
erally unable to produce the correct pseudo-asymptotic
behavior for contact correlation functions. This claim is
also supported by the observation that the Fourier trans-
form of the contact correlation function as predicted by
the overlap models does not show the correct scaling at
small wavenumbers, see figure 6 in Ref. 16.
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FIG. 7: Contact autocorrelation function gcc(r) from GFMD
and from an overlap model. The relative contact area A/A0

is 0.66% in the main figure and 10% in the inset.

Given our interpretation of our Fig. 7, we conclude
that it is not possible to reliably predict the distribution
of forces on individual particles with overlap models even
if we had an exact relation for load and displacement at
the single-particle level. First, one would not pick all
the correct particles that experience a non-zero external
load and thus sample the wrong set of particles. Second,

those asperities that would be identified correctly would
be subjected to a force that is too large.

C. Stress distributions

In this section, we will present the results of our con-
tact mechanics GFMD calculations and try to rational-
ize the results within the context of our analysis of the
surface topographies. In our calculations, the net load
exerted was varied such that the corresponding macro-
scopic pressures fell in the range of 1.3 KPa to 0.9 GPa.
As the surface coverage of silicon particles is approxi-
mately 13% and 20% for A1955 and A1934, respectively,
the average mesoscopic stress will be approximately five
to eight times larger than the macroscopic stress assum-
ing all particles are in contact. The distribution of mi-
croscopic stresses is more difficult to ascertain than that
of mesoscopic pressures, because computing microscopic
stresses requires a fine resolution of mesh points for the
whole system.

1. Pressure and its distribution in individual particles

Before presenting the results for the probability dis-
tribution, it is worth visualizing the pressure in single
asperity contacts. Characteristic differences can be rec-
ognized in Fig. 8 between circular and elongated asper-
ities. The circular particles carries significant load on
its rims and the effect of polishing is clearly evidenced
by “ridges.” Conversely, the elongated particle does not
have increased pressures at its rim and height fluctua-
tions can be related to “asperities” that reside on top
of the particle rather than to trenches produced through
polishing. This behavior can be understood from the ob-
servation that the material A1934 has the more abruptly
ending tops, see the discussion following Fig. 3, i.e, the
pressure distribution on circular particles resemble the
“flat-punch” continuum solution more closely than that
of the elongated particles. We remind the reader that
the continuum solution for P (p) of a flat punch shows a
square root singularity at the punch edge. [17]

FIG. 8: Local pressure in (a) a (quasi) circular and (b) an
elongated particle. Bright and dark colors indicate areas of
high and low local pressure, respectively.

A statistical analysis of the pressures visualized in
Fig. 8 is made in Fig. 9. For both particles, there is an ex-
ponential tail in the pressure distribution. Such tails have
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been identified previously for experimentally-determined
rough height profiles, as opposed to those computed for
artificially created height profiles. [18] Only the artificial
height profiles produced Gaussian tails in agreement with
Persson’s theory. It is surprising that the same char-
acteristics, that is, exponential tails, are borne out for
relatively small single-asperity particles as for distinctly
larger, self-affine contacts.
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FIG. 9: Distribution function for microscopic pressures,
P (pmicro) for circular and elongated particles. The applied
macroscopic pressure would correspond to 65 MPa in real
units and 0.0015 in reduced units. Inset: same distributions
on a linear scale.

The deviation in P (p) from a Gaussian distribution
can be rationalized as follows: The stress-independence
of the ratio 〈∆σ2〉/∆ζ, see Eqs. (8), is motivated by the

assumption that h̃(q) and h̃(q′) are stochastically inde-
pendent for q 6= q

′. Real surfaces, however, show corre-
lation in their height spectra. This correlation will lead
to a σ-dependent ratio 〈∆σ2〉/∆ζ, so that the solutions
for P (σ) do not need to be Gaussian any longer.

Although Persson’s pressure distribution is Gaussian
(or the superposition of two Gaussians), it is worth com-
paring the computed and predicted distribution on a lin-
ear scale. The comparison is shown in the inset of Fig. 9.
In the case of elongated particles the agreement is rather
impressive, despite the fact that the theory does not ad-
dress the tails properly. The agreement is not as good for
the circular asperities, which can be understood from the
observation that the rim carries significant load. More-
over, the theory assumes isotropy, while the circular as-
perity shows ridges, probably due to more extensice pol-
ishing.

2. Distribution of pressure in multi-particle contact

As mentioned various times in this paper, stress dis-
tributions depend on the level of magnification in which
they are accumulated, the finer the scale the larger the

mean pressure. Of particular interest for Al-Si alloys is
the load distribution on individual particles, as well as
the microscopic stress distributions. Exemplary results
are shown in Fig. 10. It is clear that the local stress
can be an order of magnitude larger than the applied
macroscopic stress. The average mesoscopic stress will be
approximately five to eight times larger than the macro-
scopic stress assuming all load-bearing particles are in
contact. And the microscopic pressure due to the finest
roughness on the Si surfaces, can be 100 1000 times
larger.

FIG. 10: Macroscopic, mesoscopic, and microscopic pressure
distribution for different external, nominal pressures. Figures
(a), (b) and (c), (d) refer to A1955 and A1934 materials,
respectively. Lines denote the macroscopic pressure, open
symbols the stress distribution at the mesoscopic scale, see
equation 2, and closed symbols are used for the microscopic
stress distribution.

It is worth commenting on the broad tails of the micro-
scopic pressures at small values of p in figure 10. These
tails are artifacts of the finite discretization of our elas-
tic manifold. In fully converged calculations, P (p) would
tend to zero rather than to a constant at small values of
p. While it would be desirable to further decrease the
discretization, we wish to note that it is currently out-
side of our feasibility to do so. Specifically, we begin the
calculations with N = 1024 × 1024 grid points for the
full surface. In this simulation, we ascertain the load
on individual particles, from which the mesoscopic stress
distribution is derived. In a second series of simulations,
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individual particles are randomly-chosen and the previ-
ously ascertained loads are applied to them. The number
of grid points is again N = 1024× 1024, however a much
smaller area needs to be simulated. In a previous pa-
per, [18] we showed that mean microscopic pressure and
contact area could be calculated accurately if use was
made of finite-size extrapolation, which is why a third
simulation with N = 512 × 512 discretization was run.

From calculations like those presented in Fig. 10, it
is possible to ascertain the mean pressures at a meso-
scopic and microscopic scale, which are shown in Fig. 11.
Only A1934 was shown as an example. The load L is
normalized by the contact area and the materials’ mod-
ulus. Fig. 10 shows that the mean microscopic pressure
barely changes with the external load. Also the mean
mesoscale pressure is relatively constant within a certain
window, however, at both very large and very small ex-
ternal loads, 〈pmeso〉 is linear in L. This observation can
be rationalized as follows: For small L, there is only one
silicon particle in contact, which carries all the load. For
large L, all particles carry load, and the mean mesoscopic
pressure becomes the load divided by the net surface cov-
ered by the particles. The mean pressure is relatively flat
in between these two limits.
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FIG. 11: Mean microscopic, mesoscopic, and macroscopic
pressure as a function of the external load for a surface cov-
ered with predominantly elongated particles.

The weak dependence of the mean mesoscopic pres-
sure is consistent with the observation that there is
some residual roughness at mesoscopic length scales.
This roughness at the mesoscale becomes evident in
the silicon-projected height-difference correlation func-
tion C2(r). Of course, it would be desirable to have
the ability to predict the plateau value for the meso-
scopic pressure. In section III B, we argued how to mod-
ify Persson theory to the case where the load is carried
only by silicon particles. Applying these modifications
to the current calculations and cutting off roughness at
wavelengths of roughly 10 µm, leads to a mesoscopic pres-
sure that is about 20 times larger than the pressures that

were actually computed from GFMD. Inspection of fig-
ure 6 reveals that most particles that we count as being
in contact only have a marginal part of their surface in
contact. These asperities reduce the mean pressure quite
substantially and may thus contribute to the discrepancy
between theoretical description and numerical results.

V. SUMMARY AND CONCLUSIONS

In this study, we investigated the contact mechanics
of two Al-Si alloys with Green’s function molecular dy-
namics. The microstructural differences between the two
alloys lead to characteristic geometries of the silicon-rich
domains. These domains become particles that stick
out of the surface after appropriate surface treatments.
In one case, material A1955, the particles are typically
closer to a circular shape than for material A1934, which
shows rather elongated particles. The particles are sup-
posedly the load-bearing entities during mechanical con-
tact.

Our study included an analysis of various correlation
functions that describe the topography of free surfaces,
the geometry of those places where microscopic contact
occurs, as well as the pressure distributions both on a
microscopic scale but also on a mesoscopic scale, i.e.,
on a length scale associated with the typical spacing be-
tween asperities. Whenever appropriate, comparison was
made to either overlap models, which enter, for instance,
Greenwood-Williamson theory, or to Persson’s contact
mechanics theory.

In our calculations, some quantitative and qualita-
tive differences between the two alloys became apparent.
First, the two alloys appear to have a different response to
polishing. Specifically, the pressure profiles on particles
of material A1955 show more similarity to the “flat-punch
continuum solution” than the material A1934. Second,
the differences in height on top of the particles increases
more quickly with distance for material A1955 than for
A1934. Third, the microscopic pressure distribution for
material A1934 follows Persson’s contact mechanics the-
ory much better than that of material A1955. Fourth,
the mean microscopic pressure is larger for A1955 than
for A1934. This last observation can be explained by the
fact that, as compared to A1955, material A1934 has the
smaller roughness at the smallest length scales.

In this paper, we also attempted to generalize Pers-
son’s theory to the case where load can only be carried on
places known a priori, specifically, where load can only be
carried on silicon particles. The goal of these calculations
was to ascertain what average load one should expect on
a load-bearing particle of a given area. For the system
analyzed, our generalization of Persson’s theory predicts
pressures that are off by about a factor of twenty from
our numerical results. Unfortunately, overlap models will
not be in a position to yield better results. Analysis of
the geometry of those areas where contact takes place re-
vealed that overlap models produce contact mainly in the
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vicinity of the highest particle, while load was distributed
much more evenly across the surface once elastic defor-
mation was incorporated by the GFMD calculations.

Despite the failure of overlap models to produce correct
contact geometries, they are still useful to rationalize why
the mesoscopic stress, which we defined to be the pressure
averaged over all particles in contact, remains constant
over a relatively broad pressure range. When increas-
ing the external load, those particles that are already
in contact will carry larger loads, however new particles
come into contact, which initially carry little load but im-
mediately “contribute” their full area of contact to the
calculation. Unfortunately, neither overlap models nor
Persson theory are able to reliably predict what the load
is that an individual particle has to carry. This leaves us
to conclude that at the present stage of theory, predicting
the contact mechanics of Al-Si surfaces requires numeri-
cal solutions of the models, even when the models are at
the rather simplified level considered here, i.e., static con-
tacts, use of the harmonic approximation and absence of
any lubricant, homogeneous elastic approximation, and
neglecting plasticity and particle fracture.

Despite the limitations of our model, there are impli-
cations of how the information on both mesoscopic pres-
sures and microscopic pressures contained in the GFMD
results can be interpreted to analyze real contacts with
aluminum silicon alloys. The wisdom associated with
including hard phases in aluminum alloys destined for
tribological applications is that the exposed hard phases
will support the applied load, and prevent the counterface
from coming into direct contact with the aluminum ma-
trix. Knowing the forces on individual particles and the
associated distribution of mesoscopic pressures helps one
design an alloy and a contact with a reasonable safety
factor to avoid aluminum adhesion. The GFMD simu-
lation of the microstructures presented here shows that
the predicted pressure distribution has a dependence on
L/(AE), which is not captured by overlap models or our
extension of Perssons theory. Both Persson and overlap
model overestimate the load carried by individual parti-
cles.

The knowledge of microscopic pressure distribution is
relevant to the fracture of silicon particles. The GFMD
calculations show that there is a significant contribution
to the pressure distribution at high pressures, which is
not captured by Persson’s analytic theory. GW models
cannot be applied to the particular shape of the silicon
particles, but they usually also show Gaussian tails in
the pressure distribution and would thus suffer from the
same shortcoming as Persson’s theory. From a practical
point of view, this teaches us that smoother particles (by
polishing) with rounded edges will minimize the pressure
distribution components that can lead to hard phase frac-
ture, which is known to be a failure mechanism in sliding
contact of similar surfaces.

APPENDIX A: MATHEMATICAL APPENDIX

In this appendix, we provide the formulae necessary to
transform a correlation function with radial symmetry
into reciprocal space and to transform them back with a
cutoff in wavenumber. Let us chose a symmetric Fourier
transform, i.e.,

h̃(q) =
1

2π

∫ +∞

−∞

d2x eiqxh(x) (A1)

and the inverse transform

h(x) =
1

2π

∫ ∞

−∞

d2q e−iqxh̃(q). (A2)

Let us furthermore assume stochastically independent
fluctuations in h̃ for different values of q, i.e.,

〈

h̃(q)h̃(q′)∗
〉

= 2πC̃(q)δ(q − q
′) (A3)

Then with these definitions, the correlation function

C(∆x) = 〈h(x)h(x + ∆x)〉 (A4)

can be shown to be the (inverse) Fourier transform of

C̃(q), which implies that

C̃(q) =
1

2π

∫ ∞

−∞

d2x e−qxC(x). (A5)

When C(x) is a function of x = |x|, the last equation can
be rewritten as

C̃(q) =

∫ ∞

0

dx x C(x)

{

1

2π

∫ 2π

0

dϕ e−iqx cos ϕ

}

(A6)

The expression in the curly brackets is the Bessel function
of the first kind J0(qx). From that equation it becomes

clear that C̃(q) only depends on q = |q|, so that one can
calculate the expectation value of the r.m.s. gradient G

G = 〈∇h(x)∇h(x)〉

=
1

(2π)2

∫ +∞

−∞

d2q d2q′(−iq)(+iq′)e−iqxeiqx
′

〈

h̃(q)h̃∗(q′)
〉

=
1

2π

∫ +∞

−∞

d2q d2q′(−iq)(+iq′)C̃(q)δ(q − q
′) (A7)

=
1

2π

∫ ∞

−∞

d2q q2 C(q) (A8)

Since C(q) only depends on q, this can be simplified to

G =

∫ qc

0

dq q3C(q), (A9)

where a finite cutoff qc was introduced in frequency space.
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