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In this work, we demonstrate that path-integral schemes, derived in the context of many-body
quantum systems, benefit the simulation of Gaussian chains representing polymers. Specifically,
we show how to decrease discretization corrections with little extra computation from the usual
O(1/P 2) to O(1/P 4), where P is the number of beads representing the chains. As a consequence,
high-order integrators necessitate much smaller P than those commonly used. Particular emphasis
is placed on the questions of how to maintain this rate of convergence for open polymers and for
polymers confined by a hard wall as well as how to ensure efficient sampling. The advantages of
the higher-order sampling schemes are illustrated by studying the surface tension of a polymer melt
and the interface tension in a binary homopolymers blend.

I. INTRODUCTION

The mathematical isomorphism between the partition
function of a Gaussian chain representing a polymer and
the density matrix of a quantum-mechanical point par-
ticle has been known at least since Feynman formulated
quantum mechanics in terms of path integrals.1–4 To cast
the partition function of Gaussian chains or quantum-
mechanical point particles as path integrals, bead-spring
chains comprised of P beads are embedded into an ex-
ternal potential and configurations occur with a prob-
ability following the usual laws of statistical physics.
Differences between polymer and quantum calculations
usually arise in the nature of the external potential.
In the context of quantum mechanics, beads of differ-
ent chains only interact if they carry the same index,
at least as long as all degrees of freedom in the sys-
tem are considered explicitly.5,6 In contrast, beads repre-
senting parts of a homopolymer are commonly assumed
to interact with all others irrespectively of their posi-
tion along the chain. Within self-consistent field theory,
these interactions are replaced by an external potential
that represents the average mean interaction of a bead
with its neighborhood7,8. In single-chain-in-mean-field
(SCMF) simulations the interactions among beads are
temporarily replaced by an external potential that ap-
proximates the interaction of a bead with its instanta-
neous surrounding9,10.

Despite the just-mentioned differences between quan-
tum and polymer chains, their simulations pursue similar
goals and face related difficulties.11–13 To obtain con-
verged results or results that mimic the universal be-
haviour of long polymer chains, the discretization of the
chain contour, P , should always be as large as possible.
However, increasing P implies more computing time per
chain. Even worse, the stiffness of springs connecting ad-
jacent beads increases with P , which, in turn, gives rise
to a time-scale separation between stiff bonded and weak
non-bonded interactions14 and affects the sampling effi-
ciency of many algorithms. The ensuing impediments can

be quite dramatic when a complex task is handled with
naive, yet, frequently used algorithms. As an example,
we discuss by how much the necessary computing time
increases if one wants to reduce a given systematic “finite-
P” error by a factor of two when simulating bead-spring
chains in the presence of a hard wall. We assume that
the goal is to keep the stochastic error constant and that
no tricks of the trade are used — single-bead moves in
either Monte-Carlo (MC) or molecular dynamics (MD).

For hard walls, results converge only with 1/
√
P 15 so

that P needs to increase by a factor of four to halve the
error. Using only single-bead moves, the slowest mode
in the system has a correlation time proportional to P 2

in terms of CPU sweeps according to the Rouse model,16

which means we need to run 16-times more global sweeps,
even when dynamics are underdamped.17 In total, this
means 64 times the computing effort, i.e., the numerical
effort scales proportional to the inverse sixth power of
the acceptable error.

In both the quantum and the polymer communities,
important advances have been made to improve conver-
gence of path integrals. For example, the hard-wall prob-
lem has been solved in a similar fashion for quantum
particles as for Gaussian chains by finding solutions for
the free chain in the presence of one or two walls.15,18,19

However, some advances have been made for path inte-
grals in the quantum community that do not yet have ap-
peared in the context of polymers. Most notably, easy-to-
code decompositions of the high-temperature density ma-
trix have been derived that lead to discretization errors,
which disappear as 1/P 4 in the case of cyclic chains.20,21

In numerical self-consistent field theory, a fourth-order
accuracy can be achieved in solving the modified diffu-
sion equation that describes the single chain in an ex-
ternal field by combining a second-order pseudospectral
algorithm with Richardson extrapolation.22,23 This tech-
nique, however, cannot be carried over in a straightfor-
ward fashion to a particle-based description that is em-
ployed in partial enumeration techniques24,25 and SCMF
simulations.10
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In addition, a sampling algorithm called “staging” was
proposed 30 years ago to be used in path-integral Monte
Carlo simulations.26 It allows one to resample a given
fraction of a bead-spring chain in an external potential at
a roughly constant acceptance ratio, no matter how large
P . Slowing down due to Rouse dynamics is thereby com-
pletely eliminated. If both concepts could be combined,
one would only need 21/4 rather than 26 times the com-
puting time, when decreasing the error of our chain in
front of a hard wall by a factor of two. However, conver-
gence can also be dramatically improved when no hard
walls are present.
In this work, we study to what extent the advances

on the higher-order density-matrix decomposition ben-
efit the simulation of linear Gaussian chains, including
polymers adjacent to a hard wall and narrow interfaces
in strongly segregated polymer blends. The good conver-
gence for closed chains is not automatically maintained
for open chains, because, as we demonstrate in this pa-
per, particular caution has to be taken for the acquisition
of averages over an open chain. Moreover, we describe
how to adopt the staging algorithm in the presence of a
hard wall. The advantage of a hard-wall adjusted staging
move is that no more trial moves can be rejected. The
latter frequently happens when the effect of the hard wall
on the finite-P chain is reflected by the presence of an ef-
fective (P -dependent) potential. As a consequence of the
hard-wall staging algorithm, large fractions of a chain can
be sampled in a single step with good acceptance ratio.
Our manuscript is arranged as follows: In section II, we

describe high-order density-matrix decompositions and
the staging algorithm including our extensions of these
schemes. Results are presented in section III and conclu-
sions are drawn in section IV.

II. THEORY AND METHODS

A. Approximations to path integrals

We consider the one-dimensional path-integral

I(τ, x0, x1) ≡ C

∫ x(τ)=x1

x(0)=x0

D[x(t)] exp{−H[x(t)]} (1)

with

H[x(t)] =
1

τ

∫ τ

0

dt

[

1

2

{

τ

λ

∂x(t)

∂t

}2

+ v{x(t)}
]

. (2)

Here, x(t) is a path having x(t = 0) = x0 as starting
point and x(t = τ) = x1 as end point. t is the variable
on which the paths depend. It runs from 0 to τ , while
λ is a parameter controlling to what extent paths want
to localize. The prefactor C is a normalization constant,
which can depend on τ and λ but not on the realization
of the paths. It is irrelevant for the purpose of this study.

We abstain from giving a detailed account of path-
integrals in the context of quantum mechanics or poly-
mer physics and instead refer to pertinent literature.10,27

It shall suffice to state the interpretation of various terms.
0 ≤ t ≤ τ = ~/kBT is called imaginary time in quantum
physics, where ~ is the reduced Planck constant and kBT
the thermal energy, while in polymer physics t tends to
be chosen as a unitless variable indexing the path of a lin-
ear polymer with a dimensionless number 0 ≤ t ≤ τ = 1.
The parameter λ corresponds to ~/

√
mkBT in quantum

physics, which is the thermal de Broglie wavelength di-
vided by

√
2π, m being the mass of the particle, or

λ = REE/
√
D in polymer physics, where REE is the root-

mean-square end-to-end radius of a free polymer embed-
ded in D-dimensional space. Moreover, v(x) is the exter-
nal potential energy per length measured in units of the
thermal energy kBT . In the following we measure all en-
ergies in units of kBT . Lastly, I(τ, x0, x1) corresponds to
either the real-space representation of the density matrix
of a quantum point particle or to the probability den-
sity of a polymer to have its head and tail monomer be
located, respectively, at x0 and x1.
In the following, we call the integrand on the r.h.s of

equation (1) the propagator in imaginary time, or sim-
ply the propagator. Numerical evaluations of path inte-
grals require one to factorize the propagator into short-
time propagators and to find approximations for them.
These approximations then translate into discretization
recipes for the r.h.s. of equation (2). Factorization can
be achieved, for example, by (recursively) making use of
the identity

I(τ, x0, x1) ∝
∫ ∞

−∞
dx′ I

(τ

2
, x0, x

′
)

I
(τ

2
, x′, x1

)

, (3)

or by factorizing the original propagator into P terms
rather than into two terms as done implicitly in equa-
tion (3). As a brief side remark, we note that the proper
choice of the normalization constant C allows one to re-
place the proportionality sign in equation (3) or related
factorizations with an equality sign.
In Dirac notation, one can write

I (∆τ, xt, xt+∆τ ) = 〈xt|e−Ĥ/P |xt+∆τ 〉, (4)

with an effective Hamiltonian Ĥ

Ĥ =
λ2∂2

x

2
+ v̂, (5)

where ∂x denotes a partial derivative with respect to x
and v̂ the potential energy operator. Moreover, ∆τ =
τ/P .
So far, no approximations have been made. However,

to evaluate the r.h.s. of equation (4), which one may want
to call the short-time propagator, one can write

e−Ĥ/P = e−v̂/2P e−λ2∂2
x/2P e−v̂/2P +O(1/P 3), (6)

where the O(1/P 3) error is valid for potentials whose
second-order derivative is not divergent.28,29 Inserting



3

this approximation into equation (4) and evaluating it
yields,

I (∆τ, xt, xt+∆τ ) ≈ Ce−{v(xt)+v(xt+∆τ )}/2P

×e−P (xt−xt+∆τ )
2/2λ2

(7)

which can be used to identify a finite-difference approxi-
mation of summands in equation (2) as

H[x(t)] = H(x0, · · · , xP ) +O(1/P 2)

≈ P

2λ2

P
∑

n=1

(xn − xn−1)
2 +

1

P

P
∑

n=0

wnv(xn) (8)

where we now write the end-point of the path as xP . The
weights for the energies are wn = 1 except w0 = wP =
1/2, i.e., the potential energy is integrated along the path
according to the trapezoidal rule. In the following, the
term “primitive propagator (PP)” relates to a path inte-
gral whose integrand is discretized in the just-described
way, i.e., according to Eq. (8).
This equation corresponds to a discretization of the

Edwards Hamiltonian of a Gaussian chain, i.e., a chain
consists P + 1 beads that are connected via P har-
monic springs. Full beads are placed between two adja-
cent springs, whereas the terminal beads are only “half”
beads. In the context of polymer physics, the stan-
dard discretization of the Edwards Hamiltonian (DEH)
is slightly different, i.e., one gives each bead an identical
weight, which would translate into wn = P/(P + 1).

More accurate decompositions of the density operator
than that in equation (6) have been proposed in the past
few decades,29,30 most notably by Takashi and Imada.31

A disadvantage of their and related approaches is that
taking mean values of observables turns out more elabo-
rate than when using the primitive propagator. Recently,
Chin20 proposed a new decomposition of the short-time
propagator, which, like Takahshi-Imada propagator,31

has leading errors that scale as O(1/P 4) but does not ne-
cessitate elaborate redefinitions of observables, as pointed
out by Jang et al.21 Defining

t̂ = λ2∂2
x/2, (9)

the decomposition reads

e−2Ĥ/P = e−v̂/3P e−t̂/P e−4v̂g/3P e−t̂/P e−v̂/3P , (10)

where the operator v̂g is the operator with the eigenvalue

vg(x) = v(x) +
1

12P 2
(∂xv)

2. (11)

for a given |x〉. The pertinent expression for the dis-
cretized version of H[x(t)] can be obtained in a similar
fashion as for the primitive propagator. They are sum-
marized in section II B
For ring polymers or cyclic chains, x0 = xP , observ-

ables can be defined only on “even beads” (given that we

start enumerating monomers with n = 0) according to

〈O〉CC =
2

P

P−2
∑

n=0,2,..

〈O(xn)〉HOA +O(1/P 4), (12)

where the index CC stands for cyclic chains and HOA
for an estimate based on the higher-order approximation
propagator of Eq. (10). As we discuss in the following,
Eq. (12) is not valid for open chains.
To substantiate this claim, it is easiest to consider an

example. Fig. 1 shows how the mean external potential
energy of individual beads depends on their index n, or
to be more precise, on the ratio n/P . In the given exam-
ple, we consider a chain with λ = τ = 1 and an external
harmonic potential v(x) = kx2/2 with k = 64. One
can see that the even-numbered beads of the HOA cal-
culation with contour discretization P = 16 correspond
quite closely to the converged results. In fact, further
analysis confirms that errors on even-number beads are
O(1/P 4). In contrast, odd-numbered beads as well as
the calculations using the primitive-propagator with the
same chain discretization, P = 16, deviate from the con-
verged results in a clearly visible fashion.

0 0.2 0.4 0.6 0.8 1
n/P

1.5

2.0

2.5

3.0

3.5

4.0
<

v(
x n)>

converged
P = 16  HOA
P = 16  PP

FIG. 1: Mean external potential energy of beads as a function
of their index n for λ = τ = 1 and v(x) = kx2/2 with k = 64.
The full line shows converged results for P ≫ 1 while symbols
show data for P = 16. Blue diamonds represent averages
obtained with a higher-order approximation (HOA) to the
propagator, while red crosses refer to those obtained with the
primitive propagator (PP).

To obtain accurate estimates for the mean external
potential 〈v〉, whose error only increases proportional to
1/P 4, one needs to sum over the 〈v{x(t = n/P )}〉 curve
with an algorithm that converges sufficiently fast. Since
the trapezoidal rule leads to O(1/P 2) errors, we propose
to resort to (a composite) Simpson’s rule, which is suf-
ficiently accurate to allow for an O(1/P 4) convergence.
This leads to expressions that differ from Eq. (12), which
are also summarized in section II B
Finally, we note that the review of higher-order ap-

proximations and the proposition to use Simpson’s rule
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n%4 wn f c
n wm

n

0 2/3 0 4/3

1 4/3 1 0

2 2/3 0 8/3

3 4/3 1 0

except

n = 0 1/3 0 2/3

n = P 1/3 0 2/3

TABLE I: Value of weighting coefficients as a function of the
bead index n. The modulo function is denoted as n%4. The
enumeration starts at n = 0 and ends at P , which must be an
integer multiple of 4. wn gives the weight of the energy in the
Boltzmann factor. f c

n states if the square-gradient corrections
needs to be added to v(x) to yield vg(x). Lastly, wm

n states
the weight of an observable in a measurement.

for the measurement of observables defined on open
chains only relate to non-grafted polymers. Once chains
are tethered with one head-group to a wall, one may have
to simulate them differently than non-grafted chains in
order to maintain O(1/P 4) convergence. This issue will
be addressed in a separate study.

B. Implementation of higher-order approximations

While the derivation of higher-order approximations to
path integrals may be seen as somewhat cumbersome, its
implementation can be achieved in a rather straightfor-
ward fashion. In this section, we explain what needs to
be done if a conventional code, e.g., one based on the
primitive propagator, is present.
First, no differences appear as to the handling of the

springs connecting two beads. Second, for each bead, we
need to evaluate the potential v(xn) as before. Third, we
need to evaluate the square-gradient correction to v(xn)
only on beads with an odd index given that we start enu-
merating beads with n = 0. For self-consistent theory
calculation on polymers this should not be an expensive
procedure, because derivatives can be evaluated numer-
ically at moderate expense. Fourth, measurements are
only taken on even beads and the weights of an observ-
able evaluated at xn follow from the composite Simp-
son’s rule. In all cases, except for the head and the tail
monomer, every bead with an index that is an integer
multiple of four is both a starting point as well as an end
point of Simpson rule. Thus, the value of P needs to
be an integer multiple of four, as Simpson’s rule necessi-
tates two starting point, a mid point, and an endpoint.
We summarize the results in table I.
The resulting expression for observables defined as in-

tegrals over open chains (OC) is

〈O〉OC =
1

P

P
∑

n=0

wm
n 〈O(xn)〉HOA +O(1/P 4), (13)

where the weights are taken from Tab. I. The rule to ob-
tain averages for observables is also valid for the external
potential, although it differs from the expression entering
the Boltzmann factor. The latter is

v[x(t)] =
1

P

P
∑

n=0

wn {v(xn) + f c
n∆vg(xn)} , (14)

which replaces the second summand of Eq. (8) in calcu-
lations based on the higher-order approximation to the
propagator. Here, ∆vg(x) refers to the square-gradient
correction vg(x)− v(x) = {∂v(x)/∂x}2/12P 2.

C. Free-particle staging

As the continuum approximation of the path is increas-
ingly better realized for larger P , numerical approaches
solely based on single-bead dynamics quickly slow down.
The reason is that the correlation time, as measured in
MD time steps or in number of MC sweeps, increases
with P 2 (Rouse dynamics). A similar problem is known
from numerical evaluations of path integrals, for which
an efficient sampling algorithm, called staging, was pro-
posed three decades ago.26 It overcomes the problem
that springs connecting two adjacent beads become stiffer
thereby making single-bead MC trial moves more ineffi-
cient with an increasing number of beads representing
the path.
The idea of the staging technique is to make a trial

move of a chain segment such that a single trial move has
the (exact) stochastic properties of a segment that is not
coupled to external potentials. The relative probability
of the trial path xtrial(t) and the existing path x(t) then
becomes

Prr = exp

(

−
∫ τ2

τ1

dt {v[xtrial(t)]− v[x(t)]}
)

, (15)

which in turn can be used as a transition probability in
the Metropolis algorithm.
The sampling of free segments proceeds as follows: As-

sume that the fixed end points t1 and t3 both lie within
the Gaussian chain, i.e., within the interval [0, τ ], see
equation (1). The effective interaction of the midpoint
bead at t2 = (t1 + t3)/2 is a harmonic coupling to the
beads at t1 and t3, each time with an effective inverse
spring constant of k−1

12 = k−1
23 = (t3 − t1)λ/2. Since the

two springs act in parallel, their action adds to a net
inverse spring constant of

k−1 = (t3 − t1)λ/4. (16)

Thus, the center bead will fluctuate around the center of
mass of the two fixed outer beads with a normal distri-
bution whose second moment is k−1, or kBT/k if kBT
is not chosen as unit for the thermal energy. One can
realize the correct distribution by assigning the following
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value to xtrial(t2)

xtrial(t2) =
x(t1) + x(t3)

2
+

uG√
k
, (17)

where uG is a Gaussian random variable of zero mean
and a standard variance of one. The same procedure also
holds for arbitrary physical dimensionD. Using variables
of the Gaussian chain description, trial coordinates are
assigned through

xα
trial(t2) =

xα(t1) + xα(t3)

2
+

√

t3 − t1
Dτ

uα
G

2REE
, (18)

where for each Cartesian component α an independent
Gaussian random variable uα

G must be drawn.
We now have a new fixed point at t = t2 and two

new midpoints located at, respectively, (t1 + t2)/2 and
(t2 + t3)/2. These new midpoints can be assigned trial
coordinates with the just described scheme, in which,
however, trial coordinates need to be used as fixed points
on the r.h.s. of Eq. (17). Remaining points in the interval
t1 < t < t3 can be assigned by iteration.
If a moved chain segment includes an open end of a

polymer, the trial move of the end bead can be done
similarly as before. The only difference is that the end
bead only couples to one starting bead with one effec-
tive spring. Thus, for end polymers, we need to modify
equation (18) to

xα
trial(τ) = xα(t1) +

√

τ − t1
Dτ

uα
G

REE
, (19)

In practice, the just given recipe can be implemented
in a straightforward fashion, when choosing the indices of
the two outer beads, n1,3 = t1,3P , such that they differ
by an integer power of two. Note that this does not
mean that P itself has to be an integer power of two. It
is certainly possible to make staging moves such that the
end points are not separated by an integer power of two
through an appropriate generalization of the algorithm.
However, its description is slightly more involved and its
action does not speed up simulations to any significant
degree.
The implementation of the staging technique — with

or without hard-wall corrections — for the current prob-
lem is done as follows: We first pick a monomer in the
chain with n1 = int(uP ), where 0 < u ≤ 1 is a uni-
form random number. (Monomers are numerated from
0 to P .) We then pick n3 by adding or alternatively
subtracting 2smax from n1, where smax is a positive in-
teger. If n3 lies outside the chain, we shift the chosen
segment such that it includes the ends, for example, for
n3 > P , we move the segment such that the new n3 = P
corresponds to an end-bead, which then gets resampled
as well. Otherwise, we proceed as described above. In
one sweep, P/2smax such moves are done, which means
that we evaluate, on average, the coupling to an external
potential once for each monomer. The integer smax is

usually chosen as large as possible so that an acceptance
rate of greater 10% is still achieved. Depending on the
nature of the problem, e.g., when the curvature of the ex-
ternal or self-consistent potential varies quickly, it might
be beneficial to run a “V”-cycle, in which smax is varied
between one and an appropriately chosen maximum.36

D. Hard-wall adopted staging

Path-integral simulations can be made not only more
efficient but also more quickly converging by introducing
appropriate trial moves. For example, the propagator
for a particle in a box can be corrected systematically
through approximations in terms of winding numbers,
see, e.g., Eqs. (11)–(12) in Ref.15. Similarly, one can
correct the path integrals for Gaussian chains in front of a
hard wall by solving the diffusion equation in the presence
of a reflecting wall.18 The latter can be obtained within a
few lines by proceeding as in Ref.15, i.e., the (short-time)
free-particle propagator follows from

I(∆τ, x1, x2) ≡ 〈x1| exp
(

−t̂/P
)

|x2〉 (20)

=

∫ ∞

−∞
dkΨk(x1)Ψk(x2) exp(−ek∆τ/P ),

where the kinetic energy operator (still expressed in units
of kBT ) was defined in equation (9). Here, the Ψk(x) are
eigenfunctions of a free particle, ek = k2/2 being their
eigenenergies in the appropriate unit system.
To turn the free-particle propagator into a hard-wall

propagator, we may only integrate over those eigenfunc-
tions that satisfy the boundary condition on the walls,
i.e., sin(kx) rather than exp(ikx). Inserting the sin(kx)
into equation (21) and integrating over non-negative val-
ues of k yields

ρ(x1, x2, σ) ∝ sinh
(x1 x2

σ2

)

exp

{

−x2
1 + x2

2

2σ2

}

, (21)

with

σ =
λ√
P
. (22)

The proportionality in Eq. (21) can also be cast in terms
of the product of a hard-wall correction factor and the
free-particle propagator:

ρ(x1, x2, σ) ∝
(

1− e−2x1x2/σ
2
)

e−(x1−x2)
2/2σ2

. (23)

In the context of a particle diffusing in front of a re-
flective wall located at x = 0, Eq. (21) gives the (unnor-
malized) probability (density) of a random walk to end
up at x2 given that it started at x1. We can therefore
use it to sample the head or tail-monomer of a Gaussian
chain, i.e., we use it to replace equation (19) whenever
x1 does not distinctly exceed σ. Details of how this can
be achieved are given further below.
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In addition to the end-point propagator, we also need
the one for “mid-point beads.” The probability of a mid-
point bead to end up at x2 = x(t2) is proportional to
ρ(x1, x2)ρ(x2, x3) given that x1 = x(t1) and x3 = x(t3)
are fixed and t2 − t1 = t3 − t2, i.e.,

ρm(x1, x2, x3, σ) ∝ sinh
(x1 x2

σ2

)

sinh
(x2 x3

σ2

)

× exp

{

−x2
1 + 2x2

2 + x2
3

2σ2

}

. (24)

The probability distribution ρm deviates from a simple
Gaussian if neither x1 nor x3 are much greater than σ.
We note in passing that when comparing equation (24)
with equations from the previous section, one needs to
keep in mind that σ relates to t2 − t1, whereas k related
to t3 − t1. This explains why there is a prefactor of two
in front of x2

2 in the exponential on the r.h.s. of equa-
tion (24) rather than a prefactor of four.
Once the relative probabilities for mid-point beads and

end-point beads are known, they can be used to generate
trial moves that are distributed exactly according to the
distribution of a polymer in front of a hard wall. Unfor-
tunately, only a selected number of distributions can be
drawn directly. One possibility to overcome this prob-
lem is to incorporate the exact probabilities in terms of
an effective, external potential as done, for example, in
references18 and19. In this case, the effect of the hard
walls on the propagator is discarded in the generation
of the trial path and instead moved to the Metropolis
step. The disadvantage of this solution is that it risks
to decrease the fraction of the chain that can be resam-
pled with a reasonable acceptance rate. For short chains,
this may not have to be a large drawback. In the con-
text of quantum mechanics, where values of P beyond
1,000 are not exceptional, this would constitute a serious
drawback. However, even for chains as short as P = 16,
significant gains can be made if one can resample the full
chain, i.e., 16 monomers, instead of making single or dou-
ble monomer moves. This is why we choose to implement
hard-wall adopted staging moves.
We first discuss how to draw head or tail monomers.

As already mentioned, once x1 ≫ σ, one can simply draw
from a Gaussian distribution. In our implementation, we
considered x1 ≥ 6σ to satisfy that criterion for all prac-
tical purposes. At the other end, once x1 ≪ σ, one can
approximate the expression sinh(x1x2/σ

2) linearly with-
out affecting the probability distribution in a noticeable
way. This time, we see x1 . σ/10 as being sufficient for
x1 to be called very small. One can then draw x2 via the
heat-bath algorithm, i.e., by solving the equation

u =

∫ x2

0

dx′
2 Pr(x

′
2), (25)

where Pr(x′
2) is the normalized probability distribution

and u is a uniform random variable on ]0, 1[. In the limit
x1 ≪ σ, where Pr(x2) ≈ (x2/σ

2) exp(−x2
2/2σ

2), one then
obtains

x2 = σ
√
−2 lnu. (26)

For x1/σ = O(1), i.e., outside the two regimes just
discussed, one must resort to alternative strategies. One
possibility would be to solve the heat bath equation nu-
merically, e.g., by determining the probability distribu-
tion and its integral numerically. However, we found it
more effective to run a small MC simulation with which
to generate the trial coordinate. The idea is that the
true distribution function is approached extremely fast
if one can draw (at low CPU-time cost) from a distribu-
tion that closely resembles the exact one. We moved the
description of this procedure into appendix A, because
it might distract from the central content of this section
and more importantly because the underlying idea may
be interesting in its own right.
To generate trial coordinates for mid-point beads, we

proceed in a similar fashion as for end-points, i.e., we
draw trial coordinates from the distribution that is ex-
act in the absence of an external potential. This time,
we first identify the location xc of the maximum of the
true distribution function, equation (24). If xc > 6σ, we
can safely sample from a Gaussian, while we resort to
drawing xc from a short MC simulation otherwise. Tech-
nical details are presented in appendix A, where we also
demonstrate that exact distributions are reproduced to
high accuracy after only one or two MC time steps.

III. RESULTS

A. Convergence tests

1. Open chain in an harmonic potential

To test the convergence of different integration schemes
for typical situations, we consider the generic example of
an open chain in an harmonic potential. For this purpose,
we keep the example from section IIA, in which the cur-
vature of the external potential is 64 times the end-to-end
stiffness of the (one-dimensional) polymer. Fig. 2 reveals
that the simulation result are consistent with our expec-
tations about finite-P discretization errors: The observed
deviations appear to scale with O(1/P 4) for our HOA-
based algorithm while PP-based approaches only achieve
O(1/P 2). In addition, we find that HOA-based simula-
tions reduce to O(1/P 2) if measurements of the energy
are performed with the trapezoidal rule rather than with
a higher-order integration scheme, i.e., when assigning
the measuring weight of zero on odd beads, one on start
and end bead, and two on all other even beads.
The next convergence test is motivated by applica-

tions, in which a hard wall is present. Hard walls induce
a polymer depletion close to their surfaces, which in turn
leads to a strong, effective attraction towards the wall.
The interaction can usually be approximated by a func-
tion v(x) = v0{1−tanh2(x/ζ)}, where v0 and ζ represent
energy and length scales, respectively. In practical appli-
cations, the curvature of the attractive interaction, v0/ζ

2

is many times the end-to-end stiffness. We mimic this sit-
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FIG. 2: Convergence of the mean external energy 〈v〉 of the
open chain introduced in Fig. 1 as a function of 1/P 2, where P
is the number of springs of the chain. Blue diamonds and red
crosses refer to simulations that are based on, respectively, a
higher-order approximation (HOA) or the primitive propaga-
tor (PP) algorithm. Lines reflect fits according to v0 + c1/P

4

(HOA) and v0 + c2/P
2 (PP), where v0, c1, and c2 are fit

coefficients. Symbol size corresponds to error bars.

uation by running simulations of a harmonic trap, whose
minimum is located right on the surface of the wall. In
the new set of calculations, we set the curvature of the
harmonic potential to 512 times the end-to-end stiffness.

Fig. 3 reveals that the error analysis is again consistent
with the simulations, i.e, the slowly vanishing O(1/

√
P )

hard-wall corrections are clearly revealed, as long as no
hard-wall corrections are included. Corrections disap-
pear with 1/P 2 once the appropriately adopted staging
moves are employed. The situation is a little less clear
cut when adding the higher-order corrections to the hard-
wall propagator. The problem is that the asymptotic
convergence does not set in earlier than for the less accu-
rate integration scheme. This behavior is generic for both
higher-order approximations and integration schemes di-
agonalizing part of the Hamiltonian prior to the simu-
lation.32 Part of the reason is that O(1/P 6) corrections
need to be small in order for the O(1/P 4) correction to
become visible. As a consequence, the leading-order cor-
rections may already be very small and thus within nu-
merical noise, when asymptotic convergence sets in. We
note in passing that the combination of hard-wall and
HOA propagators only yields a 1/P 4 scaling if the gra-
dient of the potential disappears at the surface of the
wall. Since this should be the case for most practical
applications, we do not invest efforts into adopting the
HOA scheme for hard-wall propagators beyond their sim-
ple combination.

It remains to be discussed if one can ascertain the re-
quired value for P prior to a Gaussian chain calculation.
This question is answered most easily in the framework
of the quantum harmonic oscillator. In that case, one is
close to being converged when kBTP & ~ω0, where ω0

is the eigenfrequency of the oscillator, which is propor-

10
1

10
2

10
3

P

14

15

16

17

<
v>

∆<v>~P
-4

∆<v>~P
-2

∆<v>~P
-1/2

HW-HOA
HW-PP
FP-PP

FIG. 3: Convergence of the mean external energy 〈v〉 of an
open chain in a harmonic trap right next to a wall. Blue di-
amonds and red crosses refer to simulations that are based
on, respectively, a higher-order approximation (HOA) or the
primitive propagator (PP) algorithm. These two sets of sim-
ulations are produced with hard-wall (HW) adopted staging
moves. Green plus signs represent free-particle (FP) simu-
lations produced with the primitive propagator (PP). Lines
reflect fits according to v0 + c1/P

4 (HW-HOA), v0 + c2/P
2

(HW-PP), and v0 + c3/
√
P (FP-PP), where v0, c1, c2, and c3

are fit coefficients. Fits are conducted for values of P , above
which the asymptotic behavior is observed. The green arrow
indicates the asymptotic value of the FP-PP fit.

tional to
√
k, where k is the curvature of the harmonic

potential. This is because for thermal energies exceeding
~ω0, the quantum harmonic oscillator resembles its clas-
sical counter part quite closely. For the Gaussian chain
calculation, one sets kBT = 1 so that choosing P pro-
portional to

√
k should bring one close to convergence.

Thus, it should not be necessary for the springs connect-
ing two adjacent beads to be as stiff as the curvature
of the potential. This conclusion is supported from the
convergence tests presented in this section. Data shown
in Fig. 2 correspond to k = 64 and deviations from con-
verged results are already relatively small for P = 16,
that is, for P = 2

√
k — assuming our unit system of

~ = m = kBT = 1 for quantum or R2
EE/D = kBT = 1

for polymer systems. For the hard-wall adopted primitive
propagator, we observe that deviations from the exact re-
sult are again & 1% for P = 2

√
k in case of the k = 512

system presented in Fig. 3. If adding the higher-order
corrections, results are very close to the exact values at
much smaller values of P . This, however, is likely a for-
tuitous cancellation of errors, as higher-order corrections
appear to have the opposite sign of the leading term. To
conclude, once a reasonable estimate for the maximum
curvature of the external or self-consistent potential is
known, it is straightforward to choose P .
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2. Surface tension of a polymer melt

Using self-consistent field calculation in conjunction
with a partial enumeration scheme to compute the single-
chain partition function, we study the surface properties
of a dense polymer melt in contact with a solid wall in
the grandcanonical ensemble.19 The mean-field interac-
tion in units of kBT that a bead at a distance x away
from the wall experiences is given by

v(x)

P
=

κN

P
[φ(x)− 1] (27)

where the dimensionless quantity φ(x) is the local bead
number density normalized by its value in the bulk. κN
is proportional to the inverse isothermal compressibility
and quantifies the repulsion of the chain molecules. In
the numerical calculations we use κN = 50, which is
typical for SCMF simulations.10

To compute the single-chain partition function, we gen-
erate a large number Nconf = 107 or 5 · 107 of one-
dimensional random walks with independent Gaussian
steps of mean-squared length 〈b2x〉 = R2

EE/(3P ). The
first bead of each chain molecule is randomly placed in
the interval 0 ≤ x ≤ Lx = 2REE. If any bead lays outside
this interval the a priori statistical weight of this chain
configuration c will be zero, wc,0 = 0; otherwise wc,0 = 1.
The spatial coordinate 0 ≤ x ≤ Lx/2 is discretized into
Nx = 128 uniform intervals (slabs), and reflecting bound-
ary conditions are imposed at x = Lx/2.

In the HW-HOA scheme we initially compute for each
chain conformation, c, the following fixed single-chain
slab occupancies according to Tab. I

ρc,0(ix) =
1

P

∑

n=0,2,···
wnΘix(xn, ix) (28)

ρc,1(ix) =
1

P

∑

n=1,3,···
wnΘix(xn, ix) (29)

ρc,m(ix) =
1

P

∑

n

wm
n Θix(xn, ix) (30)

where Θix , ix = 0, · · · , Nx − 1, is the characteristic func-
tion of slab ix. Moreover we compute for each chain its
HW-weight18, see also Eq. (23),

ηc = wc,0

P
∏

n=1

(

1− exp

[

−2xc,nxc,n−1

〈b2x〉

])

(31)

where xc,n denotes the x-coordinate of the nth bead on
chain configuration c. Using these fixed single-chain slab
occupancies and HW-weights, we calculate the statistical
weight, wc, of chain conformation c, the normalized den-
sity profile, φ(ix), and the single-chain partition function,

Q, according to

wc = ηce
−∑

ix

[

v(ix)ρc,0(ix)+vg(ix)ρc,1(ix)

]

φ(ix) =
zNx

Nconf

∑

c

wcρc,m(ix) (32)

Q =
1

Nconf

∑

c

wc =
1

zNx

∑

ix

φ(ix)

where z = 1 denotes the fugacity, which is adjusted such
that φ = 1 in the bulk. The gradient-corrected interac-
tion is given by (cf. Eq. (11))

vg(ix) = v(ix) +
1

12P 2

R2
EEN

2
x

3L2
x

[v(ix + 1)− v(ix − 1)]
2

(33)
Eqs. (27) and (32) are solved self-consistently using a

gradient-free Newton technique.
The surface tension γ is computed according to

ω = − 1

Nx

∑

ix

{

φ(ix) +
κN

2

[

φ2 − 1
]

}

(34)

γR2
EE

kBT
√
N̄

=
Lx

2REE
[ω − ωbulk] (35)

where ω denotes the grandcanonical free energy per
molecule in units of kBT in the film and ωbulk = −1
is the corresponding bulk value. N̄ = (nR3

EE/V )2, with
n and V being the number of chains and the volume,
respectively, is the invariant degree of polymerization.
We have compared this HW-HOA scheme to the HW-

DEH scheme, where we use the HW-weight according
to Eq. (31),18,19 but all monomers contribute uniformly
to the slab occupancies and densities, wn = wm

n =
P/(P + 1) and no gradient correction is applied. Lastly
we also compute the density profile and the surface ten-
sion of the FP-DEH scheme using the free-particle propa-
gator with wn = wm

n = P/(P + 1), ηc = wc,0 and vg = v,
which corresponds to the standard discretization of the
Edwards Hamiltonian (DEH).
In Fig. 4 depicts the density profile, φ(x), obtained by

the three schemes for P = 32 and compares the data to
the limit P → ∞. For κN = 50 the width of the density
profile, ζ∞/REE = 2√

12κN
≈ 0.08,33 is comparable to the

bond length
√

〈b2x〉/REE = 1/
√
3P ≈ 0.10. In the limit

P → ∞ and κN → ∞ the ground-state approximation is
accurate and the density profile takes the form φGS(x) =
tanh(x/ζ). Thus, within self-consistent field theory, a
polymer melt at a hard wall is similar to the single-chain
problem studied in the previous section.
In the self-consistent field calculations, the FP-DEH

propagator (without HW-corrections) results in a finite
density at the wall.18,19 The HW-correction, Eq. (31),
already provides a significant improvement over the FP-
DEH scheme, and the HW-HOA approximation for P =
32 provides indeed very close estimate of the large-P be-
havior.
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FIG. 4: Comparison of density profiles of a polymer melt with
κN = 50 at a hard, solid walls for different discretization
schemes at fixed P = 32 with the large-P limit, φ∞(x). The
inset presents the ratio φ∞(x)/φ(x).
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FIG. 5: Relative error of the surface tension of a polymer

melt with κN = 50 and
γ(∞)R2

EE

kBT
√
N̄ = 2.75477 as a function

of the chain discretization P . The FP-DEH, HW-DEH and
HW-PP schemes yield γ(P ) < γ(∞), whereas the HW-HOA
scheme overestimates the asymptotic value, γ(∞), of the sur-
face tension. The solid lines indicate the expected power-law
behaviour 1/

√
P , 1/P 2 and 1/P 4 for the FP-DEH, HW-PP,

and HW-HOA schemes, respectively. The dashed line indi-
cates 1/P scaling.

In the limit of fine discretization and κN → ∞ the sur-

face tension behaves like
γGSR

2
EE

kBT
√
N̄ ≈ 2

3

√

κN
3

(

1 + 0.58
κN

)

≈
2.7532,19 and from the extrapolation of the numerical

data towards P → ∞ we obtain
γ(∞)R2

EE

kBT
√
N̄ = 2.75477.

The relative deviation of the calculated surface tension
from γ(∞) are shown in Fig. 5 as a function of chain dis-
cretization P . The free-particle (FP) propagator gives
rise to large deviations from the Gaussian limit, under-
estimating γ(∞). As expected, the error decreases like

1/
√
P . The HW-DEH, HW-PP, and HW-HOA schemes

significantly improve the estimate. For the P -range that

we have investigated, the relative error of the HW-DEH
scheme decreases with a power-law but the effective expo-
nent is slightly smaller than the expected value −2. For
large P the data are compatible with a 1/P -behavior
within the error bars. Additionally we have used the
HW-scheme with a primitive propagator according to the
trapezoidal rule (HW-PP), which assigns only half the
weight to the end beads, i.e., wn = wm

n = 1 except for
n = 0 and P for which wn = wm

n = 1/2. This HW-
PP scheme reduces the relative error compared to the
HW-DEH scheme, and the power-law, with which the
error decreases, is closer to the expected 1/P 2 behav-
ior. Combining the HW-correction and the high-order
discretization yields the best results, and the numerical
data confirm the expected accuracy O(1/P 4) of the HW-
HOA scheme. Similar to the behavior of the mean energy
of a chain in an harmonic trap next to a wall (cf. Fig. 3)
the DEH, HW-DEH, and HW-PP schemes underestimate
and the HW-HOA discretization overestimates the value
compared to the large-P limit.

3. Interface tension in a homopolymer blend

01/128
2

1/64
2

1/32
2

1/44
2

1/36
2

1/P
2

0.95

1.00

γ(
P

)/
γ(

∞
)

DEH
PP
HOA

0 1/128
2

1/256
2

0.996

0.998

1.000

-0.1 0.0 0.1x/R
EE

0.0
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φ A
(x

)

large P

P=32

FIG. 6: Deviation of the interface tension of the interface ten-

sion γ from its asymptotic large-P value,
γ(∞)R2

EE

kBT
√
N̄ = 2.68785,

in a symmetric binary polymer blend with χN = 50 and
κN = 1000. Symbols present the self-consistent field calcu-
lations, whereas lines depict the expected power laws. The
right inset highlights the non-monotonic converges of the PP-
scheme to the asymptotic result. The left inset compare the
density profiles, obtained by DEH and HOA-calculations with
P = 32, to the results for large P .

The chain discretization is not only important at the
narrow surface of a polymer in contact with a solid sub-
strate but sharp gradients of the polymer density also
occur at the surface of a polymer melt in contact with air
or at interfaces between strongly incompatible homopoly-
mers or in high-χ block copolymer materials. Here we il-
lustrate the advantages of the HOA-scheme by consider-
ing the interface in a symmetric binary AB homopolymer
blend at rather large incompatibility χN = 50. Within
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the self-consistent field theory or SCMF simulations, A
beads at position x experience the interactions

vA(x)

P
=

κN

P
[φA(x) + φB(x)− 1] +

χN

P
φB(x) (36)

and a similar expression holds for vB acting on B beads.
The first term penalizes density fluctuations, and we use
κN = 1000 to mimic a nearly incompressible blend.
The second term quantifies the repulsion between unlike
polymers, and in our calculations we employ the value
χN = 50 for the combination of Flory-Huggins parame-
ter χ and number of segments per chain. We consider a
symmetric blend, PA = PB = P , in a system of linear di-
mension Lx/2 = 1.5REE with with reflecting boundaries.
Space is discretized into Nx = 128 slabs. In the limit of
fine discretization and large incompatibility the interfa-
cial width is given by w∞/REE ≈ 1/

√
6χN ≈ 0.058.34

The calculation of the densities, φA(x) and φB(x),
and single-chain partition functions proceed similar to
Eq. (32) with ηc = 1. Three discretization schemes are
used: (1) the discretised Edwards Hamiltonian (DEH)
with equal weight of all beads, (2) the primitive prop-
agator (PP) where the end beads are assigned half the
weight, and (3) the higher-order approximation (HOA).
Once, self-consistency between the densities, Eq. (32)

with the external fields, Eq. (36), is achieved, the calcu-
lations yield the density profiles across the interface. The
grandcanonical free energy per molecule in units of kBT
is computed via

ω = − 1

Nx

∑

ix

{

φA + φB +
κN

2

[

{φA + φB}2 − 1
]

+χNφA(ix)φB(ix)
}

(37)

and the interface tension measured by Eq. (35). In the
strong segregation limit, the Gaussian chain model pre-

dicts
γ(∞)R2

EE

kBT
√
N̄ ≈

√

χN
6

(

1 + 4 ln 2
χN

)

≈ 2.727 for an incom-

pressible system.34

The inset of Fig. 6 depicts the density profile across the
AB interface for P = 32 obtained by the DEH-scheme
and the HOA-scheme and compare the result to the large-
P limit, corresponding to the HOA-result with P = 1024.
One observes that the discretization effects result in pro-
files that are too narrow; the deviation is larger for the
DEH-scheme than for the HOA-calculation.
The main panel presents the results for the interface

tension γ normalized by the large-P limit
γ(∞)R2

EE

kBT
√
N̄ =

2.68785. The PP calculations underestimate the interface
tension, the HOA-calculations yield too large values. The
expected scaling of the deviation from the large-P limit
is indicated by the solid lines. As expected we observe an
error of order 1/P 2 for the PP-scheme, whereas the HOA-
calculations achieve an accuracy of O(1/P 4). The inset
presents the convergence of the DEH and PP schemes to
P → ∞. The PP scheme nicely converges according to
a 1/P 2 correction; however, the DEH scheme overshoots

the asymptotic value, i.e., γ(P ) exhibits a maximum at
large P . This behaviour indicates that the 1/P 2-behavior
observed at intermediate P values is not the true asymp-
totics but that there may be an additional, albeit small,
1/P -corrections that stems from the errors of integrating
the interactions along the chain.

B. Efficiency test of staging moves

In order to test the efficiency of staging moves, we com-
puted the time auto-correlation functions (ACF) of the
end-to-end radius, which is the slowest coordinate in the
system. Specifically, we determined

CEE(∆t) ≡ 〈REE(t+∆t)REE(t)〉, (38)

where t enumerates the MC sweeps through the system
and ∆t is the number of MC sweeps between two obser-
vations. The system consists of a harmonic potential of
stiffness k = 16, which is centered at the location of a
hard wall, while all other parameters of the Hamiltonian
and thermal energy are set to unity. In the simulations,
we ran staging moves at a fixed level, i.e., by making n
trial moves for the n’th fraction of a chain within each
single MC sweep. Thus, one sweep costs roughly the
same CPU time at a given value of P , irrespective of
what fraction of the chain is sampled. The deduced auto-
correlation times (ACT) are relatively insensitive to P ,
which is why we present them in Fig. 7 as a function of
the fraction of the moved chain.
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FIG. 7: Inset: End-to-end radius autocorrelation function
CEE(∆t) if x = 1/8 of the chain is resampled with staging.
Symbols show simulation results and the full line corresponds
to a fit with a stretched exponential. Main graph: Correlation
time deduced from CEE(∆t) for different fractions x of the
resampled chain. At small values of x, the correlation time
increases with 1/x2 as indicated by the full line.

At very small chain fractions x, the staging moves be-
come very inefficient and autocorrelation times increase
with 1/x2. Thus, autocorrelation time is largest in the
limit of x = 1/P corresponding to single-bead staging
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moves. At the other end of very large chain fractions,
moves can also become inefficient. The reason is that the
trial paths stray too far from the positions associated
with a sufficiently small potential energy. The optimum
fraction is obtained when the effective spring constant
connecting the beginning and the end bead of the sam-
pled segment is close to the curvature of the external
potential. In heterogeneous systems with zones of high
and small potential curvature, it will therefore be bene-
ficial to employ V-cycles. They ensure efficient sampling
everywhere while increasing the cost of one sweep only
from O(P ) to O(P lnP ).

IV. CONCLUSIONS

In this work, we demonstrated that high-order de-
compositions of path integrals — introduced for the ef-
fective computation of partition functions of quantum-
mechanical point particles — likewise benefit Gaussian-
chain simulations in the field of polymer physics. Specif-
ically, the rate of convergence can be increased from the
usual 1/P 2 to 1/P 4, where P is the number of springs
in the harmonic chain. For the method to be useful for
open chains, averages along the chain have to be per-
formed with specific weights, which differ from those
used for closed chains that are common in path inte-
gral calculations. These techniques provide a substantial
improvement compared to the standard discretization of
the Edwards-Hamiltonian (DEH) and allow us to approx-
imate the behavior of Gaussian chain in rapidly varying
external fields with a rather crude chain discretization P .
We expect that these techniques will be advantageous,
for instance, to simulate (i) mixtures of polymers and
nanoparticles, which are characterized by a length-scale
separation between the narrow interface of the nanopar-
ticle in contact with polymer melt and the length scale
of the spatial arrangement of nanoparticles, or (ii) nar-
row interfaces in high-χ block copolymer materials that
enable the fabrication of sub-10nm structures.

In addition, we extended the so-called staging algo-
rithm to situation where a reflecting wall is present so
that a given fraction of a chain can be sampled in a
Monte Carlo simulation at an essentially constant accep-
tance ratio, no matter how large the discretization. We
expect this method to be useful not only for confined
chains subjected to an external potential but also for
soft, coarse-grained models or DPD models of polymer
films35. For external or self-consistent potentials whose
derivative disappears on the surface of the wall, the 1/P 4

convergence remains valid by simply combining hard-wall
adopted staging with the higher-order decomposition of
the path integral.
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Appendix A: Drawing trial coordinates via Monte

Carlo from approximate distributions

In this appendix, we discuss in detail how we gener-
ate the trial coordinates (for end-point and mid-point
beads) in those cases, where we cannot directly relate
uniform random numbers to the desired distributions.
The idea is that one converges extraordinarily quickly
to the exact (free-polymer-in-front-of-a-hard-wall) distri-
bution Pre(x) in a short MC simulation, if one can draw
(at small CPU-time cost) from a bias distribution Prb(x)
that is a reasonable approximation to the exact distribu-
tion.
If xold denotes the present coordinate and xtrial a trial

coordinate drawn from Prb(x), then the transition prob-
ability

Prt =
Pre(xtrial) Prb(xold)

Prb(xtrial) Pre(xold)
(A1)

satisfies detailed balance. Thus, the exact distribution is
approached more closely with each Metropolis-algorithm-
based MC step if the given transition probability is used.
In the following, we demonstrate how quickly it is ap-
proached in practice for both end-point and mid-point
beads.
We first consider an end-point bead from section IID,

for which the starting bead x1 is neither very far nor very
close to the wall. One can assume that for x1 > σ/

√
2,

Gaussian random numbers are reasonable approxima-
tions, while for x1 < σ/

√
2 random numbers produced

with equation (26) are good starting points. According
to the ideas just presented, we initialize our random vari-
able by drawing it from the respective bias distribution.
We then draw a trial coordinate from the same distribu-
tion and compute the acceptance probability according
to equation (A1). We then iterate as needed. In this
procedure, trial coordinates violating the boundary con-
dition are discarded immediately.
Figure 8 gives an impression of how many MC steps are

needed so that the trial coordinates approach the desired
distribution function for end-point beads. It shows the
“worst-case scenario” for both bias distributions, that
is, for x1 = σ/

√
2, which separates the regimes where

one or the other bias distribution is taken. One can
see that one single time step suffices to produce trial-
coordinate distributions that are reasonably close to the
exact distribution. Not shown explicitly is that symbols
overlap with the exact distribution after one additional
move and that another step later, it becomes difficult
to ascertain differences between the exact distribution



12

functions and those produced by Monte Carlo. In prac-
tice, we choose int(4x1/σ + 0.5) steps for x1 < σ/

√
2

and int{4 exp(−x2/4σ2) + 0.5} steps otherwise, to yield
essentially converged distributions.
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FIG. 8: Bias functions and probability distribution functions
used to approximate the exact distribution function assuming
that the random walk starts at x1 = σ/

√
2 away from a re-

flecting wall at x = 0, where σ is the variance of the random
walk without walls. The blue dotted lines shows the bias func-
tion that is based on equation (21) (wall bias) while the red
dotted line refers to a normal distribution (Gaussian bias).
Blue circles and red crosses show the corresponding distribu-
tions after one single MC move. The black line represents the
exact distribution function Pr(x2/σ|x1 = σ/

√
2) for the end

monomer coordinate x2 given that the random walk starts at
position x1 = σ/

√
2,

To generate trial coordinates for mid-point beads, we
proceed again by using equation (A1). As mentioned
in the main text, we first locate (numerically) the point
xc where the exact distribution has its maximum. It
satisfies xc ≥ σ and xc ≥ (x1 + x3)/2 and it does not
need to be known to very high precision. We then draw
Gaussian random numbers with a mean of xmax and the
appropriate variance of σ/

√
2. To investigate the rate

rate of convergence, we consider again the “worst-case
scenario”, where convergence is slowest, i.e., the case for
x1 = x3 ≪ σ, see figure 9.

As for the end-bead distribution function, good resem-
blance to the exact distribution is obtained after a single
MC step for the mid-point beads: the boundary condi-
tion Pr(x2) = 0 and Pr(x2) ∝ x2 (end beads) as well
as Pr(x2) ∝ x2

2 (mid-point beads) are satisfied after one
single Monte Carlo step, though the prefactors still have
small errors. This time, two MC steps are only almost
sufficient to reproduce the exact distribution function to
within symbol size of the graphs. In production runs, we
set the number of steps to int[5{1.2−tanh(xC/4σ)}2] and
thereby reach sufficient convergence for all practical pur-
poses, though half the number of steps produce identical
results within our stochastic error.
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