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Abstract. – Ground-state properties of the quantum anisotropic-planar-rotor (QAPR) model,
which describes orientational ordering of linear molecules on graphite surfaces, are investigated
by means of diffusion Monte Carlo. It is found that a quantum melting of the long-range
orientational ordering occurs at a rotational constant b ≈ 0.4 in units of the quadrupolar
coupling constant. This result together with the finite-temperature simulations of Martonak
et al. (Phys. Rev. E, 55 (1997) 2184) shows that the QAPR model exhibits reentrance.

Finite-temperature properties of the two-dimensional anisotropic-planar-rotor (APR) mo-
del [1-3] have been studied extensively in order to understand the orientational ordering of
physisorbed linear molecules on surfaces, e.g., commensurate N2 monolayers on graphite, see
ref. [3] for a review. In the APR model the center-of-mass coordinates are fixed to an ideal
triangular rigid lattice. One-dimensional rotations within the plane parallel to the substrate
surface are the only degrees of freedom taken into account. Only first-neighbor interactions via
the anisotropic part of a quadrupole-quadrupole potential are considered. The classical APR
model is thus described by just one parameter J , the coupling constant. The APR model can be
assumed to qualitatively capture all features associated with the transition of an orientationally
disordered phase to the so-called herringbone phase. Despite its simplicity, the classical APR
model required extensive computational studies in order to determine the phase transition
being weak first order [4]. It is therefore a challenging task to investigate the corresponding
quantum generalization, the so-called quantum anisotropic-planar-rotor (QAPR) model [5], in
which the rotational constant B is an additional parameter. In particular, quantum coherence
effects between strongly correlated degrees of freedom may reveal new phenomena that are
not only difficult to treat computationally, but also interesting to understand.

On the basis of path integral Monte Carlo (PIMC) simulations, Marx and Nielaba [5] report
four distinct transition regimes for the QAPR model as a function of b = B/J : i) a quasi-
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classical regime with an ordered ground-state (non-zero order parameter M at temperature
T = 0 for small values of b) and ∂M/∂T ≤ 0 at any temperature. ii) A crossover behavior with
residual ground state order but the occurrence of positive ∂M/∂T for intermediate values of
b; iii) absence of order in the ground state, thermally induced ordering upon heating, followed
by thermally induced reentrance into the disordered phase upon further heating; iv) absence
of order at any temperature for large values of b. Thus in regimes iii) and iv), quantum
fluctuations are supposed to be strong enough to destroy the long-range orientational order,
where in regime iii) (small) additional thermal fluctuations would lead to an ordering of the
rotors. In the following, we will call the transition from regime ii) (intermediate b) to regime
iii) or regime iv) (larger b) quantum-melting and the thermally induced disorder-order-disorder
transition sequence in regime iii) will be called reentrance.

While a recent mean-field treatment by Martonak et al. [6] supported the idea of reentrance
in the QAPR model, their PIMC simulations did not. In a small region at b = 0.63, transition
temperatures seemingly drop to zero and for b > 0.63 the absence of long-range order at any
temperature is presumed. Since PIMC simulations are carried out at finite temperatures it is
still questionable where the b driven ground state transition really occurs. Determining the
location of the T = 0 transition point in addition to the finite-T phase diagram is therefore
crucial to disapprove reentrance or helpful to show the existence of reentrance.

For the range of b where a quantum melting transition might possibly occur (b<∼0.6), an
experimental realization of the model has not been found yet. Of the two possible candi-
dates, N2 on graphite is close to the classical limit and H2 (along with its deuterated isotopes)
on graphite is close to the quantum-mechanical limit [7]. However, Raman spectroscopy [8]
gives experimental evidence that solid HD under pressure undergoes a reentrance transition.
The coupling of residual dipole moments of HD does not need to be considered for the experi-
mentally observed transition, because those couplings are so small that they can only become
important at much lower temperatures than the observed reentrance temperature. For this
case of two-dimensional rotations of linear molecules interacting dominantly via a quadrupolar
potential, the possibility of quantum melting and reentrance has first been suggested [9, 10]
theoretically. These predictions, however, have been based upon a simple mean-field theory
involving uncontrolled approximations. In fact, a model that assumes Gaussian fluctuations
around equilibrium positions can be shown to give always smaller upper bounds for the ground
state energy for any value 0 < b < ∞ than a self-consistent treatment, which is analogous to
the mean-field approximation [11]. This Gaussian model predicts a non-zero order parameter
for any finite value of b. Hence it is not necessarily obvious that there is a quantum melting
transition at T = 0 at all.

The intention of this letter is to study the T = 0 properties of the QAPR model such that the
underlying quantum mechanics are not subject to uncontrolled approximations. Conclusions
for the existence and the mechanism of reentrance can be drawn based on this study and
known finite-temperature results. We consider the free-field N -particle Hamiltonian

H0 = −B
N∑
i=1

∂2

∂ϕ2
i

+ J
∑
〈i,j〉

cos (2ϕi + 2ϕj − 4φi,j) , (1)

with ϕi the angle of the molecule pinned at site Ri of the triangular lattice and φi,j the
six phase angles that measure the angle between neighboring sites Ri and Rj . The ordering
process can be described by a three-component order parameter

φα =
1

N

N∑
i=1

sin(2φi − 2ηα) exp
[
iQ

α
·Ri

]
(2)
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with Q
1

= 2π(0, 2/
√

3), Q
2

= 2π(−1,−1/
√

3), Q
3

= 2π(1,−1/
√

3), and η1 = 0, η2 =
2π/3, η3 = 4π/3. Accordingly, a field-dependent Hamiltonian can be defined as H = H0−h1φ1.

In the present letter this model is investigated by means of diffusion Monte Carlo (DMC) [12],
in principle an exact numerical method to calculate ground state energies. Unlike variational
Monte Carlo (VMC) and mean-field approximations, DMC does not suffer from uncontrolled
systematic errors. For computational details we refer the reader to the reviews [13, 14] and
the original literature [12]. Unfortunately observables other than the ground state energies
are difficult to determine for many-particles systems using DMC because the wave function
is used as the probability measure and not the probability density. One therefore needs to
extract information indirectly, e.g., the kinetic energy expectation value per particle 〈tkin〉 can
be gained by

〈tkin〉 =
1

N

∂〈H0〉

∂ logB
. (3)

Furthermore, the magnetization M1, which is defined here as the expectation value of φ1,
and also the corresponding susceptibility χ11, can be obtained by calculating the ground state
energy per particle ε0(h) and using the small field expansion

ε0(h1) = ε0(0)−M1h1 −
1

2
χ11h

2
1 +O(h3

1). (4)

Before presenting DMC results we address two approximate treatments, which are found
very useful to help in interpreting the quasi-exact results: i) The Gaussian model, which is
based on a trial wave function ψG where the rotors carry out fluctuations around equilibrium

angles ϕ
(eq)
i , and ii) the Jastrow model with a Jastrow wave function ψJ as the trial wave

function, i.e.

ψG ∝
N∏
i=1


+∞∑

n=−∞

exp

−
(
ϕi + nπ − ϕ

(eq)
i

)2

4∆ϕ2


 (5)

and

ψJ ∝ exp [−αV ] . (6)

Here, ∆ϕ2 and α are variational parameters to be optimized and V is the total potential
energy from eq. (1). It can be shown that the analytically solvable Gaussian model is always
ordered, while VMC calculations applied to the Jastrow wave function give a weak first-order
T = 0-phase transition at a rotational constant b ≈ 0.19 [11].

Ground state energies for the Gaussian model, the Jastrow model, and from DMC for a
system with N = 900 are shown in fig. 1, where we express all energies in units of the coupling
parameter J . ψJ is used as a guidance wave function in the DMC simulation. It can be seen
that the Gaussian model describes ground state energies fairly accurate for b<∼0.3, while the
Jastrow wave function is accurate in the region b>∼0.7. Since the Gaussian model shows order
for any b and the Jastrow model is disordered for b>∼0.19, these approximate treatments of
the QAPR model suggest that a quantum melting transition occurs in the intermediate region
0.3 < b < 0.7.

In order to verify this behavior as well as to locate the phase transition more accurately, we
calculate with DMC the dimensionless kinetic energy per particle as a function of b by using
eq. (3). Due to the fact that within DMC typically 1000 identical replicas have to be simulated
in parallel, we limit the system size to N = 256. In fig. 2, a sudden change in the derivative
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Fig. 1. – Dimensionless ground state energy ε0 as a function of rotational constant b (circles) for the
treatments described in the text. The arrow indicates the order-disorder transition of the Jastrow
ansatz. Jastrow ansatz and DMC results were each obtained for N = 900.

Fig. 2. – Expectation value of dimensionless kinetic energy per particle 〈tkin〉 as a function of rotational
constant b obtained by DMC for N = 256 and by the Gaussian model. A dashed line is drawn to
guide the eye.

of 〈tkin〉(b) near a maximum at b<∼0.4 is striking. In a N = 64 study of the functions ε(b) and
〈tkin〉(b), the kink in the slope of 〈tkin〉(b) is less obvious. However, one can see that the size
effect in ε(b) is maximal at b = 0.4. Size effects in ε(b) are undetectably small outside the
region 0.25 < b < 0.65. One can certainly expect the transition to be close to the point where
size effects are the most striking.

The kinetic energy in the Gaussian model behaves similarly to the one calculated in the
DMC simulation. However, there is no discontinuity in the slope. Within the Gaussian effective
one-particle picture the maximum of 〈tkin〉 has a simple interpretation. For small values of
b, the harmonic approximation applies so that 〈tkin〉 ∝

√
b with corrections due to interwell

tunneling of order exp[−1/b]. With increasing b these delocalization corrections tend to exceed
the barrier height of the cosine potential, which is of order 1/b. Then quantum delocalization
starts to suppress the tendency to localize within the wells. Consequently, 〈tkin〉 decreases
with further increasing b. The crossover from localization (〈tkin〉 ∝

√
b) to delocalization

(〈tkin〉 ∝ 1/b) results in a maximum in the intermediate region at b ≈ 0.4. Although different
in detail, we suggest that a similar crossover occurs in the N -particle system. Quantum
coherence effects extended over many correlated rotors can moreover change the macroscopic
behavior discontinuously indicating a phase transition. Such a discontinuity is observed in the
slope of 〈tkin〉 obtained by DMC at a rotational constant bd ≈ 0.4, see fig. 2.

Further evidence that there is a phase transition around bd can be obtained by exploiting
eq. (4), i.e. the response of the system due to an external field h = h1. Calculations of
susceptibilities and cumulants require expensive numerical computations, which are plagued
by particularly large statistical errors in the transition region. Instead, we investigate the
ground state energy per particle ε0(h) for various b and introduce the crossover field hc. hc is
the external field at which the slope of ε0(h) becomes constant with increasing h. See fig. 3a)
for a schematic definition of hc.

For sufficiently small b, the system is ordered in its thermodynamic limit but for finite N
tunneling between the various global ground states is always present. As a consequence, the
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Fig. 3. – a) Ground state energy ε0(h) as a function of field h for b = 0.3 and two system sizes N .
For N = 16 it is shown schematically how the crossover field hc, indicated by the arrow, is obtained.
b) Crossover field hc as a function of the system size N and for various rotational constants b. The
resolution of the crossover field is about 0.0015.

response of a finite system is never strictly linear as h tends to zero. However, for systems
that are ordered in the thermodynamic limit, hc can, of course, be expected to decrease as N
increases. This effect, which can be seen in fig. 3a) for b = 0.3, is due to a smaller relative
tunneling splitting in the larger system. For a disordered system, hc must reach a finite limit
since the absolute value for the order parameter is bounded from above, namely saturation
takes place at M = 1. We want to note that in all our studies the used fields were only
small perturbations and the responses were always far from saturation. Studies similar to
the investigation shown in fig. 3a) have been carried out for various rotational constants. In
the regime 0.4 < b < 0.7, one observes a crossover to a predominant linear response in ε0(h)
where, however, hc does not tend to zero as N → ∞, see fig. 3b). Instead, hc increases with
increasing N . This behaviour reflects increasing disorder for increasing system sizes. Given the
huge size effects (particularly in the susceptibility) of the classical APR model, where several
ten thousand rotors were needed to determine the order of the phase transition, large size effects
in hc seem plausible for the quantum model. It would certainly be interesting to see at which
system sizes saturation in hc sets in. Unfortunately, an accurate T = 0 quantum simulation
for N significantly larger than 256 does not yet seem to be computationally tractable.

From the size-dependent analysis shown in fig. 3b), we conclude that a quantum melting
phase transition takes place within the range 0.3 < bc < 0.511, presumably b<∼0.4. Given
this result and the PIMC study by Martonak et al. [6], who observed thermally driven phase
transitions at T = 0.3 and b = 0.61, it is clear that the QAPR model shows reentrance. A
more precise value for bc cannot be obtained by a similar size-dependent study due to the
enormous numerical effort needed in the transition region. Thus, one can only conjecture that
bc lies nearby the anomaly in 〈tkin〉 at bd ' 0.4 (cf. fig. 2).

In order to understand reentrance we develop the following picture. For b slightly larger
than bc the system is disordered at T = 0. There is, however, a large but finite correlation
length. As the system is heated, some rotors are excited from their even parity ground
state to the first excited state, which has odd parity. Similar as in the case of a double-well
potential, the first excited state is more localized in the bottom of the potential wells. This
results in a larger quadrupole moment which in turn acts localizing on neighbored rotors.
Consequently, the correlation length increases and might even diverge. Such a scenario seems
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only possible if there is an energy gap between single-particle even to odd conversions and
N -particle excitations without parity conversions, which invoke thermal delocalization. Those
N -particle excitations will only be populated at further heating leading to global disorder.
This picture is in agreement with the observation that there is reentrance in solid HD but
not in solid H2 and D2, where spin conversion and thus parity conversion are extremely slow.
Mixing particles of paramagnetic species into solid H2 or D2 might make reentrance observable
on typical experimental time scales.
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