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Abstract. In this study, we analyze the performance of different embedded-atom

models (EAM) by fitting their free parameters to ab-initio results for copper. Our

emphasis lies on testing the transferability of the potentials between systems which

vary in their spatial dimension and geometry. The model structures encompass

zero-dimensional clusters, one-dimensional chains, two-dimensional tilings, and three-

dimensional bulk systems. To avoid having to mimic charge transfer, which is outside

the scope of conventional EAM potentials, we focus on structures, in which all atoms

are symmetrically equivalent. We find that the simple, four-parameter Gupta EAM

potential is overall satisfactory. Adding complexity to it decreases the errors on our

set of structures only by marginal amounts, unless EAM is modified to depend also on

density gradients, higher-order derivatives, or related terms. All tested conventional

EAM potentials reveal similar problems: the binding energy of closed-packed systems

is overestimated in comparison to open or planar geometries, and structures with

small coordination tend to be too rigid. These deficiencies can be fixed in terms of

a systematically modified embedded-atom method (SMEAM), which reproduces DFT

results on bond lengths, binding energies, and stiffnesses or bulk moduli by typically

O(1%), O(5%), and O(15%) accuracy, respectively. Yet, SMEAM does not overcome

the difficulty to reproduce the elastic tensor elements of a hypothetical diamond lattice.
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1. Introduction

The embedded-atom method (EAM) has proven invaluable for the simulation of bulk

metals. [1, 2, 3, 4, 5] It dramatically alleviates several shortcomings of pair potentials

without a significant overhead in CPU time. When properly parametrised, EAM

can reproduce the way in which real metals violate the Cauchy relation, while pair

potentials automatically obey it. [6] In pair-potential crystals, the spacing between layers

increases towards the surface, whereas in real and EAM metals it decreases. [7, 8] Pair

potentials predict the binding energy per atom E0 to scale approximately linearly with
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the coordination number Z, while E0 ∝
√
Z is a more reasonable approximation for

real metals, [9] which can be easily reproduced with EAM. [10] Likewise, the energy of

a point vacancy defect, Ev, is roughly proportional to the number of nearest neighbors

in a pair-potential description. As a consequence, for pair potentials Ev ≈ E0/2, while

real and EAM point defects cost substantially less energy. [11, 12] Similar trends hold

for other defect energies, such as surface energies. Since defect energetics determine

the failure mechanisms of a material, [13, 14] EAM-based potentials possess a better

ability than pair potentials to describe realistically not only the elastic tensor and the

structural relaxation of surfaces but also the plastic response of metals.

Quite a few different embedded-atom-type methods exist. Different variants may

even claim their own names, such as the glue-, [15, 16] the Finnis-Sinclair- [17] or the

effective-medium potential. [18, 19] Yet they all share one fundamental assumption from

quasi-atom theory: [20] embedding an atom i at ri into the environment of other atoms

leads to an embedding energy F (ρi) that depends in leading order on the (estimated)

electronic density that exists at ri before the atom is embedded. In addition, a pairwise

repulsion between atoms is usually assumed. As such, the total energy of a configuration

{r} can be cast as

Vtot({r}) =
∑
i,i<j

VR(rij) +
∑
i

F (ρi) (1)

for the simplest EAM variants, where in most cases the charge density results from a

linear superposition of atom-centered charge densities, i.e.,

ρi =
∑
j 6=i

fj(rij). (2)

Density gradients or higher-order derivatives are assumed of negligible importance. For

alloys, which shall not be considered here, VR(rij), F (ρi), and fj(rij) need to be indexed

by the atom type(s) as well. EAM potentials can differ in the choice of the functions

VR(r), F (ρ), and f(r) ranging from simple analytical expressions to elaborate, implicitly

defined functions. However, it is not clear to what degree algebraically complex EAM

potentials outperform simple variants, and if so, what the relevant “ingredients” are. In

this paper, we want to address this question by investigating the performance of EAM

potentials on a broad set of copper structures. The study includes potentials, in which

different aspects of existing potentials were combined and more importantly extended

according to ideas motivated from quasi-atom theory.

Since most EAM-based simulations are supposed to address bulk mechanical

properties, free parameters are typically fitted to a set of structures biasing the potential

towards the particular research interests of the force-field developer, which can range

from grain boundaries and bulk plasticity to modeling indentation experiments or

properties of the liquid phase. [21, 22, 23, 24] Important quantities to match in such

contexts are point-defect and surface energies. Using this fitting strategy, one can

reproduce some of the desired quantities quite accurately, but potentially only “by

accident:” metal surfaces tend to have a surface dipole, which means that the metal
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has decreased its energy through the internal redistribution of charge, although it costs

energy to create the related electrostatic fields. Conventional EAM cannot reflect this

situation, because atoms can neither polarize nor exchange charge. Even the charge-

transfer EAM potential by Streitz and Mintmire cannot account for the effect, [25] as

long as the electronegativity of atoms is not made environment dependent. [26] For

an application-driven parameterization, it is certainly legitimate, if not desirable, to

“fudge” effects due to internal charge redistribution, or also due to Jahn–Teller and

Peierls deformations, into the EAM parametrisation. If, however, we want to apply

the potential to heterogeneous environments, this course of action might impede its

reliability or transferability.

To test and, ultimately, to design EAM potentials in a systematic fashion, we see

it as beneficial to first restrict the analysis to situations in which charge transfer is

excluded. This way, parameters can be determined in a robust fashion and do not have

to change significantly under circumstances whose proper description may necessitate

additional terms. In the current study, we therefore concentrate on structures, in which

each atom of a given configuration is embedded into an exactly identical environment and

defer the inclusion of charge-transfer and a systematic analysis of Jahn–Teller or Peierls

deformation to future work. Thus, in contrast to existing tests of EAM potentials, [4, 27]

the primary goal of our work is to identify the EAM formulation with the greatest

prospect to be used as a basis for (systematic) generalizations or transferability rather

than to identify EAM parameters that are most accurate for a particular application.

Our material of choice is copper, as it appears to be the element that has been most

modeled with EAM. Transferability of the potentials is tested with regard to bonding

environments ranging from Z = 1 to Z = 12, different bond angles, and dimensionalities

of the structures. Transferability with respect to alloying is not considered.

The remainder of this work is organised as follows: Methods are described in

section 2. This includes the description of different EAM approaches and a systematic

formulation or extension of the modified embedded-atom method. In section 2, we also

discuss the investigated reference structures, define and motivate observables as well as

the χ2 goodness function, and describe the DFT methods used to produce the reference

data. Section 3 contains the results of our fits. First, this is done such that we take

the simple, four-parameter Gupta EAM as a reference, [28] and alter one aspect at the

time, e.g., by replacing the simple embedding function or the charge-density function

with more elaborate expressions. Later, we also test select, complete potentials, in which

all terms have their original complexity. Conclusions are drawn in the final section 4.

2. Methods

2.1. Popular Embedding-Atom Methods

In this section we briefly sketch the most important equations of the EAM methods

tested in this study. The fundamental ideas underneath EAM-based potentials have
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been summarised numerous times in the literature, [3, 20, 23, 17, 29, 30] to which

we refer the reader for detailed accounts. Here, it shall suffice to mention that the

central aspect of embedded-atom methods can be motivated from the bottom up via the

classical theorem by Hohenberg and Kohn. It states that for a given external electric

field, produced, e.g., by nuclear positions, the ground state energy of an associated

electronic system is a unique functional of the electronic density. In a loose sense,

one could interpret the term F (ρ) in equation (1) to realize a coarse-grained version

of that theorem for the bonding electrons, while the additional repulsive term takes

into account the unscreened direct repulsion between the nuclei and the Pauli repulsion

between the core electrons in a more phenomenological fashion. Deeper connections

of the embedding energy terms and the most common functionals of DFT have been

made, [31] though it is not always clear if the gained insights help in practice.

In the remaining part of this model section, we review some of the most popular

choices for the various terms arising in different EAM variants and introduce the

acronym for each EAM component. Complete potentials then arise as combinations

of these terms. They are defined in the results section. Here, it is sufficient to state

that we choose the functional form proposed by Gupta, [28] as a reference, and then

only change either repulsion, charge density or the embedding function, one at a time.

This choice is motivated partly because the Gupta potential produces good results.

More importantly, its simplicity allows us to rationalize properties generic for all EAM

potentials with back-of-the-envelope calculations, which we also present in this section.

Finally, we construct systematically corrections due to (estimated) density gradients

and terms related to higher-order derivatives.

2.1.1. Charge Density. The function fj(rij) in equation (2) is supposed to represent

the electronic charge density at the position ri that is due to the presence of all other

atoms j located at rj before atom i is embedded. When treating alloys, each function

fj should scale as the inverse atomic volume in order to represent a charge density. This

prefactor can be absorbed into the embedding function for a mono-atomic system.

As a zeroeth-order approximation, one may choose fj(r) to be proportional to the

charge density of the free atom. In this spirit, Daw and Baskes [32] proposed to use the

double-gamma function originally calculated by Clementi and Roetti: [33]

fj(r) =
∑

n=3d,4s

Nn

4πr
ρ

(n)
j (r) (C-DG) (3)

ρ
(n)
j (r) =

∣∣∣∣∣ ∑
k=1...ln

cnk
(2rγnk)

bk/2c+1/2√
(2bk/2c)!

e−γnkr

∣∣∣∣∣
2

. (4)

For copper, N3d = 10, N4s = 1, l3d = 8, and l4s = 2. The symbol b...c represents the floor

function. For the coefficients cnk and γnk, we refer the reader to reference. [33] Note that

the index n in equation (3) does not enumerate atoms that a central atom is interacting

with but the valence shells of copper or a related transition metal. Since the coefficients

of the double-gamma functions follow from a free-atom Hartree-Fock calculation, there
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are no further tunable parameters. In the following, the acronym C-DG represents a

model in which the charge density is represented by a double-gamma function in the

just-mentioned fashion.

In most applications of practical interest, nearest neighbors are located at distances

where the contribution of 4s electrons is largest. Consequently the shape of the double-

gamma function is relatively tame between typical nearest to next-nearest neighbor

distances. This is one reason why several authors replaced the original form with

algebraically simpler functions. For our study, we selected the exponential (C-Exp),

equation (5), the Gaussian (C-Gauss), equation (6), and the inverse monomial (C-IM),

equation (7) charge densities introduced by Finnis and Sinclair, [34] and later studied

by Sutton and Chen, [35] equation (7):

f(r) = exp(−r/σQ) (C-Exp) (5)

f(r) = exp
{
−r2/

(
2σ2

Q

)}
(C-Gauss) (6)

f(r) = r−α (C-IM). (7)

Sometimes f(r) is cut off at an appropriate cutoff radius Rc, which may involve

smoothing f(r) to cause it — and potentially also its first derivative — go to zero

continuously.

We note in passing that the exponent α in the C-IM approach was set to α = 6

by Finnis and Sinclair. [34] The value of the exponent is not associated with dispersive

interactions but instead has its origin in s-d hopping integrals scaling as 1/R6. [36] When

using α as adjustable fit parameter, it generally turns out to be close to six.

Rather than simplifying the C-DG ansatz, there were also attempts, e.g., by

Baskes, [37, 38] in the modified embedded-atom method (MEAM), to add more

complexity and realism. This led to expressions for an effective charge density involving

products of one, two, or three components of the radius vector between the charge-

density-donating atom and the central atom. Through such measures, F (ρ) becomes

sensitive to the way in which other charges are arranged around the central atom and

not only to the number of neighbors at given distances.

In the following, C-MEAM refers to approaches in which a generalised density, ρ
(g)
i ,

as proposed in reference [38], is used as density in the embedding function, rather than

the zero-order guess ρi from equation (2). We write the generalization as

ρ
(g)
i =

√
ρ2
i + 4cG2ρ2

iα + 4cH2′ρ2
iαβ + 4cT2ρ2

iαβγ (8)

where we have used the summation convention for Cartesian coordinates (Greek indices)

— i.e., we sum over any index appearing twice, e.g., ρ2
iα ≡

∑
α ρ

2
iα — and where

ρiα =
∑
j

(nij)αf1(rij) (9)

ρiαβ =
∑
j

(nij)α(nij)βf2(rij) (10)

ρiαβγ =
∑
j

(nij)α(nij)β(nij)γf3(rij), (11)
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with

fn = e−rij/σQn (12)

and nij being a unit vector pointing from atom i to atom j. In equations (8)–(11), the

summation over j is often constrained to all nearest-neighbor indices of the central atom

i. Original numerical values for the parameters cG2, cH2′ , cT2 and σQn can be deduced

from the literature. [38] We depart from the original MEAM notation to facilitate the

connection to SMEAM.

2.1.2. Embedding Functions. As is the case for the charge density, many possibilities

exist to design the embedding function F (ρ). In an influential work, [32] Daw and

Baskes proposed to choose F (ρ) such that for a given pair repulsion, the experimental

equation of state (EOS) of a reference structure, in which each atom is equivalent (e.g.,

fcc) is reproduced exactly. This can be achieved if the embedding function is defined

implicitly via

F{ρfcc(a)} = Efcc{a(ρfcc)} −
1

2

∑
j

VR

{
gfcc
j a(ρfcc)

}
(E-EOS) (13)

Here, a(ρfcc) denotes the nearest-neighbor spacing at which the charge density ρ on a

given atom takes the value ρ = ρfcc for our fcc reference lattice. We compute it as

the inverse function of ρfcc(a) through a golden section search. Efcc{a} stands for the

energy per atom, which is deduced from the EOS. The dimensionless number gj states

the distance between the central atom and atom j in units of the nearest-neighbor

distance. This way of parameterizing the embedding function guarantees some “exact”

results — in the sense of an exact reproduction of the input data — for all physical

properties that follow from the fcc EOS. This includes the fcc cohesive energy, bulk

modulus, and lattice constant at ambient pressure.

In practice, the EOS is often approximated with analytical expressions, in which

case F (ρ) can be written down explicitly. Some of these approximations are highly

accurate under conditions of elevated pressure but unsuitable for the EAM calculations,

because they produce an incorrect dissociation limit. In their original work, Daw and

Baskes chose the Rose-Vinét equation, [39] which leads to the correct dissociation limit,

i.e., E(a → ∞) = 0 and thus F (ρ → 0) = 0. As an alternative, we consider the Birch-

Murnaghan EOS, [40] which only satisfies the dissociation limit if the pressure derivative

of the bulk modulus at zero pressure, B′(p = 0), is set to 6−16E0

√
2/9Ba3

0, where E0, B

and a0 are the equilibrium cohesive energy, bulk modulus and bond length of the system

under consideration. For an fcc Cu crystal, this relation results in B′(p = 0) ≈ 5.4, which

happens to be close to the experimental value [41] of 5.59.

In later work, Baskes used an analytical form for the embedding function in the

context of the MEAM approach:

F (ρ) = Aρ ln(ρ/ρ0) (E-MEAM), (14)
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where A and ρ0 are adjustable coefficients. The functional form of F (ρ) was motivated

from the logarithmic dependence of the bond length on coordination number, [37] though

other embedding functions actually reproduce the correct trend, as demonstrated in

section 2.3.

In reference to the valence bond theory by Friedel [42, 43], Gupta argued that

the embedding energy should roughly scale with the square root of the coordination

number. [28] This lead to the embedding function

F (ρ) = A
√
ρ (E-Friedel) (15)

with just one adjustable (negative) coefficient A, which is also used by Sutton

and Chen. [35] The F ∝ √ρ dependence can also be motivated from bond-order

potentials, [44] in which case the density would be interpreted as the sum of the square

over all bond integrals.

Another option is to simply use a truncated Taylor series expansion, see, e.g.,

Eq. (7.22) in [19] such as

F (ρ) =
nmax∑
n=1

cn
n!
ρn (E-Taylor) (16)

In this series, the leading-order linear term relates to a pair potential, as the linear term

is pairwise additive, while the second-order derivative of the embedding function directly

relates to the violation of the Cauchy relation. [32] Moreover, a polynomial expansion

allows one to reproduce the trend that elements other than noble gases show a minimum

in binding energy when being immersed into a constant electron density background. [45]

Interestingly, the depth of these minima correlates well with the strength of bonds

formed by the atom in question.

2.1.3. Repulsion. Repulsive interatomic interactions, other than those induced by like

charges, are short ranged. One of the simplest functions mimicking repulsion, which was

motivated in the early days of valence-bond theory from the Fermi exclusion principle,

is the exponential

VR(r) = V0 exp(−r/σR) (R-Exp), (17)

which we denote as R-Exp. In equation (17) and the following equations, V0 and σR are

(adjustable) numerical coefficients of unit energy and length, respectively.

Since the lengthscale, in which short-range repulsion matters for most applications,

is limited to nearest-neighbor distances, it is conceivable that other functional forms

can lead to similar or even better results than R-Exp. To gauge the importance of that

choice, we also consider Gaussian repulsion

VR(r) = V0

∑
j

exp
{
−r2/

(
2σ2

R

)}2
(R-Gauss). (18)

In their original work on EAM, Daw et al. [3] followed the argument that the

dominant contribution to repulsion at very small distances originates from Coulomb
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repulsion between the ions that is increasingly screened as the ions moved apart. This

lead them to use a screened Coulomb repulsion of the form

VR(rij) =
1

4πε0

Q2(rij)

rij
, (R-SC) (19)

where Q(rij) is an effective charge obeying

Q(rij) = Q0(1 + r2
ij/r

2
c)e−rij/σR . (20)

Here rc is another adjustable parameter, which is of similar magnitude as the radius of

the core shells.

In the later construction of the MEAM potential, Baskes followed yet another

path. [38] He argued that the two-body repulsion should be independent of the structure,

and that it can therefore be determined, for a given embedding function, from the EOS,

e.g., from the EOS of fcc Cu via

VR (a) =
2

Zfcc

[Efcc(a)− F {ρfcc(a)}] (R-EOS), (21)

where a refers again to the nearest-neighbor distance and Zfcc = 12 is the coordination

number in a fcc crystal. Using this procedure, F (ρ) cannot be determined simultaneously

from the EOS via equation (13).

2.2. Systematically modified embedded-atom potentials

In this section, we undertake a slightly altered and more systematic modification

of the embedded-atom method (SMEAM) than the ones commonly pursued. Our

generalization is based on assumptions that are similar in spirit as a systematic

expansion in terms of coordinate-dependent two-body, three-body, and higher-order

many-body interactions. [46] However, rather than coordinates, we use the charge

density ρi(ri) along with its higher-order derivatives as the natural variables of the

embedding energy as proposed in the pioneering work on the quasi-atom method. [20] A

systematic expansion should be possible, as knowing ρi(r) together with its higher-order

derivatives allows one, in principle, to reconstruct the positions of all atoms other than

atom i already in place. For the reconstruction to be unique, each (neutral) atom or

element only needs to be assigned its own characteristic charge density fj(r). Similar

argument might also apply to coarse-graining in other systems and for example allow one

to go beyond conventional density-based approaches [47] in soft-matter systems. From

this phenomenological point of view, it is not clear how the embedding energy should

depend on density and its derivatives, beyond restrictions imposed by symmetry. It is

not clear either if or how rapidly the expansion converges. It is nevertheless worth

exploring if well-motivated choices improve results with respect to EAM potentials

assuming uniform densities at the embedding site. A first step in that direction was

taken by Wu et al.: [48] They demonstrated that a density-gradient-corrected EAM

potential enhanced the simultaneous description of dimer, bulk, and surface properties

of aluminum. However, the expansion was truncated after the square-gradient density.
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Note that C-MEAM already contains the envisioned expansion in an asymptotic

limit: If all coefficients σQn in equation (12) are assigned the same value σQ and σQ

is small compared to nearest-neighbor distances, then the ρiα1,...,αn are the n-th order

derivative up to a factor σnQ. Assuming the coefficients cG2, . . . , cT2 to be small, the

C-MEAM based embedding function can be expanded to leading order as

F
(
ρ

(g)
i

)
= F (ρi) + ρiF

′(ρi)

(
2cG2

ρ2
iα

ρ2
i

+ 2cH2′
ρ2
iαβ

ρ2
i

+ 2cT2

ρ2
iαβγ

ρ2
i

)
+ . . .(22)

For a Friedel embedding function, this can be cast in the appealing form

F (ρi, ρiα, ρiαβ, . . .) = A
√
ρi

(
1 + cG2

ρ2
iα

ρ2
i

+ cH2′
ρ2
iαβ

ρ2
i

+ cT2

ρ2
iαβγ

ρ2
i

)
+ . . .(23)

Corrections to the EAM energy, as those just derived, must contain the correct

symmetry, i.e, they must be invariant under rotation and mirror reflection. While the

MEAM correction obeys these symmetries, additional terms are allowed. They can be

grouped according to the number of indices needed to form a specific invariant. For

example, a missing invariant is ρiαα. Since the square gradient (SG) ρ2
iα and ρiαα, which

contains amongst other terms the trace of the Hessian (H) of the embedding density,

are the only invariants formed by one pair of indices, the most general linear correction

of this rank is

∆F1(ρi) = CSG(ρi)ρ
2
iα + CH(ρi)ρiαα. (24)

Note that the prefactors, CSG(ρi) and CH(ρi) generally are functions of density as can

be seen from equation (23), for which one would find CSG(ρi) = AcSG/ρ
3/2
i .

The next group of terms in SMEAM contains all invariants formed by two pairs of

indices. (Indices always have to come in pairs, because otherwise the contraction of the

expressions to a scalar would not be complete and mirror symmetry would be violated.)

This leads to the two-index-pair energy correction

∆F2 = CSG2ρ
2
iαρ

2
iβ + CSGHρ

2
iαρiββ + CSGH′ρiαρiβρiαβ + CGTρiαρiαββ

+ CH2ρiααρiββ + CH2′ρiαβρiαβ + CFρiααββ, (25)

which consists of seven summands. Here, the prefactors, CSG2, . . . , CF, are again

assumed to depend on density, in the most general case. (The index GT in CGT relates

to a coupling of the gradient to a tensor of rank three, while F in CF stands for the

contraction of a tensor of rank four.) It later turns out that not all the invariants

substantially improve the description of our selection of copper structures. However,

from a symmetry point of view, it is not clear which invariants should be included and

which ones can be left out. This can be seen from an analogy to linear elasticity: in

linear elasticity, one also contracts the product of a rank two tensor to yield an energy

in the same fashion as in the terms proportional to CH2 and CH2′ . In this analogy, the

prefactors CH2 and CH2′ would correspond to the two independent Lamé coefficients and

their ratio should not simply be assigned ad-hoc.

Higher-order terms in our expansion can be constructed systematically from the

invariants of (commutative) tensor products ρi(l1)⊗ρi(l2) · · ·⊗ρi(lk), where the elements
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of ρi(l) are defined in analogy to those in equations (9)–(11). Unfortunately, the number

of resulting invariants quickly rises with the order of the tensor: we count 11 tensors

with three pairs of indices having 20 independent invariants total. It is not obvious

why ρ2
iαβγ should be the most important one out of these 20 independent invariants. In

fact, for copper we find the term ρ2
iαρ

2
iβρ

2
iγ to be the most important out of the tested

invariants based on three pairs of indices.

In order to obtain a more intuitive understanding of SMEAM, it may be beneficial

to express some of the expansion summands in terms of bond angles. The easiest-

to-interpret summands are formed by integer powers of the square gradient, i.e.,

ρ2
iα1
· . . . · ρ2

iαn
. The square-gradient expression can be written as

ρ2
iα =

∑
j

nαijfj(rij)
∑
k

nαikfk(rik) (26)

=
∑
jk

cos γijk fj(rij)fk(rik) (27)

≈
∑

j,k∈n.n.
cos γijk f

2
j (a) (identical distance a for all n.n.), (28)

where γijk refers to the bond angle formed by the atoms i, j, k on atom i. In the

approximation (28), we restricted the sum to the dominant nearest-neighbor (n.n.) shell.

Raising the square-gradient expression to the n-th power then leads to summands linear

in (cos γijk)
n, that is, to terms proportional to cos(nγijk) and related expressions of 2π/n

symmetry. Thus, the coefficients in front of the integer powers of the square gradient

effectively determine an environment-dependent bond-angle potential. If we chose the

embedding energy to be linear in ρ, the pertinent expressions would reduce to more

conventional bond-angle potentials.

As an additional example for an invariant in a SMEAM expansion, we consider

ρiαβρiαρiβ. Proceeding in the same fashion as above, we obtain

ρiαβρiαρiβ =
∑
jkl

cos γijk cos γijl f(rij)f(rik)f(ril). (29)

The prefactor to this expression in the SMEAM expansion, CSGH′ , thus couples bond

angles on a given atom and thereby “renormalizes” the effective bond-angle potential.

If F (ρ) were linear in ρ, the resulting SMEAM summand would correspond to a four-

body interaction. Other couplings can be interpreted similarly. It can then be seen that

contractions of ρi(l1)⊗ ρi(l2) · · · ⊗ ρi(lk) relate to effective (k + 1)-body potentials plus

higher-order interactions.

Discussing all implications of the SMEAM expansion including further generaliza-

tions, such as a coupling of the density and its derivatives on different atoms, is beyond

the scope of this study. It shall suffice to state that the choice of the prefactors of

the invariants determines the equilibrium structures and their compliance. For exam-

ple, a negative prefactor to the square-gradient invariant would favor large gradients

and thereby bias the system towards structures missing inversion symmetry. Other

invariants can lead to other ways in which closed-packed structures are destabilized,
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e.g., a positive prefactor to the invariant ρ2
iαβ favors low-dimensional structures, as we

demonstrate in section 3.

We conclude this section with some technical comments including how the

evaluation of invariants can be coded with little numerical overhead. Most importantly,

all calculations in this work were conducted assuming that the ρiα1,...,αn are proportional

to
∑

j nα1 . . . nαn exp(−rij/σQ). This is not a serious approximation, amongst other

reasons because the nearest-neighbor distances turn out five times greater than σQ. At

the same time, coding and computing time for the evaluation of the invariants is reduced

substantially.

To generate low-order tensors ρiα1,...,αn only few extra floating point operations

are needed. To compute the gradient term, three multiplications are needed for each

neighbor of the central atom. The next-rank tensor has six independent components,

each of which needs two multiplications. It continues with ten (fifteen) components for

the tensor of rank three (four). This effort needs to be compared to taking a square-

root and an exponential of r2
ij, which each by itself costs substantially more than a

simple multiplication. Most importantly, the numerical effort is linear in the number

of neighbors of the central atom. In most cases, at least for condensed-matter systems,

where each atom interacts with a few dozen neighbors, the evaluation of the invariants

adds only a small amount of extra CPU time. For example, once ρiαβγ is known, the

invariant ρ2
iαβγ can be coded as twelve multiplications and nine additions.

2.3. Simple analytical considerations on the Gupta potential

As mentioned before, Gupta designed a simple EAM potential by combining the

components C-Exp, E-Friedel, and R-Exp. A great advantage of simple functional forms

is that they allow one to conduct analytical calculations by hand so that trends can be

ascertained. This section presents such calculations, in which the parameters VR, σR, A,

and σQ are the only parameters. Since two parameters can be used to define the units

of energy and length, the Gupta potential is described by only two non-dimensional

coefficients.

Assuming that both σQ and σR are much less than the difference between next-

nearest neighbor and nearest-neighbor distances, which holds for all our investigated

structures except bcc, one can approximate the total energy of a structure with

V (Z, a) ≈ ZVR

2
exp

(
− a

σR

)
+ A

√
Z exp

(
− a

σQ

)
, (30)

where a is the bond length and Z the coordination number of a central atom. For this

potential, it is easily possible to estimate the equilibrium bond length a0 by minimizing

V (a) with respect to a. Doing so leads to

a0 ≈
2σQσR

2σQ − σR

ln

(
−
√
Z
σQVR

σRA

)
, (31)

i.e., the bond length increases roughly logarithmically with increasing coordination.
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Substituting this expression back into equation (30) reveals that both terms contributing

to the total potential scale according to

V (Z, a0) ∝ Zµ (32)

and

µ =
σQ − σR

2σQ − σR

. (33)

Thus, in the limit of σQ � σR, the binding energy E0 = V (Z, a0) ∝
√
Z. In reality,

this limit is not exactly satisfied so that one could expect effective values for µ to be

less than 1/2. However, including next-nearest neighbors counteracts this correction so

that one can take E0 ∝
√
Z as a zero-order approximation for binding energies.

We note in passing that in order for dimers to be stable and meaningful,

parameterizations need to satisfy, A < 0, 2σQ > σR (attractive contribution dominates

at large distances), and VR > −A (positive energy in the limit where two atoms

have identical coordinates). This implies that for σQ < σR < 2σQ, our back-of-

the-envelope calculation predicts the formation of one-coordinated structures to be

favorable. For σR < σQ large coordination will be preferred. It will thus be difficult for a

Gupta potential missing gradient and related corrections to make structures of medium

coordination to be the ground state, unless the next-nearest neighbor contributions

become large, or, the charge density gradients and higher-order derivatives start to play

a role. This is discussed in more detail in section 3, see also equation (39).

2.4. Investigated Structures

To study the transferability of the investigated potentials between different geometries,

we consider a variety of structures ranging from clusters via chains and sheets or tilings

to bulk solids. In the selected geometries, all atoms are equivalent by symmetry so that

charge (and spin) transfer is suppressed, unless the electronic structure spontaneously

breaks the symmetry. Some of the investigated geometries represent stable or at

least close-to-metastable structures, while others are purely hypothetical. Those are

nevertheless included into our test to get an idea about the differences between classical

and quantum models far from mechanical equilibrium. Small, highly-symmetric Cu

clusters, as the ones described hereafter, typically undergo a Jahn–Teller deformation

to remove the degeneracy of their highest occupied molecular orbital with the lowest

unoccupied orbital. Mimicking this effect is outside the scope of the conventional EAM

formulation, which is why we purposefully ignore such structures.

As zero-dimensional objects, we chose the dimer (Z = 1), the equilateral triangle

(Z = 2), the square (Z = 4), and in addition all Platonic solids. The latter are

the tetrahedron, the cube, and the dodecahedron, each having a coordination number

of Z = 3, the octahedron (Z = 4), and the icosahedron (Z = 5). We furthermore

added the cuboctahedron, which is an Archimedean body with Z = 4. Our one-

dimensional objects consist of the linear chain (Z = 2), the square ladder (Z = 3), and a

triangular strip (Z = 4), which can be obtained from the latter (ladder) by shearing the
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structure appropriately. The considered two-dimensional structures are the honeycomb

or hexagonal lattice (Z = 3), the square lattice (Z = 4) as well as the kagome tiling

(Z = 4) and the triangular tiling (Z = 6). Bulk solids are the unstable diamond (Z = 4)

and simple cubic (Z = 6) crystals, fcc and hexagonal close packed (hcp), each having

Z = 12. In addition, we consider the body-centered cubic (bcc) crystal, which is stable

at high temperature and, rigorously speaking, has Z = 8. However, the six next-nearest

neighbors are only 15% more distant from a central atom than the nearest-neighbors,

so that one could also argue that bcc has a coordination number of Z = 14, or any

number in between 8 and 14. In all other cases than bcc, there is at least a 40% increase

in spacing from nearest to next-nearest neighbors. This difference then clearly exceeds

some pertinent force-field parameters such as σQ in equation (5) or σR in equation (17).

Consequently, the coordination number is reasonably well defined for any investigated

structure other than bcc.

2.5. Observables and χ2 goodness

Force fields are typically fitted to a small set of target observables or reference quantities.

As the set of systems in our study covers a wide variety of geometries, we use

characteristics which can be defined for the whole set: the equilibrium nearest-neighbor

distance a0, the equilibrium energy per atom E0, and the “stiffness” S defined as

S =
∂2E0(a)

∂a2

∣∣∣∣
a=a0

. (34)

Given the atomic packing fraction of a particular crystal, the bulk modulus B can be

deduced from S and a0 in a straightforward fashion. Thus, when fitting to a0, E0,

and S, we implicitly fit to B. For two- and three-dimensional structures, elastic tensor

elements can be defined containing information on the compliance of the system in

addition to that contained in the bulk modulus. These elements are C11, C12, and

C44 for isotropic systems or crystals of cubic symmetry. We never used target values

for those numbers while optimizing the adjustable force-field parameters, and instead

tested later if their values were reproduced. In fact, we did not compare the various Cij
directly but indirectly via two dimensionless numbers. These were a measure C̃Cauchy

for the violation of the Cauchy relation, C12 = C44,

C̃Cauchy =
C12 − C44

C11

(35)

and a measure C̃iso for the violation of the isotropy condition, C44 = (C11 − C12)/2,

C̃iso =
C44 − (C11 − C12)/2

C11

. (36)

The quality of a fit is commonly measured with a χ2 penalty function

χ2 =
1∑
iwi

∑
i

wi

(
OEAM
i −ODFT

i

∆Oi

)2

, (37)
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where ODFT
i and OEAM

i are the values of a given observable as deduced from DFT and

EAM, respectively. ∆Oi is an error that we perceive as “small” but achievable for a

good force field, while wi is a weight with which each observable enters the fit. Thus,

a value of χ2 = 1 for a given subset of data is seen as satisfactory, as it indicates that

deviations were within expectations. As default values for the relative uncertainties

∆O/ODFT, we use 0.01 for a0, 0.05 for E0, and 0.15 for S.

Adjustable force field parameters were optimised for our chosen χ2 function using a

standard simulated annealing procedure, which was coded in C++. We chose simulated

annealing to identify possible multiple minima on the χ2 surface. Its slow convergence

to a minimum was not seen as an impediment, because the set of the selected properties

can be computed 1,000 times per second on a single core.

2.6. DFT calculations

This study is conducted in the spirit that the DFT data describes a fictional material and

that we investigate how well the produced data can be modeled by a classical force field.

Thus, it is of higher priority to produce a set of data that is as self-consistent as possible

than to generate data that is as accurate as possible for a given structure. This is why we

model all structures with identical methods instead of employing different methods for

different structures. In addition, we purposefully ignore or suppress effects that cannot

be described by simple EAM potentials even if they can or do occur in real systems, such

as Jahn–Teller distortions or spin-frustrated structures in lower-dimensional systems.

We nonetheless try to evaluate the quality of the data. For this purpose, direct

comparison to experiment can only be made for fcc copper and the copper dimer. Other

solid structures are not stable at ambient pressure and low temperatures, except for hcp,

which, however, is very similar to fcc, so that no substantially new information is gained.

Likewise, the one and two-dimensional crystals cannot be prepared in the laboratory,

because real clusters tend to have smaller symmetry than those selected by us. To

obtain a rough estimate for the accuracy of the DFT target numbers, we employ three

different DFT methods and compare the results to each other.

All three sets of pseudopotential calculations were performed with the Quantum

Espresso software suite. [49] All calculations approximated the exchange-correlation

functional with Perdew–Burke–Ernzerhof (PBE) model. [50, 51] One set of calculations

is based on the Hartwigsen–Goedecker–Hutter (HGH) normconserving pseudopotential

whose results are also used as our reference data. [52] The other two calculations

used the Kresse-Joubert projector-augmented plane-wave method (KJPAW) [53] and

the ultrasoft Rappe-Rabe-Kaxiras-Joannopoulos pseudopotential (RRKJUS). [54] The

HGH and RRKJUS calculations included a semicore state d in the valence.

All calculations of infinite structures were done on a grid with 16 k-points in

each periodic direction. For low-dimensional systems, the calculations were done in a

sandwich geometry at the gamma point. The width of the cell in the “vacuum direction”

was 36-44 Å. For clusters and monomers, we also employed the Martyna-Tuckerman
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correction [55] although it turned out that this did not change the significant digits of

our results. For the normconserving HGH calculations we used a plane-wave kinetic

energy cut-off of 200 Ryd, KJPAW and RRKJUS calculations were both done with cut-

off 65 Ryd. The electronic density cut-off equalled four times the plane-wave cut-off.

The cohesive energies were obtained as differences to the energy of an isolated

monomer, which for the HGH method were computed as described above for the clusters,

and in the other cases the value provided with the potential was used. The stiffnesses

were calculated from the coefficients of a third order polynomial fit to at least five

datapoints within a few per cent from the nearest neighbor distance corresponding to

the minimum energy. Calculations were not spin polarised for the above-mentioned

reason that this effect is beyond the scope of the tested force fields.

3. Results

3.1. DFT results

In this section, we summarize our DFT results for the investigated structures. We

present the PBE data in graphical forms rather than in tables, because this facilitates

their interpretation. Figure 1 supports the back-of-the envelope calculation presented

in section 2.3 of a nearest-neighbor spacing that increases roughly logarithmically with

the coordination number. For fcc, the lattice constants from all three methods are 3.65–

3.66 Å and agree reasonably well with the experimental value 3.615 Å. [56, 7, 8] All three

methods put the dimer length between 2.23 Å and 2.27 Å, which is in decent agreement

with the literature value of 2.2197 Å. [57] Deviations from the predicted trend are such

that the DFT-based bond lengths are smaller for all low-dimensional structures having

inversion symmetry but also for the hypothetical or metastable diamond and simple

cubic lattices.

The prediction that the binding energy roughly follows a power law also turns out

correct, as can be seen in figure 2. The relative scatter in the binding energies is larger

than for the lattice constants but trends are consistent. The fcc binding energies of

the HGH and RRKJUS methods are in good agreement with the experimental value of

567.18·10−21 J, [58, 59, 60, 61] while KJPAW slightly overestimates it. The dimer energy

192×10−21 J is also in reasonable agreement with the literature value of ∼ 170×10−21 J.

As for the fcc structure, the highest and lowest values are given by the HGH and KJPAW

methods, respectively, the difference being roughly 22 × 10−21 J. Structures leading to

energies above (below) the line extrapolating the behavior between the two extremes —

dimer on one end and fcc on the other end — result in bond lengths below (above) the

corresponding line for the nearest-neighbor spacing. These trends have certainly been

known for a long time [62] but have not been investigated systematically in terms of

EAM potentials. From the line connecting the Z = 1 and the Z = 12 structures, one

can read off an exponent of µ ≈ 0.405 in equation (32) and thus, using equation (33),

one may conclude that the ratio σR/σQ should not be too far from 1/3.
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Figure 1. DFT results for the equilibrium Cu-Cu bond length a0 as a function of the

coordination number Z for different geometries.
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Figure 2. DFT results for the binding energy E0 as a function of the coordination

number Z for different geometries. The dotted line connects the DFT results for the

highest and the lowest binding energy. It corresponds to a Zµ power law with an

exponent µ ≈ 0.405.

The stiffnesses shown in figure 3 follow a similar power law as the binding energies.

This can be rationalized by extending the calculations presented in section 2.3 to elastic

moduli: energies and stiffnesses turn out proportional to each other, 2σQσR being the

proportionality constant. The ab initio results for the stiffnesses S and elastic moduli

C11, C12 and C44 are again in good agreement with the values calculated from the

experimentally known moduli of fcc, S ∼ 2309 GPa·Å, C11 ∼ 176 GPa, C12 ∼ 124 GPa

and 82 GPa. [63, 56] The dimer stiffness 648 GPa·Å is also close to the value 640 GPaÅ,
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Figure 3. DFT results for the stiffness S = ∂2E0/∂a
2
0 as a function of the coordination

number Z for different geometries. The dotted line connects the DFT results for the

highest and the lowest stiffness.

which can be deduced from the literature. [57]

Between different DFT approaches, we find typical deviations of the bond lengths,

the binding energies, and the stiffnesses to be of order O(1%), O(5%), and O(15%),

respectively, when averaged over all structures, each structure being given identical

weight. For bond lengths and binding energies deviations are systematic and not very

scattered, while differences in stiffness show no obvious trends. Since one cannot expect

force fields to surpass the accuracy of DFT calculation, we define the description of the

data as satisfactory if the deviation between the force-field based numbers and the HGH

results are of similar magnitude as the deviation between different DFT methods. This

motivated our choice to use ∆a/a = 0.01, ∆E0/E0 = 0.05, and ∆S/S = 0.15 for the

evaluation of the χ2 goodness function. With this choice, we label a value of χ = 1 as

satisfactory.

3.2. Results for the Gupta potential

We start the presentation of our results on conventional (in the sense of uniform-density

approximation) EAM potentials with the analysis of the Gupta potential. As we discuss

in more detail further below, these results are representative for other conventional EAM

potentials. For our reference data, we found the original parametrisation to be somewhat

unfavorable and thus refitted the four adjustable parameters to our DFT data. The

obtained numbers were VR = 1.55971×10−15 J, aR = 0.22839 Å, A = −1.31838×10−18 J,

and finally aQ = 0.64039 Å.

The new set of parameters reduced the square root of our default goodness function

from χ = 8.988 to χ = 0.6741. Thus, the quality of the data for lattice constants, binding

energies, and stiffnesses were within the expectations. Despite this level of agreement,
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it is instructive to investigate deviations between the EAM and the DFT results.

Figure 4 reveals that most EAM lattice constants are within 1% accuracy. As such,

the observation of a0(Z) − a0(1) ≈ ln(Z) is reproduced. However, for a fixed value of

Z, one can observe that EAM bond lengths for bulk structures are systematically too

large while those for structures with Z ≤ 3 tend to be too small.
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Figure 4. EAM equilibrium length a0(EAM) divided by the DFT equilibrium length

a0(DFT) as a function of the coordination number Z for different geometries.

Binding energies deduced from a reparametrised Gupta potential also reproduce

the predicted power law dependence from section 2.3 quite well, as shown in figure 5.

However, in comparison to the DFT data presented in figure 2, the fluctuations in

the Gupta E0 for a fixed value of Z are rather small. Even worse, they often convey

the wrong order for a fixed value of Z. For example, the two-dimensional tilings are

predicted to have relatively small binding energies, while DFT calculations find them

to be largest. This trend is observed by all EAM potentials, as long as they do not

have C-MEAM or SMEAM corrections. This can be easily rationalised: In conventional

EAM potentials, the first correction to the calculations presented in section 2.3 comes

from the second neighbor shell. The only information relevant to EAM then is how

distant the second shell is and how many atoms sit on it, while bond angles do not play

a role. As a consequence, EAM cannot reproduce the observation that DFT tends to

prefer open structures over densely-packed geometries, sometimes even at the expense

of reducing coordination. For example, unlike EAM, DFT finds that the linear chain

with Z = 2 is clearly more stable than the tetrahedron (Z = 3) and the hexagonal

tiling (Z = 3) has distinctly greater binding energy than the octahedron with Z = 4.

Similar statements do not only hold for the Gupta potential but for any of the tested

conventional EAM potentials.

The results on the stiffness of the structures, see figure 6, are only semi satisfactory.

While absolute errors of less than 30% can be considered to be reasonable, there seems to
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Figure 5. EAM results for the binding energy E0(EAM) as a function of the

coordination number Z for different geometries. The dotted line is identical to that

drawn in figure 2.
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Figure 6. EAM equilibrium stiffness S0(EAM) divided by the DFT stiffness S0(DFT)

as a function of the coordination number Z for different geometries.

be a systematic deviation: Stiffnesses are overestimated for Z < 3 and underestimated

for Z > 5.

3.3. Conventional EAM methods

As stated in the previous section, the reparametrised Gupta potential reproduces the

data with a χ(C− Exp,E− Friedel,R− Exp) of ≈ 0.6741. In this section, we explore

by how much the agreement with the target DFT data can be improved within the
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context of conventional EAM methods, i.e., those in which no (effective) gradients are

taken, such as in MEAM or SMEAM.

If we keep the R-Exp as repulsion and E-Friedel as embedding function, the

following goodness is obtained for the different charge schemes, when re-optimizing

each parameter of the full potential χ(C−DG) = 0.8892, χ(C−Gauss) = 0.7790, and

χ(C− IM) = 0.6500. These results suggest that elaborate tables for the charge density

or the the evaluation of complicated functions do not benefit EAM calculations more

than a simple exponentially decaying charge density, at least not in the context of a

conventional EAM method.

We next change the embedding function while keeping R-Exp as repulsion and C-

Exp as charge density. This yielded χ(E-MEAM) = 0.9201 and χ(E-Taylor) = 1.1703

using four terms in the polynomial fit. The latter fit turned out to converge very

slowly without leading to better minima of the goodness function than our default

choice E-Friedel, which only needs one instead of four parameters. The results for

E-EOS depend on the nature of the EOS. For Birch–Murnaghan (BM), we found

the best value of χ(E− EOS− BM) = 0.5748, while Rose-Vinét (RV) only lead to

χ(E− EOS− RV) = 0.7542. The improvement of the E-EOS-BM embedding function

over a simple square-root function is so small that we nevertheless consider E-Friedel

more appealing.

The last test in this section relates to the repulsion, which we change while

using C-Exp for the charge density and E-Friedel as embedding function. We find

χ(R−Gauss) = 0.6918 and χ(R− SC) = 0.6742 while the two EOS-based approaches

yield χ(R− EOS− BM) = 0.8119 and χ(R− EOS− RV) = 0.8422. Again, no

significant improvement can be found over the simple exponential term. Even if one of

the two R-EOS methods had given a better value, designing the repulsive potential from

the EOS would have been unsatifactory whenever first- and second-nearest neighbors

cannot be clearly distinguished.

We note that for any EAM assuming the uniform density approximation, the spread

of binding energies was relatively small for a fixed number of nearest neighbors Z

compared to DFT. The errors were systematically largest for the tetrahedron, hexagonal

and triangular tilings. Moreover, all conventional EAM potentials give a very small

relative difference in hcp and fcc binding energies, and in most cases mispredict its sign.

The O(0.03%) EAM energy difference between fcc and hcp originates from the third and

fourth neighbor shells. Yet, DFT gives a ten times greater value for the hcp–fcc binding

energy difference, (0.3%), which compares well with experimental results. [64, 65, 66, 67]

Quantum-chemical arguments relate the hcp-fcc energy difference to geometric effects

in the first-neighbor shells of the structures. [68, 69, 70] Representing such effects for

fcc versus hcp is beyond the feasibility of conventional EAM potentials. Since we are

looking for an expression which can be improved by adding in the physically meaningful

missing terms, getting the right value by modifying the long-range part of the potential

would be counter-productive. Similar comments are certainly valid for other structures

as well. Thus, correcting the sequence of binding energies for a given value of Z in a
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physically meaningful fashion seems to be outside the reach of conventional EAM.

In the context of SMEAM, the invariant ρiααββ is the lowest-order invariant yielding

different nearest-neighbor values for fcc and hcp, allowing to represent the energy

difference of the two structures as a geometric effect. This is similar to the way how

a six’th order moment expansion for bond-order potentials [71] makes it possible to

distinguish the energy difference between hcp and fcc.

3.4. Modified EAM potentials

In this section, we discuss results on the following modified EAM potentials: (i) the

original MEAM with original parameters, (ii) the original MEAM with parameters that

were optimised for our learning set, (iii) the Gupta potential plus a square-gradient

correction, (iv) SMEAM as defined in section 2.2, see also equation (38), and (v) a

hybrid of Gupta, MEAM, and SMEAM, for which we use an effictive charge density, as

defined in C-MEAM (plus additional terms), and insert it into E-Friedel, while keeping

R-Exp as repulsion. The embedding energy of the last variant is obtained when pulling

the last factor on the r.h.s. of equation (38) under the square root. In all cases but (i),

no nearest-neighbor cutoffs were employed for any quantity. Instead, any Rc was set

greater than 8σQ.

For the goodness function, we obtained χ(i) = 1.950, χ(ii) = 0.6468, χ(iii) = 0.4554,

χ(iv) = 0.3346 and χ(v) = 0.3642. Thus, it appears that a systematic expansion based

on simple analytical expressions is the most accurate choice for our learning set of

structure encompassing many different local binding environments. However, as before,

trends regarding bond lengths, binding energies, and stiffnesses, are similar for different

EAM modifications. Since SMEAM gives the best results, we focus our discussion on

that approach.

While fitting SMEAM, we noticed that only few invariants are needed to optimize

the goodness function. The final expression for the embedding energy reads

F (ρ, ρα, ...) = A
√
ρ

(
1 + cSG2

ρ2
iα

ρ2
+ cH2′

ρ2
iαβ

ρ2
+ cSG6

ρ2
iα

ρ2

ρ2
iβ

ρ2

ρ2
iγ

ρ2

)
. (38)

None of the additional low-order invariants we tested reduced the goodness function by

more than fractions of a per cent, even when combining several of them, while leaving out

any of the listed invariants noticeably increased χ. Note that cSG2 and related coefficients

in equation (38) are dimensionless, unlike the functions CSG2(ρ) in the prefactors on the

r.h.s. in equation (25). This is because ρiα is not the α component of the gradient of

the charge density but σQ times ∂αρ.

Figure 7 shows that SMEAM bond lengths are all within 1% accuracy. More

importantly, the ratio of a0(MEAM)/a0(DFT) shows no more systematic decrease with

increasing Z, unlike the conventional EAM potentials. Similar statements hold for

the binding energies, which are shown in figure 8. Now, errors are within 6%, except

for the tetrahedron and the triangular tiling, which deviate by -7.5% and +11.5%,

respectively. The stiffnesses also turn out very satisfactory, i.e, mostly within O(15%)
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Figure 7. SMEAM equilibrium length a0(SMEAM) divided by the DFT equilibrium

length a0(DFT) as a function of the coordination number Z for different geometries.
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Figure 8. SMEAM results for the binding energy E0(SMEAM) as a function of the

coordination number Z for different geometries. The dotted line is identical to that

drawn in figure 1.

as revealed in figure 9. Only the trimer and the diamond structure show deviations

of approximately 20%. Again no systematic trends with either coordination number,

dimension or openness of the structure appear to be obvious.

The beneficial effect of SMEAM corrections on binding energies and stiffnesses can

be understood in a straightforwad fashion within the nearest-neighbor approximation

(see section 2.3) of the modified Gupta potential. Through the modification, A is
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Figure 9. EAM equilibrium stiffness S(EAM) divided by the DFT stiffness S(DFT)

as a function of the coordination number Z for different geometries.

effectively replaced as follows

A→ A

(
1 +

∑
n

Incn

)
, (39)

where In is the value for an invariant of the nearest-neighbor shell, which depends on the

nature of the lattice, n enumerates the invariants, and cn is an atom- or element-specific

parameter. For the invariant IH = ρiαα, we find IH(n.n.) = Z, if only nearest-neighbors

(n.n.) are included. Thus, for a fixed value of Z, this term cannot bias planar or low-

dimensional over three-dimensional structures, which is why including this invariant into

the potential does not improve the fits. However, the invariant IH2′(n.n.) = ρ2
ıαβ yields

Z2/D for most inversion-symmetric structures, e.g., linear chain, simple cubic crystal,

etc. Even the non-inversion-symmetric diamond structure satisfies IH2′(n.n.) = Z2/D.

Thus, depending on the prefactor cH2′ , low-dimensional structures at a given value of Z

turn out energetically higher or lower than high-dimensional structures with the same

coordination number.

In addition to isotropic volume changes, we also computed the response of selected

structures to non-isotropic deformation. For fcc and sc, results were satisfactory,

although the elastic tensor of these structures were not included into the parameter fit.

Specifically, for fcc we found dimensionless Cauchy violations of C̃ fcc
Cauchy(SMEAM) =

0.3440 vs C̃ fcc
Cauchy(DFT) = 0.2947, while the isotropy violations were C̃ fcc

iso (SMEAM) =

−0.2971 vs C̃ fcc
iso (DFT) = −0.3809. For simple cubic systems, the numbers were

less satisfactory, i.e., C̃sc
Cauchy(SMEAM) = 0.1320 vs C̃sc

Cauchy(DFT) = 0.6794, while

the isotropy violations turned out C̃sc
iso(SMEAM) = 0.5474 vs C̃sc

iso(DFT) = 0.3017.

Unfortunately, the elastic tensor was not satisfactory at all for the diamond structure.

Here, we found C̃dia
Cauchy(SMEAM) = −0.0127 vs C̃dia

Cauchy(DFT) = −0.6741, while the
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Figure 10. Pressure as a function of the volume per atom for three different

crystalline structures. Symbols show DFT results, while dashed and full lines refer to

reparametrised Gupta potentials with and without SMEAM corrections, respectively.

isotropy violations were C̃dia
iso (SMEAM) = −1.5875 vs C̃dia

iso (DFT) = −0.8096. The large

discrepancies for the elastic tensors between SMEAM and DFT of diamond could not

be fixed by including these properties into the fit. The same statement holds for all

modified EAM potentials mentioned in this section. While MEAM potentials for four-

coordinated structures have been devised successfully, [23, 72] their transferability to

other structures remains to be tested. For the broad set of structures investigated here,

it might necessary to include many-body effects in the repulsion, whose functional form

affects elastic properties more strongly than binding energies. Nonetheless, preliminary

tests using Rosen repulsion terms [73] did not prove successful.

Although the full elastic tensor is not described very accurately for either the

diamond or the simple cubic structure, the equation of state is reproduced quite well for

these two phases over a pressure range of more than 100 GPa in addition to that of the

fcc structure, as shown in figure 10. Interestingly, the SMEAM correction to the Gupta

potential improve all shown EOS in the full pressure range, i.e., for structures that are

much compressed or stretched compared to those entering the fits.

Lastly, we note some results on defect energies, even if the presence of defects implies

inequivalent atoms and thus the possibility of charge transfer, which, as argued in the

introduction, is beyond the capability of conventional EAM potentials. For point defects,

charge transfer effects should nevertheless be small: For most mono-atomic systems, one

might assume that electronegativity and chemical hardness change as a function of the

number of nearest neighbors and thus differences between 11 and 12-coordinated atoms

should be marginal. In fact, for “vertical” point vacancies in fcc (i.e., no structural

relaxation of atoms near the defect) we find that the Gupta-SMEAM potential predicts

defect energies of 1.84×10−19 J, which is 10% less than the 2.05×10−19 J value from DFT.
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In contrast, surface energies are overestimated. Now the Gupta-SMEAM prediction is

1.45 J/m2 for a (111) surface, which exceeds the DFT results 1.36 J/m2 by 6%. Further

surface energies together with selected results for elastic moduli are listed in tables 2

and 3.

4. Conclusions

In this work, we found that a reparametrisation of the simple four-parameter Gupta

EAM potential produced satisfactory results for a broad set of copper structures. DFT

data on bond lengths were typically reproduced within 1.5%, the binding energies within

O(10%), and stiffness parameters or bulk moduli within O(20%). This level of accuracy

is almost on par with that of our reference DFT calculations. Changing the functional

form of the Gupta potential, such as increasing the complexity of the charge density

within the EAM framework, the embedding function, or the two-body repulsion, usually

somewhat deteriorated the fits but never improved them beyond a few per cents. We

found two possibly beneficial alterations. The first is to replace the Friedel expression

for the embedding term with a parametrisation of the embedding function through

the Birch-Murnahan equation of state, which, however, needs to produce the correct

dissociation limit. The second alteration consists of replacing the exponential decay of

the charge density with a 1/R6 dependence as used in the Finnis-Sinclair potential,[34]

however, while keeping everything else as in Gupta. Both changes, however, reduce the

χ2 function only marginally while impeding analytical treatments. An advantage of the

1/R6 expression is that it is numerically cheaper than the exponential function.

One reason why adding complexity to Gupta’s EAM does not help much is

that conventional EAM potentials intrinsically cannot reproduce certain trends for

copper. All conventional EAM potentials automatically favor structures with large

coordination over those with small coordination number independent of the geometry.

As a consequence, the propensity of copper to form planar or low-dimensional structures

is intrinsically underestimated in EAM potentials. For example, four copper atoms are

predicted to rather form a tetrahedron than a square, in contrast to DFT results. Similar

statements hold for other geometries and other elements.

The Gupta EAM description can be improved by adding terms that also contain

gradients or higher-order derivatives of density to either the (effective) density or the

embedding function, as proposed in the context of the quasi-atom model. [20] By adding

square-gradient corrections to the EAM potential alone (one single fit parameter, i.e.,

the prefactor to the term ∝ ρ2
iα), errors already decrease by a little more than 30%. This

improvement is similar to that obtained by adding square-gradient density corrections

to an EAM-based description of aluminum. [48] Additional terms are needed to further

correct the energetics of planar or low-dimensional structures, such as the invariant

ρ2
iαβ, whose neareast neighbor contribution for most inversion-symmetric systems turns

out proportional to Z2/D. Including this invariant together with square-gradient and

the third power of the square gradient brings down the error to 50% compared to
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our reparametrisation of the simple Gupta potential. The parameters for these cases

are summarised in Table 1. Adding terms proportional to another invariant considered

previously in MEAM, ρ2
iαβγ, or any invariant formed with less than three pairs of indices,

does not improve the results by more than fractions of one percent. The latter statement

also holds for the invariant ρiααββ, even if its prefactor can be fixed to accurately accout

for the fcc-hcp energy difference.

We conclude that despite, or perhaps because of, its simplicity, the Gupta potential

from 1981 [28] combined with square-gradient density and higher-order corrections as

proposed by Scott and Zaremba [20] clearly outperforms the later, standard (modified)

embedded atom methods, [32, 38, 74] at least when considering our set of structures

ranging from clusters to bulk phases. Rather than replacing the simple functional form

of the Gupta-SMEAM approach with elaborate expressions, it might be beneficial to

introduce entirely new features. One such addition could be to couple SMEAM to a

charge transfer approach in such a way that the electronegativity and potentially the

chemical hardness of an atom becomes environment dependent.
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Appendix

In this appendix, we summarize our results for the interaction parameters of the Gupta

potential and its modifications as well as some selected results produced by the potential.

Table 1. Force-field parameters for different levels of approximation.

VR (10−15J) σR (Å) A (10−18J) σQ (Å) cG2 cH2′ cG6

Gupta 1.5597 0.2284 -1.318 0.6404 N.A. N.A. N.A.

Gupta+SG 0.6588 0.2583 -2.251 0.5325 -0.1981 N.A. N.A.

SMEAM 0.4660 0.2741 -3.275 0.4859 -0.3778 -0.1528 0.2812

Table 2. Selected results for the fcc structure from different levels of approximation.

Elastic tensor elements are stated in units of GPa, surface energies S(xyz) in J/m2 as

function of the orientation xyz, and point defect energies in units of 10−18 J.

C11(fcc) C12(fcc) C44(fcc) S(111) S(110) S(100) E(point)

Gupta 164 115 81 1.45 1.64 1.53 0.215

Gupta+SG 159 117 70 1.12 1.21 1.31 0.187

SMEAM 160 122 67 1.45 1.62 1.74 0.184

DFT 164 128 80 1.36 1.44 1.66 0.205
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Table 3. Elastic constants for the simple cubic and diamond lattice in GPa.

C11(sc) C12(sc) C44(sc) C11(dia) C12(dia) C44(dia)

Gupta 275 2.7 -24 34 57 42

Gupta+SG 253 14 -22 37 57 44

SMEAM 263 15 -20 42 58 59

DFT 136 80 -13 85 36 93

[1] Foiles S M and Adams J B 1989 Phys. Rev. B 40 5909–5915

[2] LeSar R, Najafabadi R and Srolovitz D J 1991 J. Chem. Phys 94 5090–5097

[3] Daw M S, Foiles S M and Baskes M I 1993 Mat. Sci. Rep. 9 251–310

[4] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress D J 2001 Phys. Rev. B 63

224106–1–224106–14

[5] Dong Y, Li Q and Martini A 2013 J. Vac. Sci. Technol. A 31 030801

[6] Thomas Jr J F 1971 Scripta Metall. 5 787–790

[7] Davis H L and Noonan J R 1983 Surf. Sci. 126 245

[8] Lindgren S A, Walldén L, Rundgren J and Westrin P 1984 Phys. Rev. B 29 576

[9] Abell G C 1985 Phys. Rev. B 31 6184–6196

[10] Guevara J, Weissmann M and Llois A M 1994 J. Phys.: Condens. Matter 6 3939

[11] Rogal J, Divinski S V, Finnis M W, Glensk A, Neugebauer J, Perepezko J H, Schuwalow S, Sluiter

M H F and Sundman B 2014 Phys. Stat. Sol. (a) 251 97 – 129

[12] Schaefer H E 1987 Phys. Stat. Sol. (a) 102 47 – 65

[13] Koehler J S 1941 Phys. Rev. 60 397

[14] Kuhlmann-Wilsdorf D 1999 Phil. Mag. A 79 955 – 1008

[15] Ercolessi F, Tosatti E and Parrinello M 1986 Phys. Rev. Lett. 57 719

[16] Ercolessi F and Adams J B 1994 Europhys. Lett. 26 583

[17] Finnis M W 1988 Phil. Mag. A: Cond. Matt. 58 143–163

[18] Jacobsen K W, Stoltze P and Nørskov J K 1996 Surf. Sci. 366 394

[19] Jacobsen K W, Nørskov J K and Puska M J 1987 Phys. Rev. B 35 7423

[20] Stott M J and Zaremba E 1980 Phys. Rev. B 22 1564

[21] Ludwig M, Farkas D, Pedraza D and Schmauder S 2002 Modelling Simul. Mater. Sci. Eng. 14

9187–9206

[22] Mendelev M I, Kramer M J, Becker C A and Asta M 2008 Phil. Mag. 88 1723–1750

[23] Lee B J, Ko W S, Kim H K and Kim E H 2010 Calphad 34 510–522

[24] Jalkanen J, Rossi G, Trushin O, Granato E, Ala-Nissila T and Ying S C 2010 Phys. Rev. B 81

041412(R)

[25] Streitz F H and Mintmire J W 1994 Phys. Rev. B 50 11996
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