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Assigning effective atomic charges that properly reproduce the electrostatic fields of molecules is
a crucial step in the construction of accurate interatomic potentials. We propose a new approach to
calculate these charges, which as previous approaches, is based on the idea of charge equilibration.
However, we only allow charge to flow between covalently bonded neighbors by using the concept
of so-called split charges. The semi-empirical fit parameters in our approach do not only reflect
atomic properties (electronegativity and atomic hardness) but also bond-dependent properties. The
new method contains two popular but hitherto disjunct approaches as limiting cases. We apply our
methodology to a set of molecules containing the elements silicon, carbon, oxygen, and hydrogen.
Effective charges derived from electrostatic potential surfaces can be predicted more than twice as
accurately as with previous works, at the expense of one additional fit parameter per bond type
controlling the polarizability between two bonded atoms. Additional bond-type parameters can
be introduced, but barely improve the results. An increase in accuracy of only 30% over existing
techniques is achieved when predicting Mulliken charges. However, this could be improved with
additional bond-type parameters.

I. INTRODUCTION

Atomistic computer simulations are often hindered
by the absence of suitable force fields describing
the interactions between atoms in chemically complex
environments1,2. One important reason for this short-
coming is the difficulty in assigning effective atomic
charges that properly generate the electrostatic fields
produced by atoms, molecules, clusters, or solids. Elec-
trostatic fields dominate the long-range interactions be-
tween atoms, and hence play a crucial role in many
processes, such as protein folding and drug delivery.
Force-field simulations of complex ferroelectric and piezo-
electric solids, as well as other dielectric materials, are
also impeded due to the difficulties in assigning partial
charges. Our interest in the topic is motivated by the de-
sire to better understand how the presence of calcium
reduces the functionality of anti-wear films that form
on rubbing cast iron surfaces when it replaces zinc as
a charge-balancing counter ion in lubricant additives3.
Such simulations are hindered by the insufficient accu-
racy of current model potentials for commercial lubri-
cants on one hand, and by the numerical complexity for
many-body first-principle calculations on the other hand.

Charge equilibration (QE) methods were designed to
predict effective atomic charges in chemically inhomoge-
neous systems so that long-range interactions between
atoms can be properly captured with empirical force
fields4–8. The main idea is that atomic charges can be
calculated self-consistently for a given atomic configura-
tion using a set of empirical parameters and the electro-
static interactions between all atoms, as will be outlined

below. QE methods have been applied to a variety of
systems. However, their successful applications appear
to be limited to relatively homogeneous chemical compo-
sitions. This may be due to the fact that the optimum
QE parameterization of elements depends on the local
chemical bonds9, implying limited transferability.

Moreover, the QE approach predicts that two unlike
molecules in vacuum, such as CH4 and H2O, each carry
opposite non-zero charges even if there is a large sepa-
ration between the molecules. The violation of molecu-
lar charge neutrality contradicts chemical intuition and
our quantum chemical calculations, which find two elec-
trically neutral molecules at large separation. Similar
comments apply when pulling an HF molecule apart in
vacuum into neutral hydrogen and fluorine atoms. The
only possibility to ensure that molecules with closed elec-
tron shells remain neutral within the QE description is
to (artificially) impose constraints for these molecules6.
Adjustments of this kind, however, become questionable
as soon as bonds are allowed to break.

In this study, we intend to alleviate the aforementioned
shortcomings of the current QE formulation, while main-
taining the idea of charge equilibration. For this purpose,
we will rewrite the QE method in terms of so-called split
charges by expressing the effective charge Qi of atom i
as

Qi =
∑

j

q̄ij , (1)

where the “split charge” q̄ij represents the charge
flown from a covalently bonded neighbor atom j to
atom i. Generalizing the original QE method to a
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new split charge equilibration (SQE) approach ensures
electric neutrality of isolated atoms or molecules and
promises to enhance transferability. Other advantages
are the to-be-expected rapid convergence of fast multi-
pole methods10–12 (charges can be binned into neutral
boxes) and the possibility of unambiguously defining elec-
tric polarization when using periodic boundaries condi-
tions. This latter aspect is particularly crucial when fluc-
tuating box geometries are used13.

We note that split charges have been introduced earlier
in the atom-atom charge transfer (AACT) model14 and
in previous versions of the molecular mechanics (MM)
method15,16, see equation (9) in Ref. [15]. However, un-
like our approach, neither MM nor AACT contains the
regular QE method as a limiting case.

In the remainder of this manuscript, we compare how
well different methods reproduce partial charges obtained
from quantum chemical calculations. In section II, we
give a brief overview of the QE method and rewrite the
model in terms of split charges. In section III, we dis-
cuss the minimization techniques used to solve for the
split charges, a methodology analogous to the original
QE method. In the following section IV, we introduce
extensions which are made possible through the SQE ap-
proach. In section V, we discuss the methodology in
applying different parameterization schemes to a set of
molecules containing the elements C, Si, O, and H before
highlighting the results in section VI. In this first study,
we will confine our attention to molecules or clusters, in
which each atom is in a well-defined bonding state, i.e.,
all C and Si atoms are tetra-coordinate and all O are
bi-coordinate.

II. QE AND SQE METHODS

A. Original QE method

The starting point of the QE method is an expression
for the potential energy VQ of a molecule or cluster de-
pendent on the effective atomic charges assigned to the
nucleic centers4,5, given by

VQ =
∑

i

{

1

2
κiQ

2
i +

(

χi + Φext
i

)

Qi

}

+
∑

i,j>i

QiQj

4πε0Rij

,

(2)
where κi and χi are the electronic hardness and atomic
electronegativity of atom i, respectively, Φext

i is an exter-
nal electrostatic potential at the location of atom i, and
Rij denotes the distance between atoms i and j. The
electronic hardness and atomic electronegativity may be
parameterized from the ionization potential and electron
affinity of a bare atom, however, are treated as fit pa-
rameters in this work. The charges Qi are obtained
for a given atomic configuration by minimizing VQ un-
der the constraint of conserving the total net charge on
the system. The existence of a charge restoring term in
Eq. (2) related to κi can be motivated from first-principle

FIG. 1: Schematic representation of the charge flow due to
split charges in a three-membered silica ring. Labels H, O, and
Si represent hydrogen, oxygen, and silicon atoms, respectively.
The total charge on an oxygen, for example, results from the
amount of charge “flown” to the atom from its covalently
bonded neighbours.

arguments17,18. However, the QE approach neglects the
self-interaction induced restoring forces (hardnesses) on
the charges that are non-diagonal in the index of the
atoms. In fact, it had been argued that the hardness ma-
trix should be modified to reflect better reflect molecular
structures19.

B. Extension to split-charge formalism

Using the split-charge representation from Eq. (1),
Eq. (2) can be rewritten as

VQ =
∑

i,j,k

1

2
κiq̄ij q̄ik +

∑

i,j

1

2
(χi − χj) q̄ij + VC, (3)

where VC denotes the last two terms on the right-hand
side of Eq. (2), which are the Coulomb interaction be-
tween the atomic charges plus the coupling to an external
field.

The 1/Rij dependence of the Coulomb potential is of-
ten replaced with Slater integral interactions, which are
represented by functions Jij(Rij)

5. These functions take
into account the effect of the overlap of the electronic
wave functions of atoms i and j, thereby eliminating the
Coulomb singularity when Rij approaches zero. In the
following, we will confine our attention to Slater orbital
interactions.

Eq. (3) invites for a variety of generalizations. For ex-
ample, one can constrain a split charge q̄ij to be zero if
Rij exceeds a threshold value, which would best be cho-
sen to slightly exceed the chemical bond length. This
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alteration would automatically remedy the problem re-
lated to the charge neutrality of molecules that are sep-
arated by a large distance. (Possible schemes to avoid
such “hard cut-offs,” which would automatically lead to
undesirable, discontinuous charge changes during bond
breaking, will be discussed further below.) A graphi-
cal representation of the effect of locally restricting the
charge flow is given in Fig. 1. As long as a cluster is fully
connected via chemical bonds, the cut-off radius does not
have any effect on the final charge. Another generaliza-
tion is to replace expressions of the type (χi − χj) with
an arbitrary value χ̄ij = −χ̄ji. This makes it possible to
include the effect of chemical induction.

Furthermore, for reasons of symmetry, the atomic
hardness of atom i might be affected by the chemical
nature of the atoms to which the central atom is bonded,

suggesting the generalization of κi to κjk
i in Eq. (3).

For instance, it was proposed that both electronegativity
and electronic hardness of a hydrogen atom depend on
whether it is bonded to a carbon or an oxygen atom9.
Of course, it is desirable to keep the number of ad-
justable parameters to a minimum and to avoid param-
eters whose value can depend on three elements, such as

the triply indexed coefficient κjk
i , unless there exists a

justified motivation, as in addressing the delocalized na-
ture of aromatic carbon-carbon bonds (e.g., sp2 versus
sp3 hybridization).

C. Final split-charge potential

For the reasons mentioned above, we need a well-
motivated choice of how to systematically generalize
Eq. (3). One possibility of avoiding triply indexed co-
efficients is to rewrite Eq. (3) as

VQ =
1

2

∑

i,j

(

κ
(s)
ij q̄ij + κijQ̄ij + κ̄ijQij + χ̄ij

)

q̄ij + VC,

(4)
where Qij = (Qi + Qj)/2 and Q̄ij = (Qi − Qj)/2. As
long as a cluster is fully connected, this expression is
isomorphic to Eq. (2) provided that we maintain what
we call the “charge-equilibration rules”

κij = (κi + κj)/2 ,

κ̄ij = (κi − κj)/2 ,

χ̄ij = (χi − χj) , (5)

and if the new parameter κs
ij is set to zero. This new

parameter can be interpreted as a bond hardness.
By expressing the potential in terms of a bond

parametrization scheme, not an atomic parametriza-
tion, we may, as a generalization, break away from the
QE rules and incorporate additional flexibility into the
model. An interesting feature of Eq. (4) is that charge-
restoring forces that are non-diagonal in the index of
atoms can be implicitly parameterized as well, e.g., by

choosing the terms κ
(s)
ij different than zero. This allows

for new avenues along which to parameterize the charge
distribution in SQE. For example, if we set the atomic
κi’s, and hence implicitly the κij ’s and the κ̄ij ’s, to zero,
and allow the χ̄ij to differ from χi−χj , then we reproduce
the AACT schemes. Moreover, the appealing aspect of
the SQE method is that Eq. (4) not only makes it possi-
ble to reproduce the two limits of a pure atomic or a pure
bond-based treatment. Eq. (4) also allows one to combine
both approaches within one single framework. Further-
more, any generalization suggested to improve on either
method that is known to us can be incorporated into
the current scheme as well, e.g., a split charge q̄ij can be
rewritten as a dipole, which may be allowed to have com-
ponents orthogonal to the vector connecting atoms i and
j, as in the molecular mechanics methods15,16 (In this
work, we do not pursue polarization effects in the plane
normal to the chemical bond, because it is probably more
efficient to cast these effects in atomic polarizabilities as
done, for example, in Refs. [20–24]).

Writing the model in terms of split charges, as in
Eq. (4), allows three previous methods to be studied
in one framework: (a) the original QE method, (b) the
AACT method, and (c) a variant of the way in which
electrostatics are incorporated within the molecular me-
chanics method. See Fig. 2 as a guide to which terms
in Eq. (4) can be used to obtain these three previous
methods. In addition, generalizations and combinations
of pure atomic and pure bond based treatments can also
be studied using the same potential. Several of these
new parameterization schemes will be discussed further
below. In the next section, we first establish the method
of split charge equilibration.

III. MINIMIZATION TECHNIQUES

The principle of charge equilibration, or equivalently
that of electronegativity equalization19,25,26, states that
charge will flow between the N atoms in a molecule until
the chemical potentials of the atoms are at the same level,

µ1 = µ2 = . . . µk · · · = µN . (6)

Using the fact that µi = ∂V/∂Ni = e∂V/∂Qi, we can
rewrite the above expression as

∂V

∂Q1
=

∂V

∂Q2
= . . .

∂V

∂Qi

· · · =
∂V

∂QN

. (7)

A set of linear equations to be solved for the partial
charges can then be constructed by equating the deriva-
tives of Eq. (2), along with enforcing the added constraint
of charge conservation. The system can be written as
C · Q = −χ̃, where C is a matrix of coefficients given
in5, Q is a vector of the charges, and χ̃ is a vector ar-
ray of the difference in atomic electronegativity values.
The system can be solved using self consistent methods,
linear solvers, or extended Lagrangian schemes6.
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In the original QE method, equating the chemical po-
tential of an atom i and an atom j is equivalent to writing

∂VQ

∂Qi

−
∂VQ

∂Qj

= 0 . (8)

The split-charge analogue of Eq. (8) is

∂VQ

∂q̄ij

= 0, (9)

and the identity ∂VQ/∂q̄ij = ∂VQ/∂Qi − ∂VQ/∂Qj holds
exactly for all terms in the potentials of Eqs. (2) and (4)
as long as the VQ on the left-hand side is completely iso-
morphic to the VQ on the right-hand side of this identity.
If we break away from the original QE rules such that the
potentials in Eqs. (2) and (4) are no longer isomorphic,
then we still use Eq. (9) as the split-charge equivalent of
chemical potential equalization.

Taking the derivative of Eq. (4) with respect to a
generic split charge labeled q̄kk′ and invoking the min-
imization principle of Eq. (9) results in

2κ
(s)
kk′ q̄kk′ +

1

2

N
∑

i=1

(κkk′ + κ̄kk′ + κki + κ̄ki)q̄ki

−
1

2

N
∑

i=1

(κk′k + κ̄k′k + κk′i + κ̄k′i)q̄k′i

+
∂VC

∂q̄kk′

= −χ̄kk′ , (10)

where by choice, the symmetry relations of Eq. (5)
may or may not be enforced. [In the parameterization
schemes introduced below, the symmetry relations are
always applied, though in one scheme the values for
κi, and χi are altered depending on the chemical en-
vironment of atom i.] If the external field Φi

ext = 0,
then it is possible to re-express the electrostatic term
VC, defined below Eq. (3), in the split-charge formal-

ism as VC =
∑

q̄ijJ
i′j′

ij q̄i′j′ , where the sum runs over all

{i, j, i′, j′} and J i′j′

ij = (Jii′ − Jij′ − Jji′ + Jjj′). If any
of the indices in the regular electrostatic term Jij are
equal, then Jkk = 0, irrespective of whether or not the
divergent Coulombic or Slater overlap integrals are used.
Differentiating VC with respect to q̄kk′ gives

∂VC

∂q̄kk′

=
∑

i<j

[Jik − Jik′ − Jjk + Jjk′ ]q̄ij . (11)

Eq. (10) and Eq. (11) can be used to construct a sys-
tem of linear equations in the unknown q̄ij ’s of the form
A · q = −χ̃. The solution can be found as in the QE
method, using linear solvers or extended Lagrangians. It
is important to note, however, the system may be under-
determined. In this case, different realizations of split
charges can add to give the same optimimum atomic
charges as calculated in Eq. (1). In an extended La-
grangian formalism, an underdetermined system does not

cause any difficulty, as the motion of eigenvectors of the
A matrix with eigenvalue zero remains stable. For linear
solvers, singular value decompositions avoid any numer-
ical ambiguity associated with these eigenvectors. Note
that only solutions for those q̄ij need to be found for
which i < j due to the relation q̄ij = −q̄ji.

Since Eq. (11) is independent of the atomic or bond pa-
rameterizations of the electronic hardness and electroneg-
ativity, the identity

∂VC

∂q̄ij

=
∂VC

∂Qi

−
∂VC

∂Qj

(12)

always holds and can be used to efficiently calculate the
forces on the split charges if the split-charge potential of
Eq. (4) is incorporated into a molecular dynamics simu-
lation. Eq. (12) makes it possible for the current split-
charge scheme to be easily incorporated into standard
molecular dynamics packages.

IV. GENERALIZATIONS OF THE SQE

METHOD

In the following, we specify a variety of possible pa-
rameterization schemes of VQ, whose ability to accurately
reproduce quantum chemical charges will later be tested.
We will review previous methods and how they are for-
mulated within the framework of the split-charge poten-
tial of Eq. (4). Following this brief discussion, new gen-
eralizations of the QE method will be presented. Their
ability to reproduce quantum chemical data will be in-
vestigated in the next section.

A. Review of previous methods

1. The original QE method

We have discussed the isomorphism between the orig-
inal QE potential4,5 of Eq. (2) and the split-charge po-
tential of Eq. (4) in Section II. In the split-charge for-
malism, the QE potential is obtained by setting the pure

bond hardness term to zero, κ
(s)
ij = 0, and enforcing the

“QE rules” of Eq. (5) such that

VQ =
1

2

∑

i,j

(

κijQ̄ij + κ̄ijQij + χ̄ij

)

q̄ij + VC , (13)

where κij = (κi+κj)/2, κ̄ij = (κi−κj)/2, and χ̄ij = (χi−
χj). Under the “QE rules”, this potential is isomorphic
to the orignal QE model.

2. The Molecular Mechanics variant

The previously mentioned way in which electrostat-
ics are incorporated into the molecular mechanics (MM)
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FIG. 2: Graphic representation of the terms in Eq. (4) that
are used to obtain previous charge-equilibration methods as
limiting cases. Solid Line - The original QE method5 iff κij ,
κ̄ij , and χ̄ij follow the QE rules in Eq. (5). Dotted Line -
The molecular mechanics variant15,16 in which a fixed split
charge is assigned per bond type. The split charge is in fact

determined by the ratio of χ̄ij/κ
(s)
ij which is a fixed value per

bond type. Dashed Line - The AACT method14 which is
similar to Eq. (4), apart from absence of terms κij and κ̄ij .
Long-Dash Line - The split charge equilibration method of
the present study that can generalize and combine each of
the previous methods as described in Section IV.

variant15,16 can also be formulated in the split-charge
potential of Eq. (4). To achieve this, a fixed dipole is
placed along the line of two covalently bonded atoms.
In the split-charge formalism, this amounts to placing a
fixed split charge on each type of bond, since the dipole
is proportional to the split charge. Eq. (4) then becomes

VQ =
1

2

∑

i,j

(

κ
(s)
ij q̄ij + χ̄ij

)

q̄ij , (14)

where χ̄ij need not obey the QE rules. Since there is
no structural information of the molecule contained in
this potential due to the absence of the VC term, in-
voking the minimization condition of Eq. (9) results in

q̄ij = −χ̄ij/κ
(s)
ij , which remains a fixed value for each

bond type.

3. The atom-atom charge transfer model

Chelli et al.
14 have used the concept of split charges to

capture the correct polarization response of conjugated
hydrocarbon molecules. Their atom-atom charge trans-
fer (AACT) model contained the essential ingredients of
the split-charge potential in Eq. (4), except it did not
contain the original QE method as a limiting case. The
AACT model can be thought of as the MM model plus
the VC structural term containing the Coulomb or Slater
overlap integrals,

VQ =
1

2

∑

i,j

(

κ
(s)
ij q̄ij + χ̄ij

)

q̄ij + VC , (15)

where χ̄ij does not need to obey the “QE rules”. More
recent versions of molecular mechanics27 also allow for
charge transfer and polarizability of bonds.

B. Introduction of new generalizations

The split-charge potential of Eq. (4) is a compact rep-
resentation in which the three previously discussed meth-
ods are contained. Moreover, because the formalism is
encapsulated in the one equation, we may combine var-
ious aspects of the previous methods to investigate how
accurately different parameterization schemes of VQ re-
produce given quantum chemical data. In this subsec-
tion, four parameterization schemes will be considered.
The first two methods have been previously studied, but
are refitted in this work for comparison. The last two
methods are new parameterization schemes made possi-
ble by the split-charge formalism.

(i) Refitted QE method

The first parameterization scheme considered is the
original QE method4,5, which is used as a performance
benchmark for the other schemes below. In this parame-
terization method, see Eq. (13), each atom type is char-
acterized by two parameters, the electronegativity χi and
electronic hardness κi, which are treated as fit parame-
ters in this work.

(ii) Refitted MM variant

The second parameterization method considered is the
refitted MM variant. This scheme is similar to that used
in molecular mechanics methods in which a fixed split
charge q̄ij is placed on a bond, i.e., one fit parameter
per type of bond (see Eq. (14)). Surprisingly, this sim-
ple scheme gave distinctly better results than the full
AACT model14 as long as the values of electronegativity

differences χ̄ij and (inverse) bond polarizations κ
(s)
ij were

constrained to physically meaningful numbers. Once the
bond charges are not determined self-consistently, the
AACT model becomes close in spirit to models built on
fixed split charges such as the AM1-BCC model28,29.

(iii) QE + AACT

The third parameterization method considered makes
full use of the split-charge formalism and its ability to
combine various aspects of different methods. In this
so-called QE+AACT parameterization scheme, the pure
bond hardness term from the AACT method is added to
the QE model. In other words, the potential has the full
form of Eq. (4)

VQ =
1

2

∑

i,j

(

κ
(s)
ij q̄ij + κijQ̄ij + κ̄ijQij + χ̄ij

)

q̄ij + VC ,

(16)
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where the “QE rules” of Eq. (5) are enforced, κij =
(κi + κj)/2, κ̄ij = (κi − κj)/2, and χ̄ij = (χi − χj).
The pure bond type term obeys the symmetry relations

κ
(s)
ij = κ

(s)
ji . In this method, there are two parameters

per atom type, the atomic electronegativities χi and the
atomic hardnesses κi, plus one parameter, the pure bond

hardness κ
(s)
ij , per bond type.

(iv) Perturbations added to QE + AACT

The final parameterization method is a generaliza-
tion of (iii) in which chemically induced perturbations
of atomic hardness and electronegativity are added, i.e.,

χi = χ0
i +

∑

〈j〉

∆χij (17a)

κi = κ0
i +

∑

〈j〉

∆κij , (17b)

where j runs over all atoms bonded to atom i. The pa-
rameters with the superscript 0 are atomic values, which
only depend on the nature of atom i. Conversely, ∆χij

and ∆κij depend on the type of bonds formed by atom
i and are not taken to obey any symmetry relations, i.e.,
∆κij/≡ ∆κji and ∆χij/≡ −∆χji. In this parameteriza-
tion scheme, which does obey the “QE-rules”, there are
two fit parameters per atom type, the χi and κi, one

fit parameter for the pure bond hardness κ
(s)
ij , and four

additional delta corrections per type of bond (since the
corrections are not symmetric).

Additional generalizations of the SQE formulation
were tested, but did not result in any significant improve-
ment over the aforementioned schemes. For example, in a
pure bond parametrization where we break away from the
QE rules that maintain atomic parameters on each atom
type, i.e., in what we call a pure split-charge parametriza-
tion, the system is described by three parameters per
bond type (κij , κ̄ij , and χ̄ij which do not obey the “QE
rules”). This pure split-charge scheme produced fits of
comparable quality to method (iii) at the expense of addi-
tional fit parameters. In all, there are thirty-two possible
parametrization schemes contained in Eq. (4), with the
inclusion of the bond perturbation terms of Eq. (17): κij

and κ̄ij can obey or break away from the QE rules; χij

can obey or break away from the QE rules; κ
(s)
ij can be on

or off; ∆κij and ∆χij can each be on or off. However, the
four methods presented above contain adequate general-
izations of the QE method to demonstrate the versatility
of Eq. (4).

In this study, the four aforementioned parameteriza-
tion schemes only apply to situations where the bonding
is well defined, i.e., all parameters with double indices
apply to covalently bonded or nearest neighbor atoms.
Generalizations to bond-breaking situations appear to

be possible, e.g., by increasing the values of the κ
(s)
ij ’s

with decreasing orbital overlap between atoms i and j.

Training Set Test Set
1. Si3H8 2. H3SiOSiH3

4. (H3Si)3SiH 3. (HO)3SiOSiH3

8. Si6H12 5. ((HO)2SiO)3
12. Si5O5H10 6. SiH4

13. (HO)3SiSiH3 7. Si2H6

14. ((HO)3SiO)2Si(OH)2 9. (H3SiO)2SiH2

21. Si4O(OH)8 10. Si4O4H8

23. ((CH3)3Si)2O 11. (OSiH2)3
25. (CH3)2SiHC2H5 15. Si4O3(OH)8
27. (CH3)2Si(CH2)2Si(CH3)2 16. Si2(OH)6
30. ((CH3)2Si)5 17. Si3(OH)8
31. C5H12 18. [(HO)2SiO]4
32. C3H8 19. [(HO)3SiO](HO)2SiSi(OH)3
34. CH3OH 20. Si4O2(OH)8
35. CH4 22. (CH3)3-SiH
37. CH(OH)3 24. ((CH3)3Si)2
38. C(OH)2(CH3)2 26. (CH3)3SiC2H5

41. C(CH3)3(OH) 28. (CH3)SiH(CH2)3
29. ((CH3)2Si)6
33. HO-CH2-OH
36. CH3CH(CH3)2
39. CH3-C(OH)3
40. C(OH)4

(i) 28% 28%
(ii) 34% 24%
(iii) 13% 13%
(iv) 8.3% 11%

TABLE I: Training and Test sets of molecules used in this
study. Molecular structures are also listed in the auxilary
material31. The error functions over each individual set is
listed for the four parameterization methods used in this
study.

Finding the proper functional dependence for this spa-
tially varying function is a difficult task, which is beyond
the scope of the present work. However, we do expect

the values of 1/κ
(s)
ij , and thus the q̄ij ’s, to be negligibly

small if i and j are separated by a “next-nearest neigh-
bor distance,” while we expect the values to be similar
to the stated values if Rij is close to a chemical bond
length. When applying SQE to bond breaking and hy-
bridization changes, it will probably also be necessary to
employ ideas used in so-called reactive empirical bond-
order potentials30. Given the advances of SQE demon-
strated further below in this work, one may anticipate
similar progress for bond-breaking situations.

V. METHODOLOGY: FITTING TO AB INITIO
CHARGES

A crucial step in this work is to first assign partial
atomic charges to molecular structures from ab initio cal-
culations and then to determine the adjustable parame-
ters in each approach that best reproduce these quantum-
chemical target charges Qqc

i . The Qqc
i ’s themselves are

obtained via a least-square fit of the electrostatic poten-
tial (ESP) on a surface constructed around the molecule
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of interest32,33. The ESP is calculated using density func-
tional theory (DFT)34,35 at the B3LYP/6-31G(d,p) level
of theory36,37. Final results are taken from the calcula-
tions of the Jaguar package38. The Qqc

i ’s are constrained
to give the proper dipole for the molecule and to have net
zero charge. We follow the argument that ESP partial
charges are more meaningful than Mulliken charges,39

which are known to be dependent on the basis set. Once
the Qqc

i ’s are known, we select approximately 50% of our
molecules to be in a training set, and the others for a test
set. The molecules are listed in Table I. More details,
such as exact structures and partial charges are available
on the auxiliary electronic material31. Using the various
parameterization methods (i)-(iv) of Eq. (4), we fit the
semi-empirical parameters in each method to the training
set.

To quantify the quality of fits, we define the normalized
standard deviation σn for one molecule according to

σ2
n =

∑

i (Qi − Qqc
i )

2

∑

i (Qqc
i )

2 . (18)

The overall quality of a fit is a measure of the average
values of σ2 over the total NC number of molecules in
the learning and test set defined by

〈σ〉 =

√

√

√

√

1

NC

NC
∑

n=1

σ2
n . (19)

Minimizing 〈σ〉 over the training set gives charges that
are in the best agreement with the ESP charges. Once the
optimum parameters for a particular method are found
using the training set, we calculate the charges for the re-
maining molecules in the test set. Generally, we observe
very similar values for 〈σ〉 evaluated over the training set
and 〈σ〉 for the test set.

VI. RESULTS

All (DFT-relaxed) molecular structures, ESP charges,
fit parameters, Slater integral parameters, and fitted
charges [methods (i) through (iv)] are reported within
the auxiliary electronic material31. This information may
prove useful to users of (S)QE methods. Slater integral
parameters for the elements C and O are taken from the
original QE method by Rappé and Goddard5, and up-
dated Slater integral parameters for Si and H are taken
from Ref.40. The set of forty-one molecules that we con-
sider consists of three subsets. The first subset (a), la-
beled 1-21 on the auxiliary electronic material, only con-
tains the elements Si, O, and H. The second set (b), struc-
tures 22-30, contains all elements of this study, while the
third set (c), structures 31-41, contains (sp3-hybridized)
C, O, and H.

One goal in developing model potentials is to ensure
transferability. In our case, we would like to predict the

Method a. Si-O-H b. C-O-H c. Si-C-O-H a+b a+b+c
(i) 12% 33% 13% 27% 28%
(ii) 15% 45% 27% 29% 29%
(iii) 9.5% 12% 12% 11% 13%
(iv) 9.4% 6.8% 12% 8.6% 10%
NC 21 11 9 32 41

TABLE II: Overall fit percentages 〈σ〉 for each parameteriza-
tion method (i)-(iv) of Section IV . The first three columns
of data give the results for each family of molecules fitted
separately: (a) silicates, (b) hydrocarbons, and (c) carbon-
silicates. The fourth column shows the results for simultane-
ous fits on both the silicate and hydrocarbon families. The
final column gives 〈σ〉 when all three families are fitted.

electrostatic interactions between, say oxygen and hy-
drogen atoms, with the same adjustable parameters, ir-
respective of whether we are concerned with subset (a),
which contains silicon but not carbon, or whether we are
concerned with subset (c), which contains carbon but no
silicon. To test transferability of the various approaches,
we determined the optimum parameters in each approach
by fitting the parameters to either (a), (b), (c), (a+b),
or (a+b+c). The quality of these fits is shown in Ta-
ble II. The fit parameters obtained on the complete test
family (a+b+c) are shown in Table III. The optimum fit
parameters in the chemically homogeneous cases (a) and
(b) are displayed on the auxiliary web pages31.

In all cases, the errors evaluated on the complete set
of molecules are equal to or higher than the means of the
isolated fits. The results for methods (iii) and (iv) appear
to change the least when new bond types are added. It is
interesting to note that the original QE method does very
well if applied only to subset (a). However, when other
bonds are introduced, the results become significantly
less satisfactory. This behavior may be interpreted as
poor transferability.

It is instructive to compare the numerical values of the
fit parameters for methods (i) and (iii). One can note
that the values of the χi’s do not change significantly
when introducing the concept of bond hardness. This
trend is consistent with the interpretation that the orig-
inal QE method is the leading-order term in an expan-
sion of effective atomic charges into atomic (one-body),
bond (two-body), and other many-body terms. The
trend could furthermore suggest that method (iii) is the
next step in that expansion. The values for the atomic
hardnesses κi systematically decrease from method (i)
to method (iii). This is due to the fact that there is
no analogue of the bond hardness in the original QE ap-
proach. It is also interesting to observe that the electronic
hardness of oxygen decreases the most significantly from
method (i) to (iii) and that this decrease is “compen-
sated” by large values of κs for Si-O and C-O bonds.

Since the motivation in generalizing the QE method is
to more accurately reproduce the electrostatic potential
(ESP) of a molecule, we can use the charges from each
parameterization scheme to generate a potential surface
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and compare how accurate this surface is to the quantum
chemical ESP. To quantify the difference between a cal-
culated and a quantum ESP surface, we define a relative
standard deviation on a molecule between the predicted
ESP (V SQE) and the quantum chemical ESP (V QC) by

σ2
n =

∑

i[V
SQE(ri) − V QC(ri)]

2

∑

i V QC(ri)2
, (20)

where the sums run over all the grid points. The overall
error function 〈σ〉 for the molecules in a set is defined
as in Eq. (19). Using the parameters obtained by fitting
to the ESP charges as mentioned above, we can gener-
ate V SQE’s for a set of molecules and compare to the
quantum chemical V QC’s. For example, for the set of all
molecules (i.e. the (a+b+c) set mentioned in Table II),
the ESP surface errors for the different parameterization
methods are: (i) 84%, (ii) 82%, (iii) 54%, (iv) 48%. The
parameters in methods (i)-(iv) were fit to ESP charges,
which themselves have an ESP surface error of 30%. Al-
ternatively, we can directly fit to the quantum chemical
ESP surface, instead of the ESP charges. In this case,
again for the entire set of molecules (a+b+c), the final
errors for the different parameterization schemes are: (i)
51%, (ii) 50%, (iii) 42%, (iv) 39%. Although the differ-
ence in errors between the refitted QE method (i), and
the generalized SQE methods (iii) and (iv), is less severe
when fitting to the quantum chemical ESP surface, the
results show that the additional fit parameters inherent
in methods (iii) and (iv) allow these schemes to repro-
duce quantum chemical data more accurately. Similar
trends can be established for fitting to Mulliken charges.
For example, the results for the (a+b+c) set of molecules
are: (i) 12%, (ii) 10%, (iii) 7.2%, (iv) 4.8%.

The incorporation of a cut-off in the SQE formalism
has a significant impact on the predicted ESP when a
system of more than one molecule is considered. It reme-
dies the artifact of having a resultant net charge on the
molecules when they are separated by a large distance in
vacuum, as predicted by the original QE method. For
example, the error in the total ESP surface around a
water-methane dimer, when the molecules are separated
by 5 Å, improves by nearly a factor of 2 with the inclu-
sion of a cut-off for the same set of parameters: 29% with
cut-off as opposed to 59% without cut-off. These results
were obtained using the QE model as formulated in the
split-charge representation of method (i) using the orig-
inal QE parameters.5 Similar orders of improvement are
obtained using the optimized sets of parameters. Param-
eters optimized on the ESP surfaces and the Mulliken
charges are also listed in the auxiliary web material.

In determining the optimum SQE method between (iii)
and (iv), one must balance between accuracy, transfer-
ability, and the number of fit parameters. Methods (iii)
improves the results with respect to schemes (i) and (ii)
by more than a factor of two when fitting to the ESP
charges. However, the lowest error functions across each
family of molecules is obtained using scheme (iv), which
adds perturbation terms to the electronic hardness and

Atomic-Type Bond-Type
Method Atom χi κi Bond

H 5.0780 17.3351
(i) C 5.3039 8.6530
8 O 8.3440 14.1631 NA NA

Si 4.4264 7.8226
Method Atom χi κi Bond q̄ij

H-C 0.0908
H-O 0.3775
H-Si -0.0770

(ii) NA NA NA C-C 0.0000
8 C-O 0.2918

C-Si -0.1897
O-Si -0.2986
Si-Si 0.0000

Method Atom χi κi Bond κ
(s)
ij

H-C 1.2698
H-O 0.0627

H 5.0780 16.1954 H-Si 2.1629
(iii) C 5.2086 8.1313 C-C 1.4719
16 O 8.5220 12.4062 C-O 4.9727

Si 4.3850 6.7348 C-Si 2.7455
O-Si 4.0194
Si-Si 4.9988

TABLE III: Parameters used in the first three parameteriza-
tion methods (NA - not applicable for current scheme). Listed
below the method number is the total number of fit param-
eters used in each method for molecules containing H, C, O,
and Si: (i) Refitted QE method - 2 parameters per atom type,
(ii) Molecular Mechanics variant - 1 parameter per bond type
(the fixed split charge placed on the bond), (iii) A combina-
tion between the QE and AACT methods - 2 parameters per
atom type plus 1 parameter per bond type. All methods are
contained within the framework of Eq. (4).

electronegativity as defined in Eq. (17). Thus, along with
the bond hardness, an additional two corrections to the
electronic hardness and two corrections to the atomic
electronegativity are added per bond type (recall the per-
turbations are not symmetric). This gives a total of five
parameters per type of bond and two parameters per type
of element. In defense of such a parameter laden model,
we would argue that this is the first attempt to incor-
porate in a QE based method a strategy that actively
adapts to incorporate 3-body effects in a given chemical
configuration, adjusting the hardness and electronegativ-
ity of atoms based on their covalently bonded neighbors.
In comparison, method (iii) adds only one additional fit
parameter to the model, namely the pure bond hardness

κ
(s)
ij , per new bond type. Thus, considering the rela-

tive performance of method (iii), we suggest that this
scheme offers the greatest improvement over the origi-
nal QE method while keeping the number of additional
parameters at a minimum.

There are several possible explanations for the discrep-
ancy between the fits including all possible bond param-
eters and the quantum chemical data. First, the ESP
fitting routine for the ab initio charges may not be accu-
rate within 10%, in particular for buried atoms. A second
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ab initio (i) (ii) (iii) (iv)
1 Si 0.9382 0.9141 0.8677 0.9402 0.9952
2 O -0.6471 -0.5384 -0.5972 -0.5377 -0.5990
3 Si 0.9367 0.9143 0.8677 0.9405 0.9955
4 C -0.5901 -0.4587 -0.4621 -0.5086 -0.5578
5 C -0.5623 -0.5065 -0.4621 -0.5370 -0.5928
6 C -0.5784 -0.4742 -0.4621 -0.5177 -0.5691
7 C -0.5936 -0.4558 -0.4621 -0.5069 -0.5558
8 C -0.5616 -0.5031 -0.4621 -0.5352 -0.5906
9 C -0.5713 -0.4808 -0.4621 -0.5217 -0.5740

10 H 0.1226 0.0798 0.0908 0.0924 0.1050
11 H 0.1300 0.0870 0.0908 0.0980 0.1125
12 H 0.1328 0.0879 0.0908 0.0996 0.1143
13 H 0.1150 0.0913 0.0908 0.1018 0.1163
14 H 0.1208 0.0934 0.0908 0.1024 0.1184
15 H 0.1218 0.0930 0.0908 0.1025 0.1187
16 H 0.1297 0.0903 0.0908 0.1014 0.1167
17 H 0.1248 0.0882 0.0908 0.0984 0.1134
18 H 0.1191 0.0836 0.0908 0.0955 0.1087
19 H 0.1335 0.0874 0.0908 0.0991 0.1136
20 H 0.1237 0.0791 0.0908 0.0919 0.1044
21 H 0.1317 0.0868 0.0908 0.0981 0.1125
22 H 0.1149 0.0905 0.0908 0.1012 0.1156
23 H 0.1200 0.0929 0.0908 0.1019 0.1178
24 H 0.1221 0.0927 0.0908 0.1025 0.1187
25 H 0.1224 0.0890 0.0908 0.0988 0.1140
26 H 0.1172 0.0852 0.0908 0.0968 0.1103
27 H 0.1274 0.0911 0.0908 0.1020 0.1175

〈σ〉 14.89% 15.84% 10.11% 6.02 %

TABLE IV: Atomic charges on the molecule ((CH3)3Si)2O
shown in Fig. 3 as obtained by the four parameterization
methods used in this study. The results at the bottom of
the table indicate the overall fit of methods (i)-(iv) to the ab
initio ESP charges listed in the third column.

and probably more likely explanation, is that there are
non-negligible contributions from the polarizability ten-
sor that our potential in Eq. (4) does not address. For ex-
ample, our potential is unable to capture any polarizabil-
ity components perpendicular to a bond. When we exam-
ine how our calculated charges differ from the quantum
chemical charges, we begin to see certain trends arise. If
the calculated charges on hydrogens connected to carbons
in a molecule are more negative than the ESP charges,
then the charges on the carbons will conversely tend to
be more positive than the ESP charges. As an exam-
ple, consider the partial charges for a molecule from the
Si-C-O-H family are listed in Table IV for each method
of calculation. The molecule itself is shown in Fig. 3.
Method (iii) which underestimates the charges on all the
hydrogens in the molecule (i.e., QH is more negative than
the ESP hydrogens), overestimates the charges on all the
carbons (i.e., QC is more positive than the ESP carbons).
Method (iv) tends to correct the trend and provide a
better fit in the end. The example may illustrate possi-
ble improvements to the split-charge potential in future
work. It may be beneficial to consider how a dipole re-
flecting the core polarizability attached to each atom in
a molecule corrects the polarization response as pursued

FIG. 3: Enumeration of atoms in the ((CH3)3Si)2O molecule
with their specific charges listed in Table IV as calculated
by the ab initio Jaguar code and the four parameterization
methods of this study.

in Refs. [20–24].

VII. CONCLUSIONS

In this work, we proposed a phenomenological gener-
alization of the charge-equilibration (QE) method, which
was made popular by Mortier, van Genechten, and
Gasteiger4 and also by Rappé and Goddard5. In the
QE model, effective charges are assigned to atoms by
minimizing a potential energy function in which the ad-
justable parameters are atomic parameters. In our ap-
proach, we represented atomic charges as split charges,
which represent the amount of charge flown from one
atom to another. This representation allows one to
rewrite the potential in terms of bond parameters rather
than atomic parameters, which in turn makes possible
further generalizations that are not contained in the orig-
inal QE model. One example is that the electrostatic
hardness of a bond between two elements can be altered.
Concepts similar to that of split charges have been used
before such as in previous versions of the molecular me-
chanics force field15,16 and the AACT model14. How-
ever, those approaches were pure bond-type descriptions
and did not contain the original QE potential as a lim-
iting case. Our approach incorporates simultaneously
atom-based and bond-based descriptions within a unified
framework.

Four different parameterization schemes were investi-
gated in this study: (i) the original QE method, which
was refitted to our training set of molecules, (ii) a variant
of the way in which electrostatics are incorporated in the
molecular mechanics methods, where fixed split charges
are assigned to each type of bond, (iii) a combination of
the original QE and the AACT methods, comprising of
two parameters per atom type (electronic hardness and
electronegativity) as well as one parameter per bond type
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(bond hardness), and (iv) a generalization of the previ-
ous scheme, in which perturbative corrections were added
to the electronic hardness and atomic electronegativity.
These corrections depended on the nature of the elements
to which the “central” atom was covalently bonded.

The parameterization schemes (i) and (ii) were able to
reproduce effective atomic charges obtained from quan-
tum chemical calculations within an accuracy of approx-
imately 30%. Using the most simple variant of a split-
charge approach, i.e., method (iii), reduced this error by
a factor of 2.3 to 13%. Allowing for four more bond-
dependent parameters in scheme (iv) decreases the error
further to 10%. In all, method (iii) improved upon the
results of the original QE method with the fewest number
of additional fit parameters to the model.

Besides its higher accuracy, the split charge ap-
proach has several other advantages over the original
QE method. First, the polarization of the system is
defined unambiguously even if periodic boundary con-

ditions are employed. Second, it is possible to use fixed
split charges, such as the ones used in method (ii), as ap-
proximants within multiple time step schemes41. Third,
being able to group charges into neutral entities in the
summation of electrostatic interactions will be computa-
tionally advantageous in large-scale simulations. The po-
tentially most-important benefit of our approach is that
distance-dependent terms can be introduced, i.e, we ex-
pect the hardness of a bond to diverge continuously as
the distance between two bonded atoms increases and
the overlap of their electron shells decreases. Thus, our
approach allows one to effectively introduce a bandgap
within the charge equilibration method without having to
artificially impose charge-neutrality constraints on indi-
vidual molecules. Incorporating the suggested distance-
dependent hardnesses will reveal whether the split-charge
approach is also a beneficial extension of the original QE
approach in bond-breaking situations.
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