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Abstract

Piezoelectric (strain) coefficients dij of quartz are calculated in terms of molecular dynamics as a function of pressure and
temperature. We review the necessary formulas for the computation of electromechanical materials coefficients obtained at
constant stress and temperature, and discuss how to overcome complications of the definition of polarization variations due
to fluctuating box geometries. A method is employed suppressing significantly stochastic fluctuations of the estimators for
piezoelectric coefficients. A recently suggested force field for the simulation of SiO2 reproduces available experimental data
quite accurately. Predictions are made for the pressure dependence of dij of quartz.
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1. Introduction

Dielectric properties of materials play an important
role in many technological applications. It is therefore
desirable to have methods at hand that allow one to
compute dielectric, piezoelectric and related tensors in
atomistic simulations. Dielectric properties are more
challenging to calculate than thermal and mechanical
properties, because the definition of polarization in pe-
riodically repeated cells is less obvious than the for-
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mulation of thermo-mechanical variables. The reason
is that an electrical dipole, and hence the polarization,
lives on the surface of a sample. One of the conse-
quences for computer simulations is that the value of
the dipole depends upon where we chose the ‘central
image’ of the periodically repeated cell to be. Con-
versely, internal energy, lattice parameters, strain, etc.,
are independent of the central image’s position. As we
will outline further below, the ambiguity in defining
the polarization becomes particularly delicate, even in
classical molecular dynamics simulations, when one
treats a system containing free charges at finite tem-
perature and constant stress, which implies fluctuating
box shapes.

Despite the mentioned ambiguity in the definition
of polarization in periodic cells, it has been shown that
there is a bulk or proper polarization that is intrinsic
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to the crystal and that is independent of the surfaces
or the choice of the central image [1]. This proper po-
larization is obtained as the infinite wavelength limit
of an appropriately defined Fourier transform of the
dipole divided by the volume of the cell. The problem
of defining the proper polarization for periodically
repeated cells arises in force-field and ab-initio cal-
culations. While a lot of work has been published
on the calculation of the proper polarization in ab-
initio calculations [2–5] much less attention has been
paid to thermo-mechanical and dielectric properties
obtained from calculations that are based on force
fields. While such methods have been sketched in the
literature, often in terms of harmonic approximations
neglecting anharmonic fluctuation corrections [6], we
are unaware of literature, in which (various) ways
are stated explicitly how to calculate dielectric and
piezoelectric susceptibility tensor in molecular dy-
namics or Monte Carlo simulations. We intend to fill
this gap with a special focus on techniques related to
Parrinello-Rahman type methods [7–11], which are
used to maintain constant stress in atomistic simula-
tions. The suggested ways to calculate electromechan-
ical properties promise to be beneficial for the future,
if reliable, transferable potentials become available
so that complex structures can be studied that are not
amenable to ab-initio simulations. This does not nec-
essarily mean that the chemical composition of the
unit cell of the material must be complex. Whenever
quasi-harmonic approximations of high-temperature
phases behave pathologically, as is the case for ex-
ample in β-quartz, many independent configurations
need to be produced in order to obtain meaningful
averages for thermo-mechanical and dielectric proper-
ties. This is of course a very difficult task for ab-initio
simulations. First-principle simulations can also be
challenging when the unit cell becomes large. For
example, using a simple model potential for SiO2, it
was found that quartz may undergo a phase transfor-
mation to a post quartz phase when shock compressed
to a 50 GPa pressure, in which the new unit cell had a
periodicity of 25 Å [12]. Such large length scales are
currently not amenable to first-principle calculations.

In order to provide expressions for the calculation of
electromechanical coefficients at finite temperatures,
we discuss the free energy of a dielectric as a function
of bulk polarization and strain as well as of the ge-
ometry of the periodically repeated (simulation) cell.

From this we will derive estimators for the calcula-
tion of the piezoelectric coefficients. One method will
be based on relating response functions to fluctuations
of observables, the other method will be based by
explicitly applying an external electrical field. In the
latter case, we show that stochastic errors in the co-
efficients can become extremely small despite strong
thermal fluctuations if two simulations are run in par-
allel. In one simulation, the field is slowly increased
as a function of time and the response R1 of the sys-
tem is recorded. The other simulation is started with
the same initial configuration and is thermostated with
exactly the same random numbers. The response R2

observed in this run is subtracted from R1 to yield an
output that is almost free of noise.

A similar stochastic difference method had been
suggested by Ciccotti and Jacucci, [13] who were in-
terested in the dynamics of a charged Lennard-Jones
particle immersed in a fluid and subjected to an ex-
ternal field. It has been shown that the subtraction of
two random signals, in which one system is propa-
gated with external field and the other without external
field, will have a large standard deviation if the sys-
tem has large Lyaponov exponents. [14] This means
that one should expect good signal-to-noise ratios for
a crystalline material when using the above-described
stochastic difference method.

The presented methodology will then be applied to
quartz at various temperatures and pressures. Recent
experiments indicate a loss of desired piezoelectric
activity of α quartz that occurs upon heating already
250 K below the α − β quartz phase transition tem-
perature T1 [15]. Computer simulations may help to
shed some light on the question what the reason for
this loss is. We may note that the elastic constant C14,
which also requires the absence of inversion symmetry
just like piezoelectricity, does not show any anomalies
outside of the immediate vicinity of the α − β phase
transition, i.e., C14 is essentially constant at tempera-
tures T < T1 − 50 K, and C14 vanishes for symmetry
reasons above T1. Two different model potentials were
used in this study, namely one potential parametrized
by van Beest, Kramer, and van Santern (BKS) [16] one
recently suggested force field by Tangney and Scan-
dolo [17]

The remainder of this paper is organized as follows.
We will discuss the methodology in the following sec-
tion. In section 3, we will present the bulk of our re-
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sults and we will conclude in section 4.

2. Theory and Methods

2.1. Notation

In the following, a vector v denotes a column of
numbers, while a transposed vector vt represents a row
of numbers. The scalar product of two vectors ut and v
will be written as utv, while the result of the operation
u vt corresponds to a matrix of rank two (indicated by
two lines under the letter representing the matrix). A
gradient of the form ∂/∂u applied to a scalar function
results in a transposed vector. Similar comments apply
to pseudo vectors such as the strain in Voigt notation.
In some cases, we will state indices explicitly and
apply the Einstein summation convention. Note that
all matrices below are square matrices except for those
related to piezoelectric coefficients.

The geometry of a periodically repeated (simula-
tion) cell will be defined by a symmetric matrix h =
(a, b, c), where the three vectors a, b, c span a periodi-
cally repeated parallelepiped. In numerical treatments,
one conveniently uses scaled coordinates si to denote
the position of atom i within the central image. Hence,
each time an atom crosses a boundary, we add or sub-
tract unity to the appropriate component si,α in order
to maintain the minimum image convention. Another
scaled coordinate will be denoted by r, which is iden-
tical to s except that the integer manipulations are sup-
pressed that ensure the minimum image convention.
Thus, the ‘real’ position Ri of a particle is given by
the equation

Ri = h ri. (1)

The coordinates r will be used to define reduced
dipoles µ

red

µ
red

=
∑

i

Qiri + h−1µ
i
, (2)

Qi being the charge associated with particle i, and µ
i

being an electric dipole that potentially lives on atom
i, for instance if polarizable sites are employed.

2.2. Linear response

Starting point of our study is the isothermal (con-
figurational) partition function Zh,D(N, β) at fixed di-
electric displacement D and constant box geometry as
defined by a symmetric matrix h. According to the reg-
ular rules of statistical mechanics, Zh,D(N, β) reads

Zh,D(N, β) =

∫

dΓ δ(h(Γ) − h)

×δ(D(Γ) − D) exp{−βΦ(Γ)}. (3)

Here
∫

dΓ symbolizes an integral over the phase space,
the δ(•)’s are the delta functions singling out proper
geometry and dielectric displacement, and Φ(Γ) is the
potential energy of the system as a function of phase
space, i.e., as a function of h and the set of reduced
coordinates {s}. As usual, it is possible to define a free
energy F from the partition function via the equation

Fh,D(N, β) = −kBT ln Zh,D(N, β). (4)

As outlined in more detail below, Eq. (4), together with
the definition of Zh,D(N, β) in Eq. (3), allows one to
connect ensemble averages over phase space (as car-
ried out in atomistic simulations) with phenomenolog-
ical materials parameters. Here, we restrict ourselves
to static properties of strain and polarization, however,
similar statements hold as well for more general quan-
tities including dynamic response functions [18–21].

In the theory of elasticity, it is common to ex-
press partition function and hence free energy F =
−kBT ln Z(N, β) as a function of the strain rather
than of the matrix defining a periodically repeated par-
allelepiped. Unlike the box geometry, the definition of
the strain does require a reference state or a reference
geometry h

0
of the system, which is typically cho-

sen to reflect the thermal expectation value of h at a
given temperature and externally imposed stress. The
(Lagrangian) strain with respect to h

0
can be written

as [8]:

uαβ =
1

2

{

(

h−1

0

)

αγ
hγδ hδε

(

h−1

0

)

εβ
− δαβ

}

, (5)

where we used tensor notation instead of Voigt nota-
tion. In Eq. (5), δαβ denotes the Kronecker symbol.
Since the relation between h and u is well defined for
a given reference h

0
, it is possible to calculate the free
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energy as a function of ũ in terms of a Taylor series
expansion in ũ away from a phase transition point, i.e.,

Fu,D = Fh0,D +
∂Fh,D

∂h

∂h

∂u |h
0

u + ... (6)

The new free energy depends on both, strains u and
dielectric displacement D. In the following, we will
group these variables together into a generalized strain
ũ = (u1, · · · , u6, D1, · · · , D3)

t, with (u1, · · · , u6) be-
ing the strain tensor in Voigt notation.

The generalized stresses σ̃ that are the conjugate
thermodynamic variables to ũ can be calculated as σ̃ =
(1/V )∂F(N, β)/∂ũ. Away from a phase transition, it
is possible to expand Fũ into a power series around a
reference strain ũ

0
(which one can usually set to zero

if ũ
0

at the reference geometry), thus

V0σ̃ =
∂Fh,D(N, β)

∂ũ
+

∂2Fh,D(N, β)

∂ũt ∂ũ
δũ + ... , (7)

where the derivatives are evaluated at ũ
0
, the relative

generalized strain is δũ = ũ − ũ
0
, and V0 denotes

the volume of the system at the reference geometry.
The (expectation value of the) generalized stress at
δũ = 0 will be called σ̃

0
and δσ̃ = σ̃ − σ̃

0
denotes

an (average) stress variation. One can then interpret
the second-order derivative of Fũ with respect to ũ as
generalized elastic constants C̃, that connect ũ and σ̃

via σ̃ = C̃ ũ, or if we represent ũ and σ̃ explicitly






u

D






=





C−1

E
dt

d ε0 ε
r,σ











σ

E






. (8)

Here, C
E

denotes ‘real’ elastic constants at constant

(external) electric field and d are the piezoelectric
strain coefficients. ε

r,σ
is the (isothermal) dielectric

tensor at constant stress. Eq. (8) is a linear equation
that connects ũ with σ̃.
Within linear-response theory, ũ and σ̃ are conjugate to
each other. In the constant-ũ ensemble, we can there-
fore attribute an excess free energy ∆F due to the
fluctuations in ũ, which is given by

∆F =
V0

2
δũt C̃ δũ. (9)

Thermal fluctuations of ũ at fixed σ̃ will thus be related
to C̃, which for harmonic approximations, results in

〈







δuδut δuδDt

δDδut δDδDt







〉

=
kBT

V0





C−1

E
dt

d ε0 ε
r,σ



 .(10)

In this section, we have measured the free energy
density by dividing the actual value of F by the vol-
ume V0 of the reference strain. This convention, which
is typically used in the theory of elasticity, is also ben-
eficial when evaluating Eq. (10): The fluctuation of
the electric displacement can be rewritten as fluctua-
tion of the polarization P . Introducing the dielectric
susceptibility, χ = ε

r
− 1, we can rewrite Eq. (10) as:

〈







δuδut δuδP t

δPδut δPδP t







〉

=
kBT

V0







C−1

E
dt

d ε0 χ
σ






. (11)

Relations like Eqs. (7) and (11) can be exploited in
atomistic calculations to determine the susceptibilities
of interest. However, it will first be necessary to state
the proper estimators for the polarization fluctuation.

2.3. Ambiguity of the dipole and its fluctuation

It is helpful to consider Fig. 1, in order to understand
the difficulties with the formulation of bulk polariza-
tion alluded to in the introduction. Part (a) of Fig. 1
shows that the definition of the dipole µ attributed to
the simulation cell (from which the polarization fol-
lows) depends upon where we chose the boundary
of the central cell to be. By displacing the boundary,
none of the interatomic distances is altered, yet the
dipole changes its value. As long as the shape (here
simply the length) of the cell is maintained, this ambi-
guity causes no complications for the response func-
tions, because we only need to know polarization dif-
ferences. A polarization change is independent of the
choice for the boundary - provided we keep track of
the ‘true’ positions of the atoms, i.e., when a charged
particle moves across a boundary we do not subtract
unity of the scaled coordinate for the calculation of the
dipole. Thus evaluating fluctuations related to dipoles
(from which the constant-strain dielectric and piezo-
electric constants could be calculated), do not depend
on the choice for the position of the central image.

When the cell fluctuates, even a polarization differ-
ence will depend upon where we chose the central im-
age to be. This is illustrated in part (b) of Fig. 1, where

4



−

−

−

− −

−

−

−
Q

Q

−Q

−Q(a)

(b)µ
µ

Fig. 1. Illustration of the ambiguity for (a) the definition of a
dipole µ and for (b) the fluctuation of the dipole. The boxes framed
by a solid line present the position of the central image, while
boxes framed with a broken line are periodic images. The lower
left corner of the central image is defined to the origin of the
coordinate system. In part (b), a positive background neutralizes
the point charge Q and the arrows with the two arrow heads
represent fluctuation of the box geometry.

in one case, the reduced coordinates of a charged par-
ticle is constrained to zero (bottom) and in the other
case it is set constant to one half (top). Both times, we
assume the presence of an opposite background charge
of constant density ensuring charge neutrality. In the
upper part of Fig. 1 (b), the fluctuation of the dipole
vanishes exactly if we keep the reduced positions of
the charge Q fixed in the center of mass. Therefore,
the fluctuation of the dipole will be zero in the upper
half. In the bottom part, we would attribute a dipole
to the cell, which would fluctuate with changing box
size. Thus the dipole fluctuations is effected by the
choice of the location for the central image.

The above mentioned difficulties do not arise if
one deals with neutral molecules whose constituents
have charges that add up to zero. In that case it is
easy to remove the ambiguity due to surface effects or
periodic-boundary conditions. One would only have
to suppress any minimum image convention within
the molecules, i.e., for the calculation of the dipole,
the ri (see Sec. 2.1) have been to be defined such
that two covalently bonded atoms are separated by the
proper distance. In principle, it would be possible to
define similar molecules in an ideal crystalline net-
work such as quartz, i.e., by evaluating the dipole over

entities that consist of a central silicon atom and its
four oxygen neighbors, where the charges of the O
atoms would only count half, in order to avoid double
counting. However, such ‘tricks’ cannot be generally
applied, for instance, if any type of disorder or even
impurities are present in the system, or if a non-rigid
charge model is employed.

2.4. Fluctuation estimators for dipoles

The problem of defining bulk dipoles can be over-
come by considering the small wave length limit of the
dipole’s spatial Fourier transform µ̃. If the box cell is
fluctuating, it is appropriate to work with scaled recip-
rocal vectors k = 2π(mx,my,mz) where the mα are
integer numbers that are related to the true reciprocal
vectors through K = k h−1. Since the box is fluc-
tuating, it is more meaningful to work with reduced
coordinates in both real and reciprocal space. Let us
first consider the Fourier transform of the charge dis-
tribution ˜ρ(k)

ρ̃(k) =
∑

i

Qie
ik s

i . (12)

It remains unchanged if we add or subtract unity from
a particular si or if we rescale the box geometry. Yet,
if we formally differentiate ρ̃(k) with respect to k
(which one cannot do in practice as the kα’s are dis-
crete), then the derivative does not show the same in-
variance. The formal derivative of ρ̃(k) evaluated at
k = 0 corresponds to the contribution of the reduced
dipole due to the point charges, see Eq. (2).

If, however, one defines a reference configuration,
which can be an initial configuration at time t = 0 that
does not have to be equilibrated, then the difference
between a reduced dipole µ

red
(t) evaluated at time t

and the reference dipole µ
red

(0) is invariant against
the transformations discussed in Fig. 1 as long as we
perform the transformation on the configuration of in-
terest and the reference configuration. For the final
evaluation of the dipole, we then multiply the value
µ

red
(0) with the expectation value of the box shape,

thus, our estimator becomes

µ
est

= 〈h〉 µ
red

(13)

and consequently that for the polarization P
est

=
µ

est
/〈V 〉. These estimators do not enable one to cal-
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culate absolute dipoles or polarizations but only rel-
ative quantities, i.e., those to be used in Eq. (11) for
the calculation of fluctuation relations. One possibil-
ity to obtain absolute values for the polarization could
be to set up an initial configuration about which we
know that its dipole vanishes, i.e., due to an underly-
ing symmetry.

2.5. Direct estimators with noise reduction

Applying an external electrical field E to the sys-
tem is one possibility to evaluate piezoelectric coeffi-
cients and higher-order coefficients such as those re-
lated to electrostriction. The appropriate force that acts
on the reduced coordinates related to a point charge
Qi would read h−1EQi. It is yet not meaningful to
simply add a term −

∑

i QiE
tRi to the Hamiltonian.

Such a perturbation would require to have a force act
onto the shape of the simulation cell and this force
would depend on whether a particle is counted within
the central image or within a periodic image. We thus
suppress the force from the external field onto the h
matrix, also because it would be absent in a system
without charges and dipoles.

If the shape of the system is known for E = 0 and
the initial configuration is equilibrated, then one may
switch on the field adiabatically and monitor the box
shape variation from which the strain can be calcu-
lated. This procedure will give correct results, in par-
ticular if one averages over an appropriate number of
independent, initial configurations. However, this al-
gorithm may produce large stochastic scatter in par-
ticular at elevated temperatures.

The noise can be reduced and the necessity of hav-
ing to know the average structure can be omitted if
one performs a reference simulation in which the elec-
tric field remains switched off. The reference simu-
lation should be based on the same initial condition
and an identical initialization of the thermostat. Any
instantaneous configuration at finite field can be com-
pared directly to the instantaneous configuration at
zero field. Within a few molecular dynamics steps, it
is then possible to obtain quite reasonable estimates
for the piezoelectric and other dielectric coefficients,
even if the system is rather anharmonic and contains
slow modes, as is the case in quartz close to the α−β
transition. Fig. 2 confirms this expectation.

Fig. 2. Response of the strain u11 as a function of time (below) or
electrical field (above) for an N = 1080 particle system (α-quartz)
at temperature T = 300 K. The long dashed line is the result
for the piezoelectric coefficient based on evaluating the fluctuation
relation in Eq. (11).

In Fig. 2, we increased the external field slowly with
time and also chose box inertia sufficiently small to
have the cell shape adapt quickly to the new field. We
thermostated the box geometry with a Langevin ther-
mostat to decrease the (stochastic) correlation time.
Excellent estimates for the piezoelectric coefficients
can be obtained already after one hundred MD steps
by evaluating the slope ∂u11/∂Ex. In this way, four
simulations have to be run to determine all general-
ized elastic constants discussed in this paper; three in
which the electric field is parallel to one of the three
coordinate axis and one in which the electric field re-
mains zero. Again, we would like to stress that in all
four runs the same initial conditions (one large sam-
ple in thermal equilibrium or an average over some
small equilibrated samples) must be used as an input
into the simulation and that all runs require the same
random number sequence.

For the various silica polymorphs investigated here,
we obtain a statistical accuracy of better than 5% for
the dij’s if we first equilibrate the material for about
10,000 MD steps to produce an equilibrated start con-
figuration. Note that it takes relatively long to equi-
librate crystalline quartz above room temperature, al-
though quartz is crystalline. This is because it has an
unusually large phonon density of states at small fre-
quencies. The start configuration is then used for four
independent runs, namely one without electric field
plus three runs with electric field in one of the three
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spatial dimensions. Each of these runs is about 2,500
MD steps long and produces a graph similar to that
shown in Fig. 2. Thus, the required numerical effort
to obtain the data is relatively small.

Using Nosé Hoover thermostats or related (less so-
phisticated) rescaling methods do probably not lead to
similarly reliable results. In particular for large sys-
tems and/or small temperatures, the motion of the sim-
ulation cell will be quite harmonic and thus the (cru-
cial!) exchange of (kinetic) energy between the simu-
lation cell and the internal degrees of freedom will be
inefficient. This inefficiency will prevent the cell from
quickly finding its new preferred shape or from fluctu-
ating around it. Also Monte Carlo methods (which are
not necessarily the appropriate method for constant-
stress ensemble to begin with) might need many more
moves than constant-stress MD simulations in which
the cell is thermostated stochastically. However, a sim-
ilar methodology could yet be implemented and would
probably yield more quickly converging results than a
brute-force evaluation of fluctuation relations.

3. Results

α-quartz is one of the most commonly employed
piezoelectric materials and is therefore an interesting
candidate to investigate. Moreover, due to its many
other technological uses and due to its geological
abundance, it remains one of the most intensively
studied materials. Since it is desirable to model such
an important substance on time scales longer than
those amenable to ab-initio based simulations, many
model potentials have been put forth in the recent
past. The goal is to develop a reliable model potential
that allows one to simulate chemically realistically
silica and silica derivatives. None of the model poten-
tials known to us were adjusted to fit the mechano-
electrical behaviour. Calculating the corresponding
response functions thus provides an independent test
of the usefulness and reliability of the approaches.

This test is particularly challenging because it is sus-
ceptible to the effective charges chosen for the ions.
It is well known that effective charges should ide-
ally be designed as tensor charges, however, none of
those potentials with the aim to be potentially transfer-
able have included non-isotropy of the charges. Only

non-transferable potentials were put forth for silica, in
which the parameters describing the electrostatic in-
teractions depended on the specific sites that oxygen
atoms occupied in an ideal quartz lattice.

In this paper, we will limit our attention to the
comparison of two trustworthy (and potentially trans-
ferable) approaches, namely the well-established po-
tential by van Beest, Kramer, and van Santen (BKS)
which has been used very successfully in the last
decade for both ordered and disordered silica, and
a new potential suggested recently by Tangney and
Scandolo (TS). Both are rigid-ion potentials, however,
the TS potential is parametrized as a fluctuating dipole
potential, i.e., the oxygen atoms are treated as being
polarizable. The dipoles are obtained by minimizing
a potential energy function (self-consistently) with re-
spect to the dipoles. More details on the potentials can
be found in the original literature and also in a fu-
ture, more exhausting comparison of the performance
of these two potentials and a fluctuating charge po-
tential [22]. At this point, we only wish to comment
that the TS potential performs extremely well in es-
sentially all thermo-mechanical properties. In particu-
lar, it is the only one of the tested potentials that pro-
duces the c/a anomaly in the two independent lattice
constants at the α-β transition of quartz as observed
experimentally.

3.1. Temperature dependence of d11 in α quartz

The temperature dependence of piezoelectric con-
stants is of technological relevance because one is
often interested in having pressure sensors and pres-
sure transducers at varying temperatures. One of the
few disadvantages of α-quartz is the relatively low
transition temperature to β-quartz, in which d11 is
symmetry-forbidden. This means that quartz cannot
be used as an effective piezoelectric material at high
temperature. In this subsection, we will first show that
both BKS and TS can be used to reproduce available
experimental data for the piezoelectric strain coeffi-
cients at least semi-quantitatively and then analyze the
piezoelectric properties of the two hypothetical post
quartz phases suggested recently [23].

Fig. 3 shows the temperature dependence of the
piezoelectric strain strain coefficient d11. One can see
that both potentials underestimate the value of d11,
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Fig. 3. Comparison of the temperature dependence of the piezo-
electric strain coefficient d11 between experiment and simulation.
The BKS (squares) and the TS potential were used. In the TS po-
tential, two set of runs were performed, one in which the electric
field was coupled to the dipoles (diamonds), and one in which
this coupling was suppressed (triangles).

the TS potential underestimates its value in the low-
temperature phase by more than 50%. The discrep-
ancy between experiment and TS potential is surpris-
ing due to the otherwise good performance of the TS
potential. We therefore speculated that Tangney and
Scandolo parametrized quantum-chemical effects into
the dipoles and re-run the simulations without cou-
pling the dipoles to the electric field, so that only the
bare charges coupled to E. Our speculation was sup-
ported by observing a large correlation between the
magnitude of an individual dipole on an oxygen atom
and the bending angle of the Si-O-Si bonds. By sup-
pressing the coupling to the electric field (or by only
including bare charges in the calculation of the polar-
ization fluctuations), the discrepancy between the TS
potential and experiment is significantly reduced and
quantitative agreement is almost achieved, except for
an O(15)% error in the transition temperature.

It may appear surprising that (short-range) quantum
chemical effects can be absorbed into dipolar interac-
tions. However, the four dipoles associated with the
oxygen forming the vortices of a tetrahedral SiO4 unit
typically add up to a value close to zero. Therefore the
effects of the dipoles in the simulation is effectively
short-range in nature as well.
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Fig. 4. Pressure dependence of the strain coefficients d11 in
α-quartz. The same symbols as in the previous figure were used.

3.2. Pressure dependence of d11

The pressure dependence of quartz-like materials
has remained of interest to current research, see for
instance, Ref. [24], which is part of our motivation
for our pressure study. In Fig. 4, we show the pres-
sure dependence of the piezoelectric strain coefficient
of quartz, which was calculated using the same ap-
proaches as in the Fig. 3. While we believe that the
most accurate data is obtained with TS by suppressing
the coupling between µ and E, we include the other
two approaches for comparison.

The TS potential without µ-E coupling and the
BKS potential show surprisingly strong similarity up
to 12 GPa. Above this pressure, the results for the
piezoelectric coefficients are starting to differ. Keep-
ing in mind that the transition pressure for the α → II
transition is smaller in BKS than in TS [22], it is ob-
vious that the results differ dramatically on approach
to the transition pressure. The increase in the piezo-
electric activity originates in the softening of internal
modes in α-quartz, in which the oxygen atoms are dis-
placed with respect to the oppositely charged silicon
atoms.

It would be interesting to analyze the piezoelectric
strain coefficients experimentally up to the pressure at
which the transition into the so-called quartz II phase
takes place, because this might settle the ongoing de-
bate regarding the degree of softening of quartz under
increasing pressure.
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4. Conclusions

In this paper, we discussed various methods to com-
pute the piezoelectric response within the framework
of molecular dynamics simulations that are based on
classical force fields and that employ effective charges
as well as (inducible) dipoles. Similar approaches can
be derived for higher-order response functions such
as electrostrictive coefficients. The difficulty of cal-
culating quantities involving the electric polarization
as compared to observables related to purely thermo-
mechanical quantities lied in the fact that the dipole or
polarization of the simulation cell is ill defined, in par-
ticular when the box geometry is allowed to fluctuate.
Once this complication is overcome, we discussed one
‘traditional’ method based on the fluctuation dissipa-
tion theory by relating the fluctuations of observables
to their appropriate response functions. While we only
used this method to analyze static susceptibilities, it
is easily generalized to dynamical response functions
as well.

We also discussed an alternative method that al-
lows one to calculate the static mechanical/dielectric
response with small stochastic scatter at small com-
putational cost even when strong thermal fluctuations
were present. We applied the methodology to various
silica polymorphs with an emphasis on quartz and post
quartz phases. Two different model potentials were
used for this study, namely the well-established (and
slightly flawed) potential by van Beest, Kramer, and
van Santen (BKS), [16] and the recently suggested
potential by Tangney and Scandolo (TS) [?] that is
parametrized as a fluctuating dipole potential.

The TS potential, which reproduces thermo-
mechanical behaviour of SiO2 with high accu-
racy [22], only achieved good agreement with avail-
able experimental data when the electrical field was
not coupled directly to the induced dipoles. We there-
fore speculate that effects that are quantum-chemical
in nature were effectively parametrized into the dipo-
lar interactions. Accepting this interpretation, TS re-
produces the available experimental data within about
10% accuracy while BKS is within 15% accuracy.
Keeping in mind that Tangney and Scandolo did not
fit their model potential to any available data, one
may be confident that the prediction based on their
model are quite accurate, at least as long as silicon

atoms remain four coordinated.
We also calculated the pressure-dependence of the

piezoelectric strain coefficients in α quartz. No exper-
iments are known to us, but we believe that such ex-
periments would shed light on the softening of quartz
under increasing pressure.
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