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Abstract. The Green’s function molecular dynamics (GFMD) method for the

simulation of incompressible solids under normal loading is extended in several ways:

Shear is added to the GFMD continuum formulation and Poisson numbers as well as

the heights of the deformed body can now be chosen at will. In addition, we give the full

stress tensor inside the deformed body. We validate our generalizations by comparing

our analytical and GFMD results to calculations based on the finite-element method

(FEM) and full molecular dynamics simulations. For the investigated systems we

observe a significant speed-up of GFMD compared to FEM. This result indicates that

GFMD is a promising candidate to treat boundary conditions in discrete-dislocation-

dynamics based descriptions of plasticity.
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1. Introduction

Green’s function molecular dynamics (GFMD) [1, 2, 3] is a boundary-value method

allowing one to simulate the linear-elastic response of a solid to an external stress or,

more generally, to a boundary condition. So far, GFMD has been used predominantly

to describe either non-reflecting [4, 5] and thermalizing [6, 7, 8] boundaries to which an

atomistic region is coupled, or, as a tool to simulate the contact mechanics of solids with

rough surfaces [9, 10, 11]. One advantage of GFMD is that it only necessitates knowledge

of the displacements in the top layer of a solid and that effective interactions are block

diagonal in Fourier space. Relatively large systems can therefore be simulated and be

quickly relaxed. Typical system sizes in the context of contact mechanics range from

4, 096×4, 096 surface atoms on single CPUs [9] to O(105×105) on supercomputers [11].

An additional, conceivable application consists in coupling GFMD to discrete

dislocation dynamics (DDD) [12]. The idea is to use GFMD, instead of the finite-

element method, to compute the image fields of dislocations in DDD. Towards this end,

we generalize the GFMD method in the following ways: First, we consider the elastic

response of a cubic or an isotropic body with arbitrary Poisson number and allow for
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lateral displacements as well as for shear tractions in addition to normal tractions.

Second, we deduce the internal stresses for a given surface boundary condition and

do this for solids of arbitrary height. The approaches pursued so far were limited to

either normal displacements and normal tractions in the continuum formulation [11, 13]

or to the full atomistic Green’s functions [2, 9], which do not relate directly to the

continuum limit. While the finite-width elastic continuum problem with shear was

solved by Carbone and Mangialardi [14], their work did not put us into the position to

deduce directly the Green’s function coefficients needed for a numerical implementation.

In a later work, in particular appendix A of reference [15], useful formulae for the GFMD

simulations were stated, but unfortunately only for the frictionless case.

In this work, we present a solution for the Green’s function of finite-height elastic

slabs having the following advantages: The only required mathematical tools are partial

derivatives, Fourier transforms, and linear algebra, i.e., there is no need to solve

Fredholm integral equations. All equations needed to implement the approach into

computer code are given explicitly in compact form. Moreover, our approach can be

readily modified in various ways. For example, it should be straightforward to extend

our solution strategy to layered materials, to materials with gradient or square-gradient

corrections to the elastic energy, or to non-isotropic crystals — as long as they remain

homogeneous within each plane. In fact, the most important equations for non-isotropic

crystals are given and tested in this work. Lastly, we validate our solution against

numerical data and moreover consider various limiting cases including that of very small

slab heights or that of a vanishing shear modulus characteristic for fluids.

2. Theoretical Considerations

2.1. General background

In this paper, we are concerned with the quasi-static loading, in which case the precise

dynamical response of the simulated layer does not play a role, see references [5, 15, 16]

for generalizations from the static to the dynamic case. Moreover, we consider to load

the surface of a body that is translationally invariant within the xy-plane, which, in

principle, is allowed to be a gradient material as long as the gradients are normal to the

xy surface plane. One can then write the linear stress-displacement relation u[σ(r)] as

uα(r) =

∫
d2r′Gαβ(r′)σ3β(r + r′), (1)

where Gαβ(r′) is the Green’s function tensor, uα(r) is the α component of the

displacement as a function of the (two-dimensional) in-plane coordinate r, and σ3β
is the traction in z-direction. In Fourier space, equation (1) reads

ũα(q) = G̃αβ(q)σ̃3β(q). (2)

In contact problems, one often knows the displacement of the bodies and wants to

deduce the contact pressure, and thus, one usually does not need to evaluate the Green’s
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function (tensor) itself, but its inverse. Thus, force calculations in GFMD simulations

require one to evaluate

σ̃3α(q) =
[
G̃−1(q)

]
αβ
ũβ(q). (3)

The precise functional form of the (inverse) Green’s function tensor depends on the

elastic properties of the deformed material including its height.

In its simplest form, usually used in the context of (continuum) contact

mechanics [17], one is only interested in normal displacements induced by normal

tractions applied to a semi-infinite, isotropic body. In this case, if the body is

incompressible, ν = 0.5, all quantities in equation (3) can be considered as scalars

and the equation reduces to

σ̃(q) = qE∗ũ(q)/2, (4)

where E∗ = E/(1 − ν2) is the contact modulus, E being the Young’s modulus and ν

the Poisson number. However, as mentioned in the introduction, we wish to generalize

GFMD to give the elastic response of a body with generic Poisson’s ratio, and therefore,

we can no longer use a scalar to describe surface displacement. Moreover, we intend

to consider problems where contact loading is not restricted to be in normal direction,

i.e. tractions and/or displacement can be applied in normal or tangential directions,

everywhere on the body surface. Therefore, we can no longer rely on equation (4)

end need to find a form for the Green’s function tensor in equation (3), which has to

depend on the Poisson’s ratio and on the height of the slab. Towards this end, we next

calculate the analytical solutions for the displacement in linearly elastic slabs of finite

height, from which the stresses can be deduced in a straightforward fashion. The stress

distribution underneath the contact are of particular interest in problems as fretting

fatigue, to determine whether a possible tensile loading underneath the contact would

give rise to crack nucleation and propagation.

2.2. Analytical solutions for the displacement in finite-height, linearly elastic slabs

We consider a linearly elastic body of cubic or higher symmetry in a slab geometry

with a fixed bottom, i.e., the displacement reads u(x, z = 0) = 0 rather than

u(x, z → −∞) → 0 as for semi-infinite solids. Moreover, we assume that no body

forces are exerted, which implies the usual equilibrium condition ∂ασαβ(r) = 0, where

σαβ(r) is the stress at the point r inside the body and ∂α ≡ ∂/∂rα. For isotropic

bodies or cubic bodies with their [100] surface facing up often considered in DDD

simulations [12, 18, 19, 20] the equilibrium condition is given by

C11∂
2
1u1 + C44∂

2
3u1 + (C12 + C44)∂1∂3u3 = 0 (5)

C11∂
2
3u3 + C44∂

2
1u3 + (C12 + C44)∂1∂3u1 = 0, (6)

where we have restricted our attention to (1+1)-dimensional solids so that in-plane

wavevectors are now scalars, and where the Cij’s denote coefficients of the elastic tensor

in Voigt notation.
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Assuming an in-plane undulation of the top layer with the real-valued wavenumber

q, equations (5) and (6) can be solved with the factorization

uα(x, z) = u0α exp(iqx) exp(ikz), (7)

where k is a complex wavenumber satisfying

(k/q)2 = −b±
√
b2 − 1 (8)

with

b =
C2

11 + C2
44 − (C12 + C44)

2

2C11C44

. (9)

Thus, we obtain solutions for the displacements either oscillating exponential functions

for b < 1 or purely exponential functions for b > 1. The nature of the solution changes

at b = 1, which automatically holds for isotropic media as these satisfy the isotropy

condition C44 = (C11 − C12)/2. The solutions for b = 1 are proportional to exp(±qz),

and, in addition, proportional to z exp(±qz), i.e., similar to those of critically damped

harmonic oscillators. The decaying solutions can usually be ignored when the z-position

of the top layer zm satisfies zm � 1/q but not for a finite-slab geometry.

In the remainder of this section, we focus on the isotropic case, because this is a

common approximation made, for example, in DDD simulations. In the result section,

we also consider the case of a cubic solid violating the isotropy condition to demonstrate

the correctness of our approach. At this point, it may suffice to state that metallic cubic

crystals tend to have a relatively small shear modulus, in which case b > 1, while non-

metals rather correspond to b < 1.

Due to the nature of the differential equations (5) and (6), the solutions of the

in-plane cosine transform of the lateral u1 displacement field couples to the in-plane

sine transform of the normal u3 displacement, and vice versa. Thus, we can write

uc1(x, z) = cos(qx)ũc1(q, z) (10)

us3(x, z) = sin(qx)ũs3(q, z). (11)

Solutions satisfying the boundary condition u(x, 0) = 0 and the differential equation for

isotropic media are then obtained after some algebra to satisfy[
ũc1(q, z)

ũs3(q, z)

]
=

[
f1(qz) −f2(qz)

f2(qz) f3(qz)

][
A1

A2

]
(12)

with

f1(qz) = sinh(qz) +
1− s
1 + s

qz cosh(qz) (13)

f2(qz) =
1− s
1 + s

qz sinh(qz) (14)

f3(qz) = sinh(qz)− 1− s
1 + s

qz cosh(qz), (15)

where s ≡ C44/C11. The latter ratio has allowed values of 0 < s < 1 for stable, two-

dimensional isotropic solids [21]. The coefficients A1,2 follow from equation (12) once
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ũc1(q, z) and ũs3(q, z) are given at z = zm, where zm is the height of the undeformed solid.

Lastly, the in-plane sine transform of u1 and cosine transform of u3 can be calculated

in a similar fashion via:[
ũs1(q, z)

ũc3(q, z)

]
=

[
f1(qz) f2(qz)

−f2(qz) f3(qz)

][
B1

B2

]
. (16)

In summary, for an arbitrary surface displacement field u(x, zm), the in-plane

Fourier transform is taken to yield ũ(q, zm). The real and imaginary parts can be

associated with left-hand sides of equations (12) and (16), which allow one to determine

the pertinent coefficients A1,2 and B1,2 for each wavenumber q by evaluating them at

z = zm. The knowledge of these coefficients then allows one to deduce the displacement

inside the body.

2.3. Finite-height-slab strain, stress, and energy density

Not only the displacement but also the strain and thus the stress field on the surface

or inside the body can be deduced as soon as the coefficients A1,2 and B1,2 have been

determined for a given surface topography, obtained by perturbation of an initially

flat surface. For reasons of simplicity, we first restrict our attention to the case of a

perturbation by a single wave number q and B1,2 = 0. The elements of the infinitesimal

Cauchy’s strain tensor (in Voigt notation) are then given by

ε1(x, z) ≡ ∂1u1(x, z)

= − q sin(qx)ũc1(q, z) (17)

ε3(x, z) ≡ ∂3u3(x, z)

= sin(qx)∂3ũ
s
3(q, z) (18)

ε5(x, z) ≡ ∂1u3(x, z) + ∂3u1(x, z)

= cos(qx) {qũs3(q, z) + ∂3ũ
c
1(q, z)} (19)

These expressions can now be used to compute the stresses inside the body as well as

on its surface with the usual stress-strain relations. Knowledge of the latter suffices to

determine the work per unit area needed to deform the body – assuming small surface

slopes and thus the surface normal to be approximately parallel to the z-axis – via

vel =
1

L

∫ L

0

dx

[∫ u1(x,zm)

0

σ31(x, zm)du1(x, zm)

+

∫ u3(x,zm)

0

σ33(x, zm)du3(x, zm)

]
. (20)

This yields

vel =
C44

2
ε̃c5(q, zm)ũc1(q, zm) +

{
C11

2
ε̃s3(q, zm) +

C12

2
ε̃s1(q, zm)

}
ũs3(q, zm)(21)
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with

ε̃s1(q, z) = − qũc1(q, z) (22)

ε̃s3(q, z) = ∂3ũ
s
3(q, z) (23)

ε̃c5(q, z) = ∂3ũ
c
1(q, z) + qũs3(q, z). (24)

Thus, for the surface layer

ε̃s1(q, zm) = − qũc1(q, zm) (25)

ε̃s3(q, zm) = r
cosh2(qzm)− r(qzm)2 − 1

||f(zm)||
qũc1(q, zm)

+ (1− r) cosh(qzm) sinh(qzm) + rqzm
||f(zm)||

qũs3(q, zm) (26)

ε̃c5(q, zm) = (1 + r)
cosh(qzm) sinh(qzm)− rqzm

||f(zm)||
qũc1(q, zm)

+
(1− r) sinh2(qzm)− 2(rqzm)2

||f(zm)||
qũs3(q, zm) (27)

where

r ≡ 1− s
1 + s

(28)

and

||f(qz)|| ≡ f1(qz)f3(qz) + f 2
2 (qz)

= cosh2(qz)− (rqz)2 − 1. (29)

Gathering all expressions entering the elastic energy leads to

vel =
q

2
[ũc1(q, zm), ũs3(q, zm)]

[
M11(qzm) M13(qzm)

M13(qzm) M33(qzm)

][
ũc1(q, zm)

ũs3(q, zm)

]
(30)

with

M11(qzm) = (1− r) cosh(qzm) sinh(qzm)− rqzm
||f(qzm)||

C11 (31)

M13(qzm) =
1− r
1 + r

(1− r) sinh2(qzm)− 2(rqzm)2

||f(qzm)||
C11 (32)

M33(qzm) = (1− r) cosh(qzm) sinh(qzm) + rqzm
||f(qzm)||

C11, (33)

which is a central result for GFMD simulations in which both normal and shear stresses

are considered.

For reasons of completeness, we state the general elastic energy density

vel =
∑
q

q

2
[ũ∗1(q), ũ∗3(q)]

[
M11(qzm) −iM13(qzm)

iM13(qzm) M33(qzm)

][
ũ1(q)

ũ3(q)

]
, (34)

where ũ(q) is now the complete, complex Fourier transform of the displacement of

wavevector q. For zero shear (normal) stress, the elastic energy is minimized with
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respect to the lateral (normal) displacement and thus becomes

vel =
q

2

{
M11(qzm)− M2

13(qzm)

M33(qzm)

}
|ũ1(q)|2 (zero normal stress) (35)

vel =
q

2

{
M33(qzm)− M2

13(qzm)

M11(qzm)

}
|ũ3(q)|2 (frictionless contact). (36)

2.3.1. Asymptotic analysis It is instructive to consider various limits. First, for

large wavevectors, the problem reduces to that of a semi-infinite solid. In this case,

the quotients in equations (31)-(33) with ||f(qzm)|| in the denominator can be set to

one and the elastic energy is essentially q times an effective modulus times a squared

displacement. More specifically, the Mij(qzm) become

M11(qzm � 1) =
2

1 + s
C44 (37)

M13(qzm � 1) =
2s

1 + s
C44 (38)

M33(qzm � 1) =
2

1 + s
C44. (39)

In the second limit, i.e. that of short wavevectors, we find

qM11(zm � 1) =
C44

zm
(40)

qM13(zm � 1) = 0 (41)

qM33(zm � 1) =
C11

zm
(42)

so that we may write for center-of-mass displacements

vel(q = 0) =
C44

2zm
ũ21(0) +

C11

2zm
ũ23(0). (43)

This corresponds to the elastic energy — per unit area — of an isotropically deformed

(and periodically repeated) solid being glued to a rigid substrate.

As a brief side aspect, let us also discuss the limiting case of C44 = 0 (⇒ r = 1)

which describes a compressible fluid. Given the prefactors in equations (31)-(33), one

might have been tempted to set all Mij(qzm) to zero. However, the just-presented

asymptotic analysis reveals that this would not have lead to the correct result for

M33(qzm → 0), which remains finite even for a vanishingly small shear modulus. Thus,

the only mode necessitating elastic energy when altering the shape of the “top layer” of

a fluid is that which leads to a volume reduction, i.e., the ũ3(q = 0) mode.

We conclude this section by making the link of our results to the contact modulus

E∗ introduced in equation (4). For semi-infinite solids, or large qzm, the expression in

the curly brackets in equation (36) reduces to 2(1− s)C44, which indeed can be shown

to be half E∗. This implies that equation (36) is consistent with (4) in the limit of a

frictionless semi-infinite contact.
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3. Numerical Results

3.1. Displacements in non-isotropic solids

To model a non-isotropic solid, we consider a cubic crystal with its [100] surface facing

up. To make the comparison of continuum theory to full molecular dynamics (MD)

simulations as transparent as possible, we furthermore restrict ourselves to a simple cubic

lattice in which each atom (which one may also see as a grid point) is connected to its

nearest neighbors with a spring of stiffness k1 and to next-nearest neighors with a spring

of stiffness k2 = k1. Mechanical equilibrium of the springs is assumed at a distance a0
between nearest neighbors and

√
2a0 for next-nearest neighbors. With these definitions,

it is readily seen that the elastic tensor — fully defined by C11 = (k1 + k2/2)/a0 and

C12 = C44 = k2/2a0 — violates the isotropy condition for the given choice of k1 = k2,

since in this case C44 > (C11 − C12)/2. Here, the stiffness is divided by a0 so that the

elastic constants have the correct units.

In our example, we consider a slab of height Lz = Lx/2, where Lx = 40a0 is the

lateral length of the domain, which is repeated periodically along the x−direction. The

just-defined system is solved with a self-written MD code, in which individual atoms

are also coupled to damping linear in velocity. The mass of atoms is set to unity, the

time step to 0.1 and damping to 0.25. Two cases of displacements in the top layer are

treated: normal loading for which u1(x, zm) = 0, u3(x, zm) = A0 cos(2πx/Lx) and shear

loading for which u1(x, zm) = A0 cos(2πx/Lx), u3(x, zm) = 0. To justify the assumption

of linear elasticity, the maximum displacement amplitude is set to A0 = a0/100. Top

and bottom layer are kept fixed. The system relaxes after a few thousand time steps.

0 0.2 0.4 0.6 0.8 1.0
z / z

m

0.0

0.2

0.4

0.6

0.8

1.0

u
 /

 A
0

MD: u
1
(x=0, z)

MD: u
3
(x=3L

x
/4, z)

analytical solution

shear loading

0 0.2 0.4 0.6 0.8 1.0
z / z

m
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0.2

0.4

0.6

0.8

1.0

u
 /

 A
0

MD: u
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(x=3L

x
/4, z)

MD: u
3
(x=0, z)

analytical solution

normal loading

Figure 1: Lateral (red circles) and normal (blue squares) displacements u1,3 at

selected crosssections for shear (left) and normal (right) loading as obtained from

MD simulations. The displacements are given in units of the maximum displacement

A0, which is valid at the top layer of the solids located at the normal coordinate

z = zm = Lx/2. The displacements are set to zero at the bottom layer (z = 0).

Full lines represent the continuum solutions used to obtain internal stresses in GFMD

simulations.
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Agreement between full MD and the analytical expressions for the displacement

fields is clearly revealed.

3.2. Displacement and stress fields in isotropic solids

As a benchmark problem to compare GFMD to FEM we here consider the indentation

of an isotropic elastic two-dimensional slab by an array of flat rigid punches. Contact

between punches and slab is taken to be fully sticking. The analysis is performed on a

periodic unit cell with fixed bottom as shown schematically in figure 2a.

x

z

Lx

Lx

u3

z
m

0

p

(a)

0 0.2 0.4 0.6 0.8 1
­2

­1

0

1

2

FEM

x/L
x

(u
1
/L

x
)

x
1

0
5

0 0.2 0.4 0.6 0.8 1
­2

­1

0

1

2

GFMD

|

(b)

Figure 2: (a) Periodic unit cell of an isotropic slab indented by a flat rigid sticking punch.

(b) The normalized tangential surface displacement ū1/Lx obtained using GFMD and

FEM.

Normal displacement is prescribed at the contact of length Lp
x:

u3(x, zm) = u03 for
Lx − Lp

x

2
< x <

Lx + Lp
x

2
. (44)

The slab is indented to u03/Lx = 2.5 × 10−4. Outside the contact region, the top

surface is traction free. The aspect ratio of the slab, which is taken to have the elastic

properties of aluminum, C11 = 105 GPa and s = C44/C11 = 0.25, is a = zm/Lx = 1/4,

and the rigid punch is Lp
x/Lx = 1/4. For the finite-element analysis the slab is

discretized using a uniform mesh of square elements. The number of degrees of freedom

is ndof = 2nnx × nnz, where nnx is the number of nodes in x–direction, and nnz the

number of nodes in z–direction. For the GFMD simulation the surface is discretized

using nx equispaced grid points, with nx = nnx. Contact between the rigid indenters

and the slab is modeled through a hard-wall potential. The static solution is found in

GFMD using damped dynamics as described in [11]. The damping factor η used in this

simulations is

ηx = ηz = η0
1

τ
√
nx
, (45)
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where η0 is the damping prefactor and τ is the time step. The damping prefactor

is selected such that the slowest mode is slightly under-damped in z-direction. The

number of MD iterations used to reach convergence scales as nit ∼ O(
√
nx) and the

time step is τ=0.25. The normalized lateral surface displacement ū1/Lx obtained by

the two methods is shown for nnx = nx = 1024 in figure 2b. The over bar indicates the

value of the variable at the surface. No differences can be seen by the naked eye.

The displacement and stress fields inside the body for the GFMD simulations are

calculated using equations (12-16) and (25-27). For a better comparison with FEM, the

fields are evaluated at all locations inside the body corresponding to the nodes in the

FEM calculation. The body fields hence obtained are compared with those obtained

using FEM in figures 3 and 4.

(a) (b)

(c) (d)

Figure 3: Displacement fields obtained using: (a), (c) GFMD and analytical solution;

(b), (d) and FEM.

3.3. Convergence rate and simulation time

The convergence rate is studied considering the calculation of the L2 norm of the surface

displacement,

‖ū1‖L2
=

√√√√ nx∑
i=1

u1(xi, zm)2. (46)

Following [22], the error in the norm obtained using FEM as a function of the degrees

of freedom in the simulation can be written as:

‖(ū1/Lx)‖FEML2
− ‖(ū1/Lx)‖exactL2

≈ κ

nβdof
. (47)
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Stress fields obtained using: (a), (c), (e) GFMD and analytical solution; (b),

(d), (f) and FEM.

The exact solution, the asymptotic rate of convergence β, and the prefactor κ, are

obtained by linearly fitting three data points corresponding to nnx = 256, 512,

1024. As expected [22], given that the mesh refinement is uniform and the order of

the interpolating polynomial for the shape functions is one, the asymptotic rate of

convergence is found to be 0.5:

‖(ū1/Lx)‖L2
=

(
0.692− 2.552

n0.5
dof

)
× 10−5. (48)

Since the finite-element mesh has square elements, it follows that

1

nnx
=

(
2a

ndof

)0.5

. (49)

We can therefore rewrite the L2 norm as

‖(ū1/Lx)‖L2
=

(
0.692− 2.552

(2a)0.5
1

nnx

)
× 10−5, (50)
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which allows for direct comparison with GFMD (see figure 5a). The order of convergence

with respect to the discretization of the two methods is found to be the same, while

the prefactors are favorable for GFMD, i.e. κ/Lx = −3.609 × 10−5 for FEM while

κ/Lx = −1.653 × 10−5 for GFMD. Figure 5b shows the simulation time as a function

of the surface discretization. The results are all obtained on a single Intel Xeon(R) 3.10

GHz processor with 31.3 Gbytes of RAM. The GFMD simulations are found to be faster

than FEM, and the computational advantage increases with increasing system size. In

addition to this, a smaller number of grid points are needed in GFMD to obtain the

same results as in FEM. For the simulation reported here, if we decide to tolerate an

error e = 0.005 in the L2 norm of lateral surface displacement, the GFMD simulations

require nx =128 grid points while the FEM simulations need nnx =1024 surface nodes.

This results in a GFMD simulation being 1650 times faster than FEM.

It is to be noted here that: (1) we have not searched for the optimal meshing

scheme to solve the finite-element problem, simply used a mesh with squared elements

for ease of comparison with the equi-spaced surface grid points used in GFMD; (2) the

speed of the finite-element simulation depends heavily on the solver used. Here we have

used a direct sparse solver with skyline storage, where the time consuming step is the

factorization of the skymatrix. The order of factorization in a skyline solver is generally

O((nnx B)2) [23] where B is the mean bandwidth, which cannot exceed nnx. We are

aware that for large systems, an iterative solver would be much more cost-effective. In

GFMD, the computational complexity scales with O(nx
√
nx lognx), (3) the speed of

the GFMD simulation depends on the choice of the damping factors, which in general

are different in the x and z-direction. The optimal damping factor to obtain critical
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Figure 5: (a) The L2 norm of tangential surface displacement obtained using GFMD

and FEM are plotted as a function of 1/nx (b) Simulation time for GFMD compared

with FEM.



Green’s function molecular dynamics 13

damping of the system depends on the loading, the height of the slab and the elastic

constants. We here simply considered a single damping factor that would critically

damp the modes in z-direction, and thus under-damp the modes in x-direction.

4. Conclusions

Green’s function molecular dynamics, a fastly converging boundary value method used

to compute contact pressures and surface displacements of incompressible continuum

semi-infinite solids, is here extended to apply to finite solids with generic Poisson’s

ratio. Moreover, the body fields can now be computed analytically from generic tractions

and/or surface displacements. This extension allows the GFMD technique to provide

the same information that can be obtained through the FEM, but with a significant

gain in simulation time. An additional advantage of GFMD is that for typical contact

problems, where the contact area evolves during the simulation, the contact can be

easily captured and described by means of an interaction potential. We have here used

a hard-wall potential, but one can also model the bodies in contact explicitly and apply

an interaction potential, as the Xu-Needleman [24], where the contact response in normal

direction is coupled to that in tangential direction.

An interesting application that can be envisaged for the GFMD method, in virtue

of the extensions presented in this paper, is the replacement of the FEM in discrete

dislocation plasticity simulations of contact. This has the potential to significantly

increase the time efficiency of the discrete dislocation plasticity calculations by that

allowing to extend the applicability of such models to bodies of larger size, and with a

realistic surface profile.
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