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The problems of ergodicity and internal consistency in the centroid and ring-polymer molecu-
lar dynamics methods are addressed in the context of a comparative study of the two methods.
Enhanced sampling in ring-polymer molecular dynamics (RPMD) is achieved by first perform-
ing an equilibrium path integral calculation and then launching RPMD trajectories from selected,
stochastically-independent equilibrium configurations. It is shown that this approach converges
more rapidly than periodic resampling of velocities from a single long RPMD run. Dynamical quan-
tities obtained from RPMD and centroid molecular dynamics (CMD) are compared to exact results
for a variety of model systems. Fully converged results for correlations functions are presented for
several one dimensional systems and para-hydrogen near its triple point using an improved sampling
technique. Our results indicate that CMD shows very similar performance than RPMD. The quality
of each method is further assessed via a new χ2 descriptor constructed by transforming approximate
real-time correlation functions from CMD and RPMD trajectories to imaginary time and comparing
these to numerically exact imaginary time correlation functions. For para-hydrogen near its triple
point, it is found that adiabatic CMD and RPMD both have similar χ2 error.

PACS numbers:

I. INTRODUCTION

Solving the quantum dynamics of many-body systems
remains one of the most challenging problems in com-
putational physics and chemistry due to the unfavorable
computer scaling with system size and time scale of nu-
merically exact methods. Quantum equilibrium proper-
ties, on the other hand, are routinely investigated us-
ing the path integral (PI) formalism developed by Feyn-
man.1,2 The PI interpretation fostered a new understand-
ing of the microscopic world and provided a deep insight
into various complex quantum phenomena, such as su-
perfluidity.3 Unfortunately, direct application of this for-
malism to real time dynamics faces a severe sign problem
that necessitates approximation schemes.

In the last decades, several approaches have been de-
veloped to describe approximately the dynamics of quan-
tum systems, which include: the linearized semiclassical
initial value representation of Miller and Liu,4,5 the quan-
tum mode coupling theory of Reichman and Rabani,6–10
the forward-backward approach of Makri and cowork-
ers,11,12 the Feynman-Kleinert linearized path integral
method,13 and the effective potential analytic continu-
ation method,14 among others. In the quest for sim-
plifications to the finite-temperature quantum dynamics
problem, much research effort has been directed toward
devising quasi-classical approaches. Among these, cen-
troid molecular dynamics (CMD) developed by Cao and

Voth15 has attracted much attention in the last decade.
The method was successfully applied to a wide variety of
model systems,16 and it represents a promising avenue in
condensed matter physics.

In the last few years, the field of quasi-classical meth-
ods has burgeoned with recent advances in approximate
methods to the quantum dynamics problem.17,18 Re-
cently, Craig and Manolopoulos19 revived the primitive
path integral algorithm20 and applied it to approximate
a variety of dynamical properties. The method has been
termed ring polymer molecular dynamics (RPMD).19

A subsequent study by Braams and Manolopoulos21
showed analytically that Kubo-transformed autocorrela-
tions functions obtained from RPMD are accurate up to
∆t6 for the position and ∆t4 for the velocity, while the
(adiabatic) centroid molecular dynamics (CMD) leads to
an accuracy of only ∆t4 and ∆t2 for the position and
velocity, respectively. Although these analytical results
are clear, how they manifest in actual many body simula-
tions remains an open question, particularly considering
that there are differences between the protocols used in
the theoretical analysis and those used in actual applica-
tions, as will be discussed further below.

Recently, Voth et al.22 compared CMD and RPMD on
a variety of model systems. Their study reached the con-
clusion that that both approaches yield similar results
in condensed phases although some markedly differences
were detected for low dimensional model systems. The
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authors found that increasing the time separation be-
tween the centroid and the internal modes brings CMD
results closer to the exact values, resulting in better es-
timates for the diffusion constant of para-hydrogen than
RPMD.22 Moreover, better estimates of the quantum ki-
netic energy (from the zero-time of the velocity autocor-
relation function) for the same system were obtained in
CMD than in RPMD. These findings partially obscure
the aforementioned analysis by Braams and Manolopou-
los.21

A potential weakness exists in each of the two afore-
cited studies, which may lie at the origin of this con-
troversy: The argument of Braams and Manolopoulos
that CMD less accurate at short-times than RPMD as-
sumesthat the CMD is entirely Newtonian,i.e., the dy-
namics of internal and centroid modes are governed only
by a mass tensor. However, in actual CMD simulations,
thermostats are typically applied to the non-centroid
modes of the ring polymer for equilibration, rendering
the motion of internal modes non-Newtonian (but with
increased sampling efficiency). At the same time, Voth
et al.22 did not sample RPMD in the best possible way
in their comparison. It is well-known that RPMD suf-
fers from long correlation times and näıve resampling of
velocities from an equilibrium distribution (as was done
in Ref.22) can easily hinder the acquisition of optimal
RPMD time correlation functions.

In this comparative study, we reexamine several model
systems, together with new ones, with the intention of
bringing both the CMD and RPMD approaches for max-
imal sampling. To this end, an improved sampling tech-
nique in RPMD is introduced in order to ensure more
rapid convergence of the correlation functions.

In addition to improving the sampling, we also intro-
duce an internal consistency check to assess the qual-
ity of each path integral approach. When evaluating
the quality of each path integral approach, it is desir-
able to have a quantitative descriptor of the method’s
performance, irrespective of the availability of a numer-
ically exact solution of the dynamical problem. While
for low-dimensional systems, one can easily compare ap-
proximate results to those obtained by numerically ex-
act methods, no such comparison is possible for high-
dimensional, non-harmonic systems such as liquid para-
hydrogen.

In general, it is not recommendable to resort to a com-
parison with experimental data, as there is no guaran-
tee that the force field at hand is accurate and that
an agreement between computational prediction and ex-
perimental measurement is due to a fortuitous cancel-
lation of errors in the method and/or force field. This
last statement is particularly relevant when the model
Hamiltonian treats a linear molecule as a spherical parti-
cle and thus neglects translation-rotation coupling. This
translation-rotation coupling as well as three-body forces
are likely to affect different observables in different ways
so that experiments and simulations cannot be expected
to match with high accuracy.23,24

A more consistent test, however, would be to use the
fact that the information contained in the imaginary time
correlation function is equivalent to that contained in the
real-time correlation function.25 Numerically exact imag-
inary time correlation functions are easily computed from
either path-integral molecular dynamics or path integral
Monte Carlo, even for complex systems, assuming an ef-
ficient path-integral sampling approach. Unfortunately,
the transformation from imaginary time to real time is
numerically ill-posed, which makes a direct test of the
estimates for the real-time correlation functions a com-
plicated task,26 in some cases possible27–29 but more com-
monly, inaccurate.10,30 Nevertheless, the transformation
from real time to imaginary time is numerically stable
and can be used as a consistency check. This allows us to
pose the following question:31 How accurately do CMD
or RPMD predict imaginary time correlation functions
if these functions are not averaged directly but deter-
mined indirectly via the real-time autocorrelation func-
tion? This comparison allows us to assess the quality of a
method by means of a well-defined descriptor (to be de-
fined later) without relying on the accuracy of the model
potential.

This article is organized as follows: Sec. (II A) reviews
the equilibrium path integral methodology of Ref.32
Sec. (II B) presents a brief review on the formalism on
quantum correlation functions. This is followed by a suc-
cinct description of the approximate imaginary time path
integral methods CMD (II C), RPMD (II D) and its rep-
resentation in other coordinates (II E). The theory sec-
tion terminates with a discussion of the ergodic problems
in path integrals, our suggested sampling scheme (II F),
and with the new quantitative descriptor (II G). In the
accompanying Section (III), the model systems and rel-
evant technical details are presented. The article contin-
ues in Sec. (IV) with a discussion of the main results.
Finally, the conclusions are drawn in Sec. (V).

II. BACKGROUND AND THEORY

A. Equilibrium path-integral molecular dynamics

In this section, we briefly review the methodology of
path-integral molecular dynamics. In the proceeding,
Ĥ will denote the Hamiltonian operator of the system,
β = 1/kBT the inverse thermal energy, and Z(β) =
Tr exp(−βĤ) the canonical quantum partition function.
Atomic units are used throughout.

The discrete path-integral expression for the quantum
canonical partition function for a single particle of mass
m with Hamiltonian H = p̂2/2m + V (x̂) is

ZP (β) =
(

mP

2πβ

)P/2 ∫
dx1 · · · dxP (1)

exp

{
−β

P∑
k=1

[
1
2
mω2

P (xk − xk+1)2 +
1
P

V (xk)
]}

,
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where ωP =
√

P/β and P is the Trotter number or num-
ber of imaginary time slices along the thermal path. The
paths must satisfy the cyclic condition xP+1 = x1, which
arises from the trace.

Without changing any of the thermodynamic or equi-
librium properties of the system, we can introduce a set
of P uncoupled Gaussian integrals into Eq. (2) as follows

ZP (β) = N
∫

dp1 · · · dpP

∫
dx1 · · · dxP (2)

exp

{
−β

P∑
i=k

[
p2

k

2m′
k

+
1
2
mω2

P (xk − xk+1)2 +
1
P

V (xk)
]}

,

where m′
k are fictitious mass parameters and N is an

overall normalization constant. In principle, the quan-
tum canonical partition function could be computed via
molecular dynamics (MD) using a classical Hamiltonian
of the form

H =
P∑

k=1

[
p2

k

2m′
k

+
1
2
mω2

P (xk − xk+1)2 +
1
P

V (xk)
]

, (3)

which describes the motion of a cyclic polymer chain with
harmonic nearest-neighbor interactions in an attenuated
external potential V (x)/P .33,34 Because of the resem-
blance of the cyclic polymer to a necklace, the imagi-
nary time points are colloquially referred to as “beads”,
and the variables x = x1, ..., xP are referred to as the
“primitive” path-integral variables. The parameters m′

k
determine the time scale on which the imaginary time
points x1, ..., xP are sampled. However, as was pointed
by Hall and Berne,35 the efficiency of the primitive al-
gorithm is very poor due to the dominance of the har-
monic forces from the quantum kinetic energy. Even if
thermostats are coupled to each degree of freedom in the
system, the wide frequency spectrum introduced by the
harmonic coupling causes the MD time step to be limited
by the fast modes, thereby leading to very poor sampling
of the low-frequency modes.

A solution to the aforementioned problem was intro-
duced by Tuckerman, et al.32 and consists of three el-
ements: 1) the variables in Eq. (3) are transformed to
a set of coordinates that diagonalizes the harmonic cou-
pling; 2) the fictitious masses m′

k are adjusted so that all
modes move on the same time scale; 3) a thermostat is
coupled to each mode degree of freedom in the system
so as to ensure rapid sampling, equipartitioning, and a
proper canonical distribution.

The equations for the transformation from “primitive”
to a new set of so-called “staging” modes32 can be de-
rived from similar transformations used in path-integral
Monte Carlo.36 In its simplest form, the transformation
to staging modes q1, ..., qP (denoted collectively by Q) is

q1 = x1

qk = xk −
(k − 1)xk+1 + x1

k
, k = 2, ..., P. (4)

When the change of variables given by Eq. (4) is intro-
duced into Eq. (3), the partition function becomes

ZP (β) = N
∫

dp1 · · · dpP

∫
dq1 · · · dqP (5)

exp

{
−β

P∑
k=1

[
p2

k

2m′
k

+
1
2
mkω2

P q2
k +

1
P

V (xk({Q}))
]}

,

where xk({Q}) indicates the inverse transformation, and
the masses mk are defined to be

m1 = 0

mk =
k

k − 1
m, k = 2, ..., P. (6)

Note that, by this definition, the mode variable q1 drops
out of the quantum kinetic energy term so that its motion
is solely governed by the external potential V . In order
to ensure that all modes move on the same time scale,
the fictitious masses m′

k are chosen according to m′
1 = m

and m′
k = mk. Therefore, PIMD in staging modes is

defined by the transformed Hamiltonian

H =
P∑

k=1

[
p2

k

2m′
k

+
1
2
mkω2

P q2
k +

1
P

V (xk({Q}))
]

. (7)

In Eq. (7), the momenta pk are treated as “conjugate”
to the mode variables qk, which means that the dy-
namics generated by Eqs. (7) and (3) are different be-
cause the transformation is not canonical. Finally, once
the equations of motion are derived using Eq. (7), each
mode variable is coupled to a separate thermostat, e.g., a
Nosé-Hoover chain thermostat.37 In Ref.32, a more gen-
eral staging type of approach was introduced by allowing
staging “segments” of length j to be defined, thereby pro-
viding a natural cutoff between fast and slow modes, a
generalization that was shown to possess certain advan-
tages regarding the convergence of path integrals with
large P .

The authors of Ref.32 also suggested that the same
scheme could be used with normal mode variables, “The
staging method handles the [time-step] problem by in-
troduction of the variable j, which naturally classifies
the modes and allows only those with wavelength smaller
than some cutoff to fluctuate rapidly. Such a division of
time scales based on wavelength can also be constructed
using normal modes.” This idea was subsequently im-
plemented by Cao and Voth in the context of centroid
molecular dynamics (see below),38 by Tuckerman et al.,
in ab initio path integrals methods,39 by Marx et al. in
ab initio centroid molecular dynamics algorithms,40 and
by Martyna et al. in the context of path integrals at con-
stant pressure.41 The transformation in this case takes
the form

qk =
1√
P

P∑
i=1

Ukixi, (8)
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where the transformation Uki diagonalizes the matrix
arising from the quantum kinetic part: Aij = 2δij −
δi,j−1 − δi,j+1 with Ai,P+1 = Ai1 and Ai0 = AiP . Intro-
ducing this change of variables in Eq. (3) yields a par-
tition function that has the same form as Eq. (6) but
with

mk = mλk

λ2k−1 = λ2k−2 = 2P

[
1− cos

(
2π(k − 1)

P

)]
(9)

and λ1 = 0, λP = 4P (for even P ). As with the staging
transformation, the mode q1 drops out of the quantum
kinetic energy term. In fact, it is the centroid mode, x0

q1 = x0 =
1
P

P∑
i=1

xi. (10)

In order to ensure that all modes move on the same time
scale, the fictitious masses m′

k are chosen according to
m′

k = mk and m′
1 = m, which is the optimal choice

for the free particle. However, depending on the system,
other choices for the kinetic masses may be more effi-
cient.42 As in the staging case, each normal-mode degree
of freedom is also coupled to its own thermostat.

The schemes reviewed in this section have proved
highly useful in equilibrium path-integral molecular dy-
namics and have made the partially adiabatic centroid
molecular dynamics scheme to be discussed in Sec. (II C)
possible.

B. Quantum time correlation functions

In this section, some general aspects of quantum cor-
relation functions are succinctly reviewed.26,43 The stan-
dard quantum time correlation function is defined by

CAB(t) =
〈
Â(0)B̂(t)

〉
, (11)

where Â and B̂ are quantum mechanical operators in
the Heisenberg picture. The angular brackets denote the
thermal average

〈Ô〉 =
1

Z(β)
Tr

[
Ô exp(−βĤ)

]
. (12)

In contrast to their totally symmetric classical coun-
terparts, standard quantum correlation functions CAB

obey the detailed balance relation in Fourier space:
C̃AB(−ω) = C̃AB(ω)e−βω.

It is often more convenient, however, to work with the
so-called Kubo-transformed correlation function44

KAB(t) =
1

βZ(β)
× (13)∫ β

0

dλ Tr
[
e−(β−λ)ĤÂe−λĤeiĤtB̂e−iĤt

]
,

than with the original CAB(t) for several reasons: First,
KAB(t) is purely real and invariant under time reversal.
Thus, it exhibits more symmetry properties than CAB(t).
Consequently, many exact expressions for KAB(t) be-
come relatively compact. Second, KAB(t) is more easily
compared to classical time correlation functions, which
are the natural output of both CMD and RPMD calcu-
lations. Third, in the linear regime, the response of the
system is directly linked to such functions via the Kubo
relations.45 Finally, KAB(t) reduces to its classical coun-
terpart not only in the classical limit β → 0 but also in
harmonic systems. The Kubo-transformed and the stan-
dard correlation functions contain the same information
and, in Fourier space, are related by

C̃AB(ω) =
[

βω

1− e−βω

]
K̃AB(ω). (14)

A quantity that is typically computed in path integral
simulations is the imaginary-time quantum correlation
function

GAB(τ) =
1

Z(β)
Tr

[
e−βĤ Â e−τĤB̂eτĤ

]
, (15)

which follows from Eq. (11) after an analytic continu-
ation to imaginary time. In particular, the imaginary
time mean square displacement is easily computed from
PIMD/PIMC simulations, even for complex systems

G(τ) = 〈[x(τ)− x(0)]2〉. (16)

This important quantity is related to the real-time ve-
locity autocorrelation function Cvv(t) (more precisely, its
Fourier transform C̃vv(ω)) via a two-sided Laplace trans-
form

G(τ) =
1
π

∫ ∞

−∞
dω exp (−βω/2)

C̃vv (ω)
ω2

× (17){
cosh

[
ω

(
β

2
− τ

)]
− cosh

(
βω

2

)}
.

This last equation will be used in Sec. (II G) to assess the
virtues of each imaginary time method.

C. Centroid molecular dynamics

In 1993, Cao and Voth15 introduced centroid molecular
dynamics (CMD) as an approximate method to compute
real time quantum correlation functions. The primary
object in this approach is the centroid,33 defined as the
average of the cyclic path x(τ) in imaginary time τ , see
also Eq. (10)

x0[x(τ)] =
1
β

∫ β

0

x(τ) dτ ≈ 1
P

P∑
i=1

x(τi). (18)

In Eq. (18) the continuous version was approximated by a
discretization over P imaginary time points. The method
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is rooted in the ideas developed by Feynman and Klein-
ert46 on the effective centroid potential, which is just a
potential of mean force obtained by integrating over the
normal mode variables q2, · · · , qP defined in Eq. (8), and
of Gillan47, who generalized the Feynman path concept
to observables arising from time-dependent processes.

CMD relies on the assumption that the time evolution
of the centroid on this potential of mean force surface
can be used to garner approximate quantum dynamical
properties of a system. In CMD, the centroid evolves in
time according to Newtonian equations of motion16,48

ẋc =
pc

m
(19)

F0 ≡ ṗc = −dV0(xc)
dxc

,

where m is the physical mass, and V0(xc) is the mean
field potential on the centroid at the point xc given by

− 1
β

ln

{(
2π

m

)1/2 ∮
Dx(τ) δ(x0[x(τ)]− xc)e−S[x(τ)]

}
.

(20)

In Eq. (20), S[x(τ)] is the Euclidean time action and∮
Dx(τ) denotes an functional integration over all cyclic

paths whose centroid position is xc. The mean field cen-
troid force at xc, F0(xc) , is derived from Eq. (20) simply
by spatial differentiation:

−

∮
Dx(τ) δ(x0[x(τ)]− xc)

[
1
β

∫ β

0
dV

dx(τ)dτ
]

e−S[x(τ)]∮
Dx(τ) δ(x0[x(τ)]− xc) e−S[x(τ)]

.

(21)

Although formally exact, Eqs. (20) and (21) are of lim-
ited use. In principle, their evaluation entails a full path
integral calculation at each centroid configuration, which
clearly is not feasible for complex systems.

To ameliorate the computational burden of the Eqs.
(20) and (21) in practical MD calculations, the adiabatic
approximation is often invoked.49 The masses of the in-
ternal modes are made significantly lighter than centroid
mass so as to facilitate an efficient exploration of phase
space as required by Eq. (21). To achieve this limit, an
adiabaticity parameter γ2 (0 < γ2 < 1) is introduced
to scale down the fictitious kinetic masses of the inter-
nal modes m′

k = γ2mλk and therefore to accelerate their
dynamics.22 Ref.40 contains one particular proof of the
adiabatic method. In practice, however, a partial sepa-
ration is normally accomplished and the scheme has been
termed partially adiabatic centroid molecular dynamics
(PACMD).22 In this work, however, we obviate this dis-
tinction and simply refer to PACMD as CMD for brevity.

Eq. (21) also demands a canonical sampling over the in-
ternal modes. As discussed in Sec. (II A), thermostats are
typically attached to the internal (non-centroid) modes
to achieve a rapid equilibration whereas the centroid is

normally unthermostated so as not disrupt the dynam-
ical properties of the system. More technical details on
the method are discussed in Refs.40,41,49

Finally, in the CMD formalism, the expectation value
of any observable O is expressed as an ensemble average
over the centroid variables

〈O〉 ≈ 1
Z

∫∫
dxc dpc

2π
O (pc, xc) e

−β

»
p2

c
2m +V0(xc)

–
.

(22)

In particular, the Kubo-transformed quantum time cor-
relation function between two operators Â and B̂ is ap-
proximated by

〈A(0)B(t)〉 ≈ 1
(2π)P Z

∫
dxc dpc

2π
A (xc(0), pc(0))×

B (xc(t), pc(t)) e
−β

»
p2

c
2m +V0(xc)

–
, (23)

where the operator B̂ is evaluated using the time-evolved
centroid variables according to Eq. (20), starting from
{xc(0), pc(0)} as initial conditions.

D. Ring polymer molecular dynamics

RPMD starts with the primitive path-integral algo-
rithm of Eq. (3). In their recent article,19 Craig and
Manolopoulos extended the significance of the primitive
method to the real time domain based on its correct lim-
its in the harmonic and classical cases. The method
was later applied to study the self-diffusion of quan-
tum fluids,50,51 the inelastic neutron scattering of para-
hydrogen52, and to formulate a quantum version of the
transition state theory.53

The principal differences that distinguish RPMD from
CMD are threefold. First, the RPMD kinetic masses are
chosen such that each imaginary time slice or bead has
the physical mass m. Second, RPMD uses the full chain
to estimate expectation values:

OP (t) =
1
P

P∑
i=1

Ô [xi(t)] . (24)

For example, in RPMD the Kubo-transformed velocity
autocorrelation function is approximated by

Kvv(t) ≈ 1
(2π)P ZP

∫
dx

∫
dp vP (0)vP (t) e−βP HP (x,p),

(25)

where βP = β/P (RPMD simulations are typically car-
ried out at P times the actual temperature) and

HP (x,p) =
P∑

j=1

p2
j

2m
+

m

2β2
P

P∑
j=1

(xj − xj−1)2 +
P∑

j=1

V (xj).

(26)
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Note that the harmonic bead-coupling and potential en-
ergy terms are taken to be P times larger than their coun-
terparts in Eq. (3). We adopt this convention for con-
sistency with Ref.19, however note that this amounts to
nothing more than a rescaling of the temperature from T
to PT . Obviously, for operators linear in position and/or
momentum, the CMD and RPMD representations of ob-
servables is the same, however, they usually differ for
functions that are non-linear in those coordinates.

The third difference is that RPMD is purely Newto-
nian. The equations of motion are easily derived from
the previous Hamiltonian, Eq. (26)

ṗj = − m

β2
P

[2xj − xj−1 − xj+1]−
∂V

∂xj

ẋj =
pj

m
, (27)

where j = 1, · · · , P . No thermostats are used on any
of the beads because all beads are treated as dynamical
variables in RPMD.

E. Ring polymer molecular dynamics in other
coordinates

The RPMD scheme presented in the last subsection
was defined using Cartesian (or primitive) coordinates,
see Eq. (26)

H(x,p) =
ptp
2m

+
m

2
w2

P xtκx + V (x) ,

(28)

where w2
P = (P/β)2 and κ is the stiffness matrix. How-

ever, it is possible to carry out the same dynamics us-
ing other coordinates provided that the transformation is
canonical, i.e., the Poisson brackets are preserved. Un-
like in Sec. (II A), here not only are the positions changed
but the momenta are transformed accordingly in order to
generate the same dynamics as in Eq. (26). In this sub-
section, we discuss how the RPMD Hamiltonian trans-
forms using normal mode (NM) and staging coordinates,
which are the most commonly used variables in path in-
tegral calculations.

The NM transformation was introduced in Eq. (8),
where U is a unitary matrix with elements U1j = 1/

√
P

and UPj = (−1)j/
√

P for j = 1, · · · , P ; and U2i,j =√
2/P cos (2πij/P ) and U2i+1,j =

√
2/P sin (2πij/P ) for

1 ≤ i < P/2. The RPMD Hamiltonian in NM coordi-
nates reads

H(Q,P) =
1
2
ΠtM−1Π +

m

2
w2

P QtKQ + V (x(Q)) ,

(29)

where Π = π1, ..., πP are the transformed momenta and
M = mPI is the new mass tensor, with I the identity
matrix. The stiffness matrix in these coordinates K =

PUκU t (t denotes matrix transpose) becomes diagonal
and its elements Kj are given by Eq. (9). The equations
of motion (EOM) generated by this new Hamiltonian are

π̇i = −mw2
PKiqi −

√
P

P∑
j=1

Uij∇xj V (x(Q))

q̇i =
P∑

j=1

M−1
ij πj =

πi

mP
. (30)

The advantage of using NM coordinates is that the cen-
troid mode separates out naturally and multiple time
scale integration methods54 can be easily incorporated
in the integration scheme of the harmonic kinetic part.50
Finally, the equipartition theorem, which in Cartesian
velocities is m〈v2〉 = TP , now becomes m〈VtV〉 = T

where V = Q̇ = U ẋ/
√

P denotes the NM velocities.
As stated in Sec. (II A), one of us32 introduced the

staging transformation in PIMD for efficient sampling of
equilibrium quantities of quantum system. The staging
coordinates are defined by Q = T x, with the associated
canonical momenta Π = T −1p. The transformation ma-
trix T is non-orthogonal, but nonetheless, it accomplishes
a total diagonalization of the stiffness matrix κ. The re-
sulting diagonal elements are, however, not the eigenval-
ues of original matrix κ.

The RPMD Hamiltonian in staging coordinates resem-
bles the one in Eq. (29), except for a new mass tensor
M = mT −1tT −1, which is symmetric but not diagonal.
The new stiffness matrix K = T −1tκT −1 becomes diag-
onal in this representation with elements Ki = i/(i − 1)
for i = 2, · · · , P and K1 = 0. The EOM formulated in
staging variables are given by

π̇i = −mw2
PKiqi −

P∑
j=1

T −1t
ij ∇xj V (x(Q))

q̇i =
P∑

j=1

M−1
ij πj , (31)

where M−1 = m−1T T t is the inverse mass tensor in
staging variables. Finally, the equipartition theorem in
staging velocities reads 〈VtMV〉 = PT .

Fig. 1 displays the Kubo-transformed position autocor-
relation function for the quartic potential 0.25x4 com-
puted from RPMD using primitive, NM, and staging
coordinates. As the transformations were carried out
canonically, the dynamical quantities should be repro-
duced exactly in the same manner as is shown in the
figure. The minor discrepancies between curves are due
to the sampling over different initial conditions.

F. Ergodicity problem in path-integral simulations

Ergodicity is a problem that plagues both CMD and
RPMD simulations.32 While we do not wish to affect the
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FIG. 1: Kubo-transformed position autocorrelation function
for quartic potential V (x) = 0.25x4, β = 8, and P = 32 com-
puted from RPMD in various coordinates: Primitive (solid),
Normal Modes (dashes), and Staging (dots). The minor dis-
crepancies between curves are due to the sampling over dif-
ferent initial conditions.

dynamics of the system, it is imperative to have ade-
quate statistics. One possible way to satisfy these con-
flicting requirements is to employ a combined approach
whereby a mild dissipative particle dynamics (DPD)
thermostat55,56 is used on the centroid and Langevin or
Nosé-Hoover chain37 thermostats are applied to the in-
ternal modes to achieve a rapid equilibration. This ap-
proach, however, was not pursued in this work. Rather,
we focus our attention on the acquisition of averages and
correlation functions.

In previous studies, averages were accumulated in a se-
quential manner starting from a limited portion of coordi-
nate space and proceeding thereafter with only a resam-
pling of the velocities. This protocol, although straight-
forward, may be problematic due to the slow convergence
of path integrals in general, with particular severity near
phase transitions.

In this study, an improved sampling method is pro-
posed to ensure a proper sampling of configuration
space. Fig. 2 depicts the scheme. First, a long equi-
librium PIMD simulation is performed, as described in
Sec. (II A), with the sole purpose of generating uncor-
related initial configurations. Equilibrium PIMD algo-
rithms use internal staging or normal-mode variables for
optimal sampling. Based on the previous discussion, pe-
riodically stored configurations in these coordinates can
then be used in the CMD or RPMD simulations, or, for
RPMD, they can be transformed back to primitive vari-
ables. The initial velocities can be either drawn from
the Maxwell-Boltzmann distribution or taken from the
equilibrium PIMD run provided that a brief adjustment
of the initial velocities is allowed (short equilibration or
“Verlet warm up” in the figure) due to the different mass
tensor in the dynamical algorithms. Periodic resampling
of velocities may be effected on each individual trajectory
to further improve statistics.

This sampling scheme allows for a more efficient explo-

FIG. 2: Schematic representation of how to efficiently accu-
mulate ergodic time correlation functions without distorting
the dynamics during the observation stage.

FIG. 3: Relative error in the mean ∆ (defined in Ref.57)
of the virial estimator as a function of the block size for
different sampling techniques in RPMD. Quartic potential
V (x) = 0.25x4, β = 8, and P = 32. Circles: sequential
sampling (previous works); Crosses: our suggested parallel
sampling scheme.

ration of configuration space and is expected to improve
statistics as the averages become less correlated than the
sequential method. A quantitative measure of the er-
ror associated with each sampling technique is given in
Fig. 3 for a particle in a purely quartic potential. The
figure displays the relative error in the mean (see Eq.(2.3)
of Ref.57) for the virial estimator58 as a function of block
size (number of steps between two consecutive velocity-
rescale updates). The total number of observation steps
in each sampling scheme remains constant, only differ-
ing in the way steps are distributed. It is evident that
the sequential sampling has about an order of magnitude
greater error than the parallel sampling, which converges
at the beginning and stays constant thereafter. These
magnitude of these errors agree with those of Ref.32.

The effect of the sampling method on the virial esti-
mator was also investigated on a more realistic system.
Fig. 4 displays the results for liquid para-hydrogen near
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FIG. 4: Standard deviation of the virial estimator as a func-
tion of the number of blocks for different sampling techniques
in RPMD. Liquid para-hydrogen at T = 14K, and P = 64.
Circles: sequential sampling (previous works); Crosses: our
suggested parallel sampling scheme.

its triple point, T = 14 K, ρ = 0.0235 Å−3. The figure
shows the more favorable convergence properties of the
parallel sampling.

Finally, the rate of convergence of RPMD correlation
functions versus number of trajectories was also investi-
gated for each sampling method. Fig. 5 displays the mean
absolute error σ = 1

N

∑N
i=1 |Kxx(ti)−Kconv

xx (ti)| of each
sampling method for various model systems. Kconv

xx de-
notes the fully converged RPMD correlation function for
the system and Kxx is the resulting correlation function
obtained from the cumulative average over consecutive
trajectories (sequential sampling) or from statistically-
independent trajectories (parallel sampling). The differ-
ence was computed up a maximum time of tmax = 10
natural units (longer times comparisons are not mean-
ingful) for the one dimensional systems. The total simu-
lation time was equal for each sampling method for con-
sistency. As a general trend, parallel sampling not only
exhibits less statistical error associated but also converges
faster than sequential sampling.

Similarly, Fig. 6 illustrates the impact of the sampling
technique on the RPMD velocity autocorrelation func-
tion for liquid para-hydrogen at the same physical con-
ditions given above. The difference was computed up a
maximum time of tmax = 1 picosecond.The sequential
sampling curve is always above the parallel curve, indi-
cating that the even for this more ergodic system the
parallel sampling is useful.

Thus, the parallel sampling technique is recommended
as a method for generating converged dynamical quan-
tities, especially in cases where ergodicity problems are
expected.

FIG. 5: Mean absolute error of the RPMD correlation func-
tions σ = 1

N

PN
i=1 |Kxx(ti) − Kconv

xx (ti)| for parallel and se-
quential sampling methods. Kconv

xx is the fully converged
Kubo-transformed position autocorrelation function. Above:
quartic V (x) = 0.25x4 potential. Below: midly anharmonic
V (x) = 0.5x2 + 0.1x3 + 0.01x4 potential. A inverse temper-
ature β = 8 and Trotter number P = 32 was used in both
model potentials. The total number of steps was 60000 in
each sampling method.

FIG. 6: Mean absolute error of the RPMD correlation func-
tions σ = 1

N

PN
i=1 |Kvv(ti) − Kconv

vv (ti)| for parallel and se-
quential sampling methods. Kconv

vv is the fully converged
Kubo-transformed velocity autocorrelation function for the
para-hydrogen at T = 14K and P = 32 obtained using
RPMD. The number of steps per trajectory was 3500 and
time step of 0.76 fs for each sampling method.

G. Self-consistent quality control of time
correlation functions

As argued in the introduction, it is desirable to have
an internal consistency check for the predicted time cor-
relation functions without relying on exact data (often
not available in complex systems). From the simulations
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(whether CMD or RPMD) and using Eq. (14) one ob-
tains approximations to the standard velocity autocor-
relation function C̃vv(ω), which we denote by C̃

(est)
vv (ω).

Eq. (17) permits a reconstruction of the associated imag-
inary time correlation function G(est)(τ) from C̃

(est)
vv (ω).

The estimated G(est)(τ) function can then be compared
directly to the numerically exact mean square displace-
ment function G(τ) computed from the same simulation,
see Eq. (16). Thus, a dimensionless quantitative descrip-
tor for the quality of an approach (CMD/RPMD) would
be

χ2 =
1
β

∫ β

0

dτ

[
G(est)(τ)−G(τ)

G(τ)

]2

. (32)

An alternative way to carry out this comparative test
would be to compare directly and on the same footing the
imaginary-time velocity autocorrelation function Gvv(τ),
Eq. 15 (see Ref.28 and also Ref.30 for a lowest-order es-
timator) to the one reconstructed from the real time ve-
locity autocorrelation function using a similar expression
as Eq. 17, but without the division by ω2

Gvv(τ) =
1
2π

∫ ∞

−∞
dω exp (−βω/2)×

C̃vv (ω) cosh
[
ω

(
β

2
− τ

)]
. (33)

This approach, however, was not pursued here.

III. COMPUTATIONAL DETAILS

In this section, we present the computational de-
tails for the model systems investigated. For the one-
dimensional model systems, a total of 2048 independent
trajectories of 130 natural units of time each were accu-
mulated, according the scheme depicted in Fig. 2. Ten
restarts on each individual trajectory are effected to fur-
ther improve the statistics. The Trotter number was 8
and 32 for the high and low temperatures, respectively.
For CMD, a converged adiabaticity parameter γ2 = 0.005
was used in all the low dimensional systems to scale down
the non-centroid kinetic masses. The time step (after
adiabatic separation) was 0.001. Nosé-Hoover chain ther-
mostats37 of length 2 were employed on the internal (non-
centroid) modes to achieve proper canonical sampling. In
the RPMD simulations the time step was 0.0005 to prop-
erly integrate all internal modes.

A realistic quantum fluid, para-hydrogen, was also sim-
ulated. The physical conditions of the system were cho-
sen near its triple point (T = 14 K, ρ = 0.0235 Å−3)
to facilitate the comparison to preceding studies.22,50 As
usual, boson exchange effects are neglected at this tem-
perature. The interaction between hydrogen molecules
was modelled using the well-known isotropic Silvera-

Goldman (SG) potential.59 This potential is given by

V (r) = eα−βr−γr2
−

(
C6

r6
+

C8

r8
− C9

r9
+

C10

r10

)
fc(r),

(34)

where

fc(r) =

{
exp

[
−( rc

r − 1)2
]
, if r ≤ rc

1, otherwise.

The parameters for the SG potential are displayed in Ta-
ble (I). This potential has been shown to reproduce ac-
curately static and dynamic properties in both solid and
liquid phases.60

TABLE I: Parameters (in a.u.) in the Silvera-Goldman po-
tential, Eq. (34).

α 1.713 C6 12.14

β 1.5671 C8 215.2

γ 0.00993 C9 143.1

rc 8.321 C10 4813.9

The system was composed of 256 particles initially
arranged in an fcc lattice with periodic boundary con-
ditions. The minimum image convention was adopted
for the intermolecular interactions. The interaction be-
tween para-hydrogen molecules was truncated at 8.374
Å, corresponding to the second minimum in the radial
distribution function. Initial velocities were drawn from
a Maxwell-Boltzmann distribution at every restart to ex-
plore momenta space. A Trotter number of P = 32 was
sufficient to converge energy estimators at these phys-
ical conditions within a 97% margin of error. A full
convergence of thermodynamic quantities is not sought
here, but rather to compare the performance of each
imaginary-time path integral method under the same
simulation parameters.

Canonical sampling was achieved via Langevin ther-
mostats. Although stochastic thermostats pose serious
problems in the calculation of dynamical properties, they
are very effective for rapid equilibration. In this study,
the friction parameter Γ was carefully chosen so as not to
disrupt the dynamical properties of the system. A fric-
tion coefficient of Γ = 0.01/dt typically makes systematic
errors smaller than statistical errors.31 No thermostats
were directly applied to the centroids during CMD runs.

For CMD, the time scale separation between centroid
and internal modes was set to 15 (adiabaticity parame-
ter γ2 = 0.0444) and the time step to 0.2 fs. In order
to facilitate exploration of configurational space, 64 in-
dependent trajectories were run for both methods with 2
restarts on each, following the scheme depicted in Fig. 2,
giving a total of 128 trajectories. The duration of each
trajectory was 6 ps. The time step used in RPMD was
0.76 fs to properly integrate all internal modes and ensure
conservation of the total energy.
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FIG. 7: Kubo-transformed position autocorrelation functions
for the midly anharmonic potential V (x) = 0.5x2 + 0.1x3 +
0.01x4 at two different temperatures.

FIG. 8: Comparison of the Kubo-transformed position auto-
correlation function for the purely quartic potential V (x) =
0.25x4 at two different temperatures.

IV. RESULTS AND DISCUSSION

A. One dimensional model potentials

Fig. 7 and Fig. 8 show the Kubo-transformed position
autocorrelation functions for the midly anharmonic and
quartic potential, respectively. To facilitate comparisons
to literature, the same inverse temperatures used in pre-
vious studies were employed here, namely, β = 1 and 8,
respectively.19,22

In general, the CMD and RPMD correlation functions
agree well with each other and with exact results at times
less than the thermal time. As expected, the agreement
between CMD and the exact curves improves as the adi-
abatic separation between centroid and internal modes is

increased (not shown).

In the harmonic limit both methods are exact (at all
times). Fig. 7 illustrates this point by showing the re-
sults on a slightly perturbed harmonic system. At high
temperature (β = 1) the agreement with exact curve is
excellent in both methods. At lower temperature (β = 8)
however, the agreement is less satisfactory, with RPMD
dephasing slightly more than the CMD at long times.

In anharmonic systems, CMD and RPMD suffer from
a progressive loss of coherence and intensity as time goes
on, which is especially significant for the quartic case
at β = 1, Fig. 8, where both methods are dramatically
quenched after the first oscillation.

At low temperatures, the quantum effects are more
pronounced and both methods are expected to perform
less favorably. Nonetheless, for the quartic case, the dy-
namics is curiously better described at low temperatures,
whereas at high temperature the behavior is opposite.
As pointed out by Voth et al.,15,22,61 this behavior can
be ascribed to the two-state nature of the system. At
low temperature, the dynamics of the system is mostly
dominated by the ground and first excited state. There-
fore, it exhibits an effective harmonic behavior for which
both approximate methods are exact. Interestingly, the
quartic potential at β = 8, Fig. (8) shows that CMD can
sustain oscillations longer than RPMD, which is severely
quenched after few oscillations. The RPMD curve resem-
bles the CMD signal but with the amplitude modulated
by a decay function that results from the non-trivial ef-
fect of the damped dynamics internal modes on the cen-
troid. This interesting effect can be easily explained by
the following phenomenological argument. In RPMD the
centroid dynamics contains admixture of higher frequen-
cies modes (see later discussion on the power spectrum of
a quantum fluid) which results in more damped behavior
in the time correlation functions after averaging. Thus,
each individual RPMD trajectory looses coherence more
rapidly than CMD as time progresses.

Finally, a more challenging model potential for these
approximate methods was investigated. Fig. 9 shows the
Kubo-transformed position autocorrelation function of
an asymmetric double well potential at β = 4. This
potential crudely represents the typical scenario for a
reduced coordinate in the vicinity of a quantum phase
transition. As with any method that neglects quantum
interference, neither RPMD nor CMD are able to de-
scribe the coherence in this deep tunneling case and the
dynamics remains accurate only at very short times.

It should be pointed out that the dynamics in con-
densed phases is often dominated by the short-time be-
havior of correlation functions (provided that the den-
sity/pressure is not too high) and these methods are ex-
pected to become more meaningful as is illustrated in the
next subsection.
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FIG. 9: Comparison of the Kubo-transformed position auto-
correlation function for an asymmetric double well potential

V (x) = 0.1(x2−22)2 +e−(x−2.2)2 +0.5e−(x+1.5)2 at β = 4 and
P = 32: Exact (solid) , RPMD (dots), and adiabatic CMD
(dashes). The bare potential is shown in the inset.

B. Liquid para-hydrogen

In this section the comparative study of a realistic
quantum fluid system is presented.

Fig. 10 displays the Kubo-transformed velocity auto-
correlation function for para-hydrogen. Both correlation
functions look very similar, and feature a prominent neg-
ative minimum at about 0.24 ps, a little bump around
0.4 ps, followed by a fast decay after 1 ps. The RPMD
curve is, however, noticeably displaced to the left rela-
tive to the CMD curve. This observation is consistent
with the general trend of RPMD correlation functions to
relax faster than CMD (see following discussion on dif-
fusion constants). Table (II) displays the values of the
velocity autocorrelation function at few selected points
for each method.

TABLE II: The Kubo-transformed velocity autocorrelation
function [Å2/ps] at various selected points for para-hydrogen
at T = 14 K, ρ = 0.0235 Å−3 with N = 256. The standard
deviation in the last digit is given in parentheses.

Time[ps] CMD RPMD

0.0 17.42(4) 17.45(2)

0.156 0.92(3) 0.41(1)

0.238 -2.96(1) -3.08(1)

0.50 -0.60(1) -0.657(3)

0.751 -0.13(1) -0.14(1)

Table (III) lists the values of the self-diffusion coeffi-
cient for para-hydrogen computed from the well-known
Green-Kubo relation45

D =
1
3

∫ ∞

0

Kvv(t) dt. (35)

Values in Table (III) are in accord with previously re-

FIG. 10: Kubo-transformed velocity autocorrelation function
for para-hydrogen at T = 14 K, ρ = 0.0235 Å−3 as computed
from adiabatic CMD (dashes) and RPMD (dots).

ported data.22,50 In particular, the predicted RPMD
value (0.262 Å2/ps) is in excellent agreement with a
recent study by Miller and Manolopoulos.50 Our CMD
value for the self-diffusion constant agrees very well
with the one reported in Ref.22 and the small discrep-
ancy (0.01) is attributed to different simulation param-
eters. As a consistency check, the diffusion constants
were also estimated from the long-time behavior of the
mean square displacement (not shown) and found per-
fect agreement with those from Eq. (35). Finally, we
note that these computed diffusion coefficients should
be extrapolated to the infinite case for better agree-
ment with the experiment.50 Conversely, the experimen-
tal value could also be “corrected” for finite size effects62
and then compared directly to the values from the simu-
lations.

TABLE III: Self-diffusion coefficient for para-hydrogen at T =
14 K, ρ = 0.0235 Å−3 with N = 256 as computed from path
integral methods. The experimental value is from Ref.63. The
standard deviation in the last digit is given in parentheses.

Diffusion coefficient D[Å2/ps]

Experiment 0.4

CMD 0.310(4)

RPMD 0.262(1)

Fig. (11) shows the imaginary-time correlation func-
tion, Eq. (16), and its reconstructed version (com-
puted from Eq. (17)) for each path integral method.
The imaginary-time mean square displacement (ITMSD)
function (“ima”, in the figure) is virtually identical in
both RPMD and CMD, indicating a converged sampling.
The reconstructed RPMD ITMSD (dots) appears to be
slightly farther than CMD (dashes) from its respective
imaginary-time correlation function. Eq. (17) was used
to quantitatively assess this difference, and the numerical
values are also presented in Fig. 11. RPMD exhibits a
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FIG. 11: Comparison of the imaginary-time mean square dis-
placement correlation function (“ima”, in the figure) as given
by Eq. (16), and its reconstructed version (“rco” in the fig-
ure) from Eq. (17) for para-hydrogen at T = 14 K, ρ =
0.0235 Å−3. The χ2 error as defined in Eq. (17) is shown
for each method.

FIG. 12: Comparison of the computed Fourier transform
of the standard velocity autocorrelation function for para-
hydrogen at T = 14 K, ρ = 0.0235 Å−3. Only the real part is
shown.

slightly poorer convergence than CMD under the same
simulation parameters (total observed time, etc). Thus,
the χ2-test indicates that both methods perform very
similarly in recovering dynamical information.

As a further investigation of the differences between
both methods, the power spectrum of the standard ve-
locity autocorrelation function22

J(ω) =
∫ ∞

−∞
Cvv(t) eiωt dt, (36)

was computed for para-hydrogen and its real part is

shown in Fig. (12). In both methods, the spectrum looks
very similar at low and mid frequencies and features a
strong asymmetric peak at 75 cm−1. The only difference
arises at higher frequencies. This fact provides some in-
sight into the physical difference between the path inte-
gral methods. The RPMD spectrum reveals a significant
presence of high frequency centroid vibrations (due to un-
damped internal modes) as already pointed out by Voth
et al.22. This has a direct effect on the centroid dynam-
ics causing a faster relaxation in the correlation func-
tions and thereby leading to a smaller value for the self-
diffusion constants (Table (III)). In contrast, in CMD,
the effect of the thermostats on the internal modes re-
sults in a smoother centroid dynamics and hence, less
damping in the correlation functions. This results in a
slightly better reconstructed imaginary time correlation
functions and hence a somewhat smaller χ2 error.

V. CONCLUSIONS

In this paper, we have addressed the problem of ergodic
sampling in the centroid and ring-polymer molecular dy-
namics techniques, and we have introduced an internal
consistency descriptor χ2 for assessing the accuracy of
the approximate quantum time correlation functions. In
addition, we have discussed the physical differences be-
tween imaginary time path integral methods, CMD and
RPMD. These methods were compared numerically for
a variety of model systems using an improved sampling
technique to remedy any potential non-ergodic behavior.
The computed values from linear correlation functions
are very similar in condensed phases (para-hydrogen),
and both method yield similar performance in recover-
ing imaginary time correlation functions. However, in
less ergodic systems such as the purely quartic system
at low temperature the approximate methods differ sig-
nificantly. In this model system, the resulting RPMD
correlation function evidences a more damped behavior
due to effect of internal modes on the centroid motion.
In contrast, this effect is less severe in CMD owing to the
averaging effect of the thermostats on the high-frequency
modes of the ring polymer.
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