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Many processes involving ions, polar molecules, or polar tesieake place in an external
medium with heterogeneous dielectric properties. Examglege from protein folding in a

polarizable solvent to contact electrification inducedhsytubbing of two dislike solids. When

simulating such processes, it is not appropriate to decontbeselectrostatic forces between
the central atomistic degrees of freedom into (effective)-bedy contributions. Instead, one
needs to consider the dielectric response of the externaumedvhich one may want to rep-

resent as a continuum. In this contribution, we show that giie charge equilibration (SQE)

method can be used to describe continua with well-defineeati®t properties, although it

was originally designed to assign atomic charges on the flgugh, SQE bears much potential
for hybrid particle-continuum simulations. The comparisdudlielectric response functions as
obtained by SQE and point dipole methods reveals many adwestagSQE. The main points

are: SQE requires fewer floating point operations, nontidiedectric properties are more eas-
ily embedded, and the leading-order corrections to the coath limit are isotropic on the

simple cubic lattice in contrast to point dipole models.

1 Introduction

The electrostatic polarization of an embedding medium ¢eongly affect the interac-
tion between ions, polar molecules, or other polar degrééeedom. To illustrate this
point, consider an anion with elementary charge close tafaciof a highly polarizable
medium, such as water or, in the extreme case, a metal. If glectehe surface dipole
of the polarizable medium and the induced dielectric resppno (long-range) interaction
takes place. However, assuming an ideal mirror charge,rios deels a Coulomb attrac-
tion V = —e?/4meod, whered is the distance between the anion and its mirror image. The
numerical value of the correction to a non-polarizablettrest ford = 10 A amounts to
as much ad” = 1.44 eV, which is roughly 55 times the thermal enefgy at room tem-
perature. This number distinctly exceeds the typical gndifference of ten time&gT
between the ground state energy of a folded protein and gierfata-stable conformation.
If the ion is part of a fluid or a solid, that is, if it is part ofdltentral zone of interest, the
“effective self-interaction” that the ion experiencesrfrthe external medium is not quite
as strong as if the ion is in isolation. This is because cosel@matter tends to arrange
such that it avoids local electrostatic monopoles. The f@ntexperiences not only its
own induced mirror charge but also that of a nearby chardgmbig counterion. As an
example, an ideal point dipole of 1.85 D (the value for anased water molecule) must
be as close as 5A to its mirror dipole to acquire an effective self-interiact energy of
roughlyksT. Yet, the annihilation of the induced forces may not be sieffity systematic
to make polarization corrections negligible, becauserpulaecules or moieties can adopt
a preferential orientation near interfaces formed by tweoemals with different dielectric



properties. For this and related reasons, the electrigipateon needs to be accounted for
in accurate simulations of ionic and polar médfaSince most systems are heterogeneous
and boundary conditions are more complicated than thoserof-mfinite metal walls, it

is futile to derive effective interactions between the &ifly treated atomistic degrees of
freedom. Instead, it is desirable to compute the polaopatif the embedding medium,
ideally by exploiting continuum descriptions and apprafgimeshing far away from the
zone of interest.

Often, polarization in condensed matter systems is aceduot by placing inducible
(point) dipoles onto atoms or (super) atdmsHowever, in addition to electrostatic polar-
ization of atoms, there can be charge transfer between tAéhough there is nanique
scheme breaking down the polarization into intra- and 4atemic contribution®(mainly
because partial atomic charges cannot be defined unamisigtpuecent advances show
that it is yet both meaningful and practical to dd%dWe shall not repeat the arguments
here and instead simply assume as a heuristic working hgpistthat charge transfer be-
tween atoms and the polarization of atoms can be assigneaimgéaly.

Determining the set of partial chargg@} and/or atomic dipole§y} — plus potentially
higher-order multipoles — is usually done using minimiaatprincipled®. The idea is
to find an approximation for the potential energy of the sysié = V({Q, p...}) by
Taylor expanding/ with respect to the set of the (small) parametgps ., ...} and to find
well-motivated expressions for the expansion coefficieltghis work, we will base this
expansion on the split-charge equilibration (SQE) mbdé which atomic charges result
from the charge transfer through chemical bonds. In additicfractional charges, atoms
can receive integer charges, which, however, are not siebj¢o bond energy penalties
but only to on-site interactions. The SQE method has beemtlygustified from density-
functional theory based argumeltsThe gist of this justification is that the non-locality
of the kinetic energy in DFT (which leads to the shell stroetof atoms and to band gaps
in solids) can be expressed correctly in leading order byfie-charge terms (which are
needed to yield a dielectric response differing from thanetals).

The SQE method was proposed as a unified model of the origiemhical-potential-
equalization method also known as charge equilibratiéh(QE) and the atom-atom
charge transfer approach (AACT) It turns out that SQE avoids the (mutually exclusive)
disadvantages of QE and AACT method without introducing roaes. For example,
QE automatically produces a metallic response, i.e., agiivg dielectric permittivityg,,
while AACT can only mimic systems for which, — 1 < 1 holds'®. In contrast, SQE
can reproduce any arbitrary valuesgf> 1. In this contribution, we focus on the dielec-
tric properties of SQE and compare them to those producegpsoaches in which the
dielectric response results from point dipoles.

The remaining part of this chapter is organized as followsSéction 2, the charge
transfer and point dipole models are introduced within coramon framework. In Sec-
tion 3, the continuum limit is derived for a pure SQE model amqlire point dipole model
on the simple cubic lattice. Further properties of changeilbration methods, that is,
those pertaining to molecular systems, are summarized ¢ticBe4. Conclusions are
drawn in Section 5. In the appendix, Section 6, details omlihele-dipole interactions are
presented.



2 Charge transfer approaches and the split charge model

As mentioned in the introduction to this chapter, the goabifind an expansion for the
energy as a function of the partial charges and the dipoldasqmtentially higher-order
electrostatic multipoles — as a function of the atomic cowts:
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We truncate after second order and after the dipole termse,Ki€,} and{u} denote,
respectively, a set of reference values for atomic changésigooles. In the following, we
will assume that these can be set to zero unless mentionedaigle. Moreover, Roman
indices refer to atom numbers while Greek indices enumé&ateesian coordinates, e.g.,
i = Miao + Apie 1S thea component of the dipole on (super)atamFor Cartesian
indices, we use the summation convention. Some terms indfiTexpansion Eq. (1)
can be readily interpreted.

For isolated atoms?V/9Q); corresponds to the electronegativity (plus potentially
a coupling to an external electrostatic potential), whité’/0Q? can be associated with
the chemical hardness. They can be parameterized via finite-difference approtiona
of the ionization energy; and electron affinityd;. The latter two quantities can be be
obtained by removing or adding an elementary charfyjem atoms,

I = %62 +xie )
A= Se? = e )

and thuss; = (I; + A;)/e? andy; = (I; — A;)/2e. (These quantities are commonly stated
in units of eV, which means that the underlying unit systeesube elementary charge as
the unit of charge.) In principle;; andy; should depend on the environment, but within a
reasonable approximation, they can be taken from valuesumeg for isolated atoms. In
practical applications, i.e., when allowing andy; to be free fit parameters, they turn out
within O(10%) of their experimentally determined valdés’. Furthermore, it is tempting
to associate the mixed derivatiédV/0Q,;0Q; (i # j) with the Coulomb potential, at
least ifR; andR; are sufficiently distant. For nearby atoms, one may wanteescthe
Coulomb interaction at short distance to account for oroiarlap.

All terms related to the atomic dipoles can be interpretea straightforward fashion.
The negative obV/du,, is thea component of the electrostatic field Bt; due to ex-
ternal charges. The single-atom terét3//du,, 0, can be associated with the inverse
polarizability 1/+; of atomi. Unlike for the charges, practical applications find a large
dependence of the polarizability on the chemical enviramniia particular for anions¥,
including a direction dependence for directed bonds. Thedtwm term®?V/0Q; 0
andd?V/dui.0p;p correspond to the charge-dipole and dipole-dipole Coulorteyac-
tion, respectively, at least for large distandgs between atomsandj.

Unfortunately, it is incorrect to assume that the secorttboderivativeV? /0Q,;0Q ;
quickly approach the Coulomb interaction &g; increases beyond typical atomic spac-
ings, which one might conclude from the argument that chiynis local. This can be



seen as follows: we know that isolated fragments (such amsatr molecules) take in-
teger charges, in many cases zero charge. If we separatedms,asuch as sodium and
chlorine to large separation, we would find that the fragmeatry a fractional charge

XCl — XNa
KNa + ka1 — 1/(dmeg Ryact)’

QNa,c1 = £ 4)
assuming thadV?/9Q,;0Q; quickly approaches the Coulomb potential. Using element-
specific numerical valué$ one obtains partial charges #f).4 e for a completely disso-
ciated dimer. However, both atoms should be neutral, becaus> Ac;, which requires
one to prevent non-local (fractional) charge transfer.

What needs to be done is to penalize the transfer of (fradjicharge over long dis-
tances, i.e., when the overlap of orbitals of isolated atomisns ceases to be of impor-
tance. This can be done as follows. We write the charge ofan ag? 16

Qi =nie+ Y _ g, ©)
J

wheren; is called the oxidation state of the atom apglis the charge donated from atom
j to atoms, which is called the split charge. By definitio,, = —g;;. (One may ob-
ject that such an assignment is meaningless as electromsdsstnguishable. However,
assignments can be made unique, e.g., by defining an apgepenrose inverse for the
reconstruction of split charges from charfes Next, we do not only penalize built-up
of charge on atoms but also the transfer of charge. Thusethestin Eq. (1) exclusively
related to partial atomic charges become

VHR,Q.- ) = D {507 + (i + 270 }

" Z {“ijqz + SU(RU)QZQJ} + O(p). (6)
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Here, we have introduced the split-charge or bond hardnesahich is generally distance
and also environment dependent, i.e., it diverge®tgsbecomes large, prohibiting the
transfer of charge over long distances. Moreowgf(R;;) denotes a screening at small
distances wittf;; (R;;) — 1 for R;; — oo.

Eqg. (6) represents the SQE model. The original QE arisesarinhit of vanishing
bond hardness term;;, while the AACT model neglects the atomic-hardness tefms
Partial charges of atoms are deduced by minimizing the gnaitlh respect to the split
chargesy;;. The total charge of the system automatically adjust@#q = >, n;e ow-
ing to theq;; = —¢;; Symmetry. The minimization of” with respect to the split charges
can be done with the usual strategies for finding minima obséerder polynomials,
such as steepest descent (good and easy for systems wéltbkng gap, i.e., large values
of ks, reasonable convergence in two or three iterations), detthagrangians (not effi-
cient for systems with zero or small band gap), or conjugeddignt (probably best when
dealing with small or zero band gap systems). Matrix ingersf the Hessian matrix
is strongly disadvised due to unfavorable scaling withiplrnumber. Once the partial
charges are determined, forces arising due to electrosiagiractions can be computed
fromoV({R,Q, - })/OR;q-



The numerical overhead of SQE versus QE is minimal, if preaeall. As a matter
of fact, since QE models all materials as metallic (as wel Sl later), SQE requires
much fewer iterations to convergence than QE, at least f&ieays with a band gap. How-
ever, there is a memory overhead within the SQE formulati@r.example, assuming 12
neighbors per atom on average, one obtains six split chageatom, which need to be
stored in memory. Despite of this memory overhead in SQEnthmeber of floating-point
operations per SQE minimization step is not much larger tba®E. The reason is that
the bulk of the calculations is related to the evaluationhef Coulomb potential; and
the derivative®)V/0Q;. Once the latter are known and stored in arrays, the derasti
0V /0q;; can be obtained with little CPU time via

Vo Ve Vo
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3 The continuum limit of charge equilibration models

In this section, the (static) dielectric response functibthe SQE model (augmented with
inducible point dipoles) is explored in the continuum limfBuch a treatment contains the
original QE and the AACT model as limiting cases. The prestion here explores a sim-
ilar model discussed previoushyi.e., a simple cubic crystal in which a “slowly” varying
electrostatic field2***(R) produced by “external” charges is add&dThe derivation of
the dielectric permittivity pursued is simplified with resj to the original one and more-
over, we no longer restrict ourselves to the capacitor gégme

The charge&)(R) at lattice siteR /a = le, +me, + ne, (a being lattice constant) can
be calculated through the following second-order, finifeetence approximation to

QR)=-> AR Vq(R,AR), (8)
AR

where AR is a lattice vector. FOAR being a nearest-neighbor vector, the split-charge
field ¢(R, AR) shall be interpreted as follows([z + a/2, vy, 2], ae;) is the split-charge
donated from the atom located(at y, z) to that at(z + a, y, z). (This way, the expression
AR ¢(R, AR) can be seen as a dipole centereRat AR/2.) Because similar relations
hold for split charges shared between next-nearest atémstie summation in Eq. (8) can
be generalized to any lattice vectR. To clarify Eq. (8), we note that the split-charge
field on the r.h.s. is a function defined on a continuous végilh The field is chosen
such that it is as smooth as possible but nevertheless esyiseesxactly the true split charge
exchanged between nearest (or farther) neighbors at theragrthe (imaginary) bond of
the two atoms exchanging a split charge. The L.h.s. of Egs(@)iscrete charge at lattice
siteR. By dividing Q(R)) througha?, it can be turned into a continuous charge density.

&t is probably more meaningful to refer to a continuous-baclkigd charge distribution that is not treated ex-
plicitly rather than to an external charge distribution. félaver, the term “slowly varying” shall imply that the

charge distribution is continuous, e.g., it only lives or @ingle wavelength within the first Brillouin zone of the
crystal.



In reciprocal space, Eq. (8) becomes

Q(k) =—i» k-AR j(k,AR). 9)
AR

A difficulty that arises when exchanging split charges widixtrnearest neighbors is
that we need additional split charge fields, i.e., thosendjvon lattice sites for which
I +m + n is odd and those for whichH- m + n is even. This means that our simple cubic
lattice needs to be subdivided into two interpenetratingfeentered cubic lattices, which
makes the analytical discussion intransparent. The neetifferent lattices will disappear
for external fields that have a wavelength much exceedingfiadaconstant. It is only in
this latter case that the conversion from a discrete thepaycontinuum theory as initiated
in Eq. (9) is meaningful. Short wavelengths would have torbated differently. At this
point, it shall suffice to state that it is possible, in prjplej to tune the next-nearest neigh-
bor bond hardness independently from that of nearest neighbrhis would mean that
the polarizability at a wavelengtu can be set independently from that at wavelength
Similar comments apply when including third-nearest nedh, etc. Therefore, it should
be possible to design a dielectric permittivity such tha¢firoduces a desired wavelength
dependence. For reasons of clarity, we keep Eq. (9) witmitgducing independent split
charges fields living on different sublattices. (Of courar,alternative approach to in-
creasing the unit cell would be to couple differéntectors defined for the original unit
cell.)

Including point dipoles to the lattice sites, the split-deenergy for a perfect (mono-
atomic,y = 0) lattice reads

V=) {’; Q*R)+ > KS%R) (R, AR) — E*(R) - AR Vq(R, AR)}
R

AR
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Here, J(AR) is the (screened) Coulomb interaction between the cha@@) and
Q(R’), the singly-indexed/,,(AR) represents the (screened) charge-dipole interaction,
and the doubly-indexed,s(AR) is the dipole-dipole interaction. MoreoveAR =
R—R’ and any Coulomb coupling (from monopole-monopole to dighjmle interaction)

is set to zero foAR = 0.

Eqg. (10) is easily transformed into reciprocal space, ay bilinear coupling oc-
curs. To do so, one needs to replace sums ®&eawith sums overk and follow the
known rules for Fourier transforms, for instance, the atoimardness term becomes
S #Q(k)Q* (k) /2. See also the appendix.

The solutionsj(k, Ar) minimizing V' must satisfypV/9G(k, AR) = 0, which reads

{,«u + J(k)} kaARLQ(K) + 15 (AR)G(k, AR) = ESf (K)AR,, (11)
with
B (k) = B (k) — kads(AK)fig (k). (12)
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Figure 1. (a) Minimum eigenvalues of the dipole coupling mﬁ[g(k) for selected paths in the first Brillouin
zone of the simple cubic lattice. (b) The coupling of dipoleiemted parallel to the givek vector as a function
of the wavenumber along selected paths. (c) Fourier tramsééthe Coulomb interactiodc (ak) for the simple
cubic lattice.

In reciprocal space, the minimization conditiol’/du;(R) = 0 becomes

{(S(;ﬁ + ja/j(k)} ﬂﬂ(k) — E‘th(k) — ja(k)Q(k) (13)

From the set of coupled equations (11) and (13), one can ddtiedlielectric response to
an external field. We will discuss these solutions in a seépgraper. In this contribution,
for reasons of simplicity, we focus on the limit in which theupling between monopoles
and dipoles can be neglected. This allows one to work out ifferehces between the
dielectric response functions that are due to either pyrelelior pure bond polarization.

3.1 Pure dipole polarizability

We start our analysis of the dielectric response by negigctharge transfer. For reasons of
simplicity, we consider a sinusoidal electrostatic fielattls aligned parallel to the-axis of
our simple cubic solid, i.eE®**(r) = Eje3 exp(iksz). To this end, we need expressions
for the jaﬂ(kgeg) elements, see also the appendix. The off-diagonal elenmenss be
zero (fork parallel toz) for reasons of symmetry. Numerically, we find for unscrekne
dipole-dipole interactions that the diagonal elementslmamepresented quite accurately
via

3 y Sy — 1 .
Ji1(kses) = Jog(kses) ~ ’;607 {1+ 0.156(5) sin®(aks/2) } (14)
J33(kses) = —2J11(kses), (15)

which includes the discontinuous drop from a finite valugat= 0" to zero atk =
0. Itis furthermore well knowf that the dispersion of thd,;(k) depends ork. This
dependence is sketched along some lines in the first Brillzane in Fig. 1(b). One can
see that the corrections to the continuum limit depend niyt @m the magnitude ok but
also on its orientation.

We start our discussion with the analysis of the split chegehanged in a direction
normal to the external field, i.e., inrdirection. According to Eq. (9)

{i =+ jll(kgeg)} ,[Ll(k'geg) = 0, (16)



Using Eg. (14) forjll(kgeg), one can see that the prefactor on the I.h.s. of the equation
can become zero at a finite densjtywhich is defined ag = 1/a3. This means that
the system can acquire a finite polarization without eneegyajty, which in turn implies
a polarization catastrophe. For small but non-zeypthis happens at the same density
p = 3ep/7 at which the Clausius-Mossotti (CM) relation for dipolesésEq. (23) for
ks — 0) indicates a diverging dielectric constant, namely+fpr= 3¢,.

The discrete simple cubic solid becomes unstable at an ewaltes density, e.g., for
dipoles associated with the waveveckoe= 7(0,0,1)/a and at even smaller densities for
k = #(1,1,0), as one can see from Fig. 1la. Specifically, dipoles with theewector
(r/a)(1,1,0) already become unstable at a densitycf ¢,/0.4259(3)~ rather than at
3e0/v as in CM.

We next analyze the split-charge response parallel ta tvds. Deriving the regular
CM relation from the present treatment is not easily possifihe reason is that the sum
over dipoles is only conditionally convergent — hence trezaltinuity of thejaﬂ(k) at
theT" point. Due to the conditional convergence, the shape of thenial matters when
determining its dielectric response. For the regular cisace geometry, the static di-
electric constant consistent with CM relation requires sung up planes of interacting
dipoles, where each plane is normal to the sfexis’. Here, we proceed using a different
approach, previously pursued to derive the (macroscopitgatric response functiéh

What we seek is a relation between the polarizaloes (1, )e,/a® and the coarse-
grained total electrostatic fiel°t through the equation

—ia () = o {Zap() ~ Bus} B (1), (a7)

whereé, g (k) is the dielectric tensor. So far, we only have a relation leetwthe dipoles
and the electrostatic field due to external charges, i.ethéz-component

{,]}-/ + jgg(kge;g)} ﬂ3(/€3€3) = E§Xt(k3eg). (18)

The total field is the superposition of a slowly varying fieldedto external charges and
a rapidly varying field produced by the dipoles. The lattemsists of two contributions.
One is the field coming from “outside” the dipoles, i.e., theave used to sum up the
dipole-dipole interactions. The other contribution stefmasn the “internal” field within
the point dipolé®. It can be represented agdunction singularity if the dipole is located
at the origin, see the appendix:

. 1)
BT = —pa . (19)

At a given lattice point, we define the coarse-grained fietmbeaing to

E )= PR s [ (e L eo

whereVi(R) is a cubic elementary cell of siz€ with its center of mass located Rt.
With this choice, the dipole field from the dipole containad/t;(R) does not contribute
to the coarse-grained field. To leading order, we approxrtta value of?4 (r) within



Vi(R) through E4P(R) produced by dipoles from outside &% (R). This makes the
J33(kses) term on the r.h.s. of Eq. (18) disappear and thus

{; - 35;3} fis (kses) ~ L (kges). 21)
At this level of approximation, i.e., fofES " (r))v;,r) ~ ESP(R), the response function
is dispersion-free and moreover continuous atltfpoint. However, each mode becomes
unstable at the same value bf. This contradicts our previous result (exact for point
dipoles) for the polarization catastropherdmlirection, which — for simple cubic — is sym-
metry related to that in. The problem can be fixed by re expressing Eq. (21) as

. {1 kg0 J33(kses) } 3 (kses)

— = o Bt (K 22
~y 350(13 9 a3 EoLlig ( 393)a ( )
where we have introduced some factors to simplify the comparto Eq. (17). Such a

comparison yields
7/5003
1 — Ydk,0/3c0a3 — vJ33(kzes)/2
v/e0a’

" 1= /Bega {1+ 0.156(5) s (aks /2)] “

€33(kze3) — 1 =

The last two relations state that the dielectric tensor etﬁt:fp,3(k3e3) is continuous at the
I point. Furthermore, Eq. (23) is equivalent to the CM relativk; = 0 andks — 0.

The treatment parallel to other (symmetry) directions isilgir to the one presented
so far. However, it becomes more complicated wkethoes not lie on a symmetry line,
because the eigenvectors of the coupling matrix are no fqgngely parallel or orthogonal
to k. This means that the polarization induced in the crystabisomger parallel to the
(static) electrostatic field induced by the external chalig&ribution. Thus, the dielectric
response functions quickly deviates from being isotrogtb wcreasing wavenumber.

3.2 Pure charge transfer polarizability

As argued before, one of the promising properties of the SQ&etis that one can define
non-local charge transfer resulting in non-local respdusetions. However, there are
quite a few differences between point-dipole polarizép#ind split-charge polarizability
at a level where we only allow for charge transfer betweeacaljt atoms on the simple
cubic lattice.

To keep the formalism transparent, we will first restricttsgtharges to nearest neigh-
bors.P In analogy to our previous treatméftwe write nearest-neighbor split charges as
a vectorg, (R), wheregq; (R + ae; /2) is the split charge donated from the atom located at
R to the one aR + ae;. This allows one to rewrite Eq. (9) as

Q(k) = _ikQQQ (k) (24)

Pwhen describing non-local charge transfer on the continucaeshrough Eq. (9), one can proceed as done
in the current text. One only needs to divide Eq. (11)QyAR), multiply the equation with the wavenumber
and sum it over alAR. This way, one obtains an equation fQKk) with effective values for the split-charge
hardness and the Coulomb interaction.



Assuming the same sinusoidal electrostatic field paradlehé > axis as in the previous
section and no point dipoles on atoms, Eg. (11) can be wrdtsen

{1+ Thses) b (aks)? + ] s (kses) = a5 (ey). (25)

To derive the expression for the dielectric permittivitye wroceed similarly as in the pre-
vious section, rather than as in the original literatireFirst we identifyaqs(R) as the
dipole per volumé/’ = a* and thusP;(R) = ¢3(R)/a? is the local polarization. Next
we convert from an external electrostatic field to a totarse-grained field on the r.h.s.
of the equation by eliminating the Coulomb interaction anlih.s. The difference to the
previous section is that we do not need to take care of intelipale fields, because the
Coulomb interactions are solely related to point chargésisT

G(kzes)
a2

ago {K(ak3) + ks } = g0 E (kes). (26)

Comparison with Eq. (17) yields

1
eoa{ks + Kk(aks)?}’
which is equivalent to Eq. (27) in Ref. 16 but contains in #iddia dispersion correction
due to atomic hardness. Here, we note that we used simpk fiifference approximations
to deduce the charges from the split-charge field. This is ##hyk) does not turn out

periodic in the Brillouin zone. The problem can be easily dixgithout changing the
leading-order behavior of the dielectric susceptibilijyrbplacing Eq. (27) with

1
coa{ks + 4rsin®(aks/2)}

533(]@363) —1= (27)

€33(kses) — 1= (28)
which is equivalent to replacing Eq. (24) with the accuragation Q =
> ar {exp(—ik - AR) — 1} j(k, AR).

Formally, Eq. (28) expresses a similar functional depeoédef sz (kses) on ks as
that derived for pure dipole polarization, see Eq. (23). kEesv, there are differences
between them in practice. First, the leading continuumemtions for small but finite:
are isotropic for the SQE model but not for the point dipoledelo Second, the prefactor
to the corrections is small for dipoles, i.e., of order 0.n@ersely, the ratia:/ . tends
to be of order unity or much greater. This is becaxig€ can be associated with the band
gap of solid$® (in fact, x, is an upper bound for the band gap), so thatfor true chemical
bonds) can be anything between zero and values a few timasaiméc hardness. Next, the
dielectric response in the SQE formalism does not autowmtidiverge at high density
for fixed dipole or bond polarizability. The reason is thad total Hessian can be made
positive definite through the choice of large atomic hardnéknis is different from the
AACT model, which necessitates small bond polarizabilitykeep the Hessian positive
definite.

Fig. 2 demonstrates that the dielectric permittivity, = £33(0), is indeed indepen-
dent of the atomic hardness. Moreover, one recognize tleatlitlectric response does
indeed not diverge even i is very small. For the smallest value of the bond hardness
(ks = 1/4gpa), the point-dipole model with equivalent local polarizati(y = a?/xs)
would have been already beyond the polarization catasttdgh, it would have produced
a negative dielectric constantaf=4/(1 —4/3) = —12.

10
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Figure 2. Dielectric permittivity for different choices &f andxs. The numerical results were obtained in a
regular capacitor geometry, in whiéti, = 100 layers containing0 x 10 atoms were placed into a simulation
cell. Periodic boundary conditions were applied in all éhspatial dimensions, however, in the direction of the
electrostatic field, a gap was introduced. The dielectrimitéivity was obtained by measuring the coarse-grained
total electrostatic field within and outside the materiabrrRef. 16.

The reason why:, can be made small even at large density is that the atominéssd
impedes large local dipole gradients. Thus, the atomicressl must introduce some
smearing of the response function. To elucidate this clamn,analyze the split-charge
response in a capacitor geometry. Thus, we consider ameakedectrostatic potential that
has a constant slope in a periodically repeated®gl) = E5z but goes back to zero when
the periodic image is repeated. The required non-zero &ocoefficients for the resulting
electrostatic field redf

Eg(kgeg) = —2F;3 for ks = 27Tn/L,’fl € N. (29)

The associated split charge response is

- —2F
q(ks) ~ . 0 , (30)
{m + J(kseg)} (aks3)? + ks
where a reasonable approximation/igk) was found to b#
= 1—uv(ak)?

A value of v = 0.22578 expresses the (isotropic) leading-order discretizatmmections
for the simple cubic lattice, see Fig. 1. Inserting Eq. (319 (30) can be written as follows
—2Fy

QS(k3) = W

(32)

with k¥’ = k — v/ega andkl = ks + lega. When solving the response of the dielectric
medium, i.e., with the help of the residue theorem, it becouiear that the roots of the
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Figure 3. Charge density of a simple cubic SQE model in a constdernal electrostatic field as a function of
the coordinate normal to the surface. The bond stiffness varies from metaliéxtremely dielectric. The atomic
hardness was adjusted such that the penetration depth asdlefiEq. (33) remained constant. The shaded area
can be interpreted as total polarization charge. From Ref. 1

denominator of Eq. (32) have the meaning of an inverse (expiiad) decay lengtid—?.

This can be solved to yield
5= g 20TV (33)
1+ egaksg

Thus, the split charge field decays witfx) «x exp(—|z — zo|/d) from the surface located
at z5. The surface polarization charge must obey the same expiahkenv, because it is
proportional to the derivative af(z). Fig. 3 demonstrates that the expected behavior
borne out in numerical simulations. Their set-up is desctilm the caption of Fig. 2.

Itis instructive to analyze the properties in the limits wéeither the bond hardness
disappears (as in conventional QE methods) or the atoménkass (as in AACT). First,
for ks = 0 the dielectric constant diverges for small wavevectoroating to Eq. (27).
This is the behavior of an ideal metal. This result impliest thlectric field lines are per-
pendicular to the surface of material modeled within the @graach. (This is observed
in simulations, which shall not be shown here.) Secondxfer 0, the dielectric constant
is finite. However, a problem that arises is that the Hessiast toe positive definite. The
smallest value thaf (k) takes for unscreened Coulomb interactions on the simpli cub
lattice is —(372) M /4mega, whereM = 1.748 is the Madelung constant of the rock salt
lattice. Thusks must exceed the largest negative eigenvalue oﬁgygeék) matrix. This is
found atk = (7w/a)(1,1,1) and the resulting limitation for the the dielectric periwity
is e'ﬁACT — 1 < 1/1.748, at least for unscreened Coulomb potentials. This is less th
the corresponding value of any condensed matter matergy d&mall values observed in

reality are, for example, 2> 2 for Teflon or polyethylene. These values are similar to
€2°(NaCl) = 2.56.

is

12



4 Further properties of charge equilibration models

Most charge-transfer studies do not focus on periodic systaut are predominantly con-
cerned with molecules. In that context, deficiencies ofoizsimodels were noted before
the analysis presented in the previous section had beenucttd Here, we summarize
some of the results on molecular systems.

One of the first problems noted with regular QE is that it daztsobey the neutral dis-
sociation limif4, as can be seen from Eq. (4). The original proposition to i phoblem
was to screen chemical potential differences as a functiatistancé®. Unfortunately,
this fix is hardly justified in reality and its implementatiantually leads to artifacts, e.g.,
batteries could not work if the chemical potentials betwatmms were screened as a func-
tion of distance. Screening is only meaningful for eledtts field lines when there is a
medium whose influence is not considered explicitly. Bubhetéeld lines were screened,
this does not mean that energy differences would be contpldéenped out. The line in-
tegral from one point to another would still remain finite agito near-field contributions.
Moreover, how can screening be justified for a dimer placedouum?

Approaches in which the concept of bond hardness is intedicen be easily param-
eterized to yield dissociation limits in which the atoms aeaitrat? > — or have non-zero
integer charg¥-26. All that needs to be done is to make the bond hardness diveiga
two atoms or two molecular fragments are moved to large agipar In fact, a quantitative
analysis revealed that making the bond stiffness betweeratams simply a function of
the distances between the two atoms (without including air@mment dependence) al-
ready lead to reasonably accurate partial atomic chargiee eéactants (initially and near
the transition state) and of the products of the bond bregkin

It had also been observed that the polarizability of pol\snéiV) (e.g. simple alkanes)
as treated with QE growths with the third power of the degfggotymerizationV in the
limit of large N. The correct scaling is line&lr'’. Some representative results are shown
in Fig. 4 and compared to quantum chemical calculations. €anesee that the QE model
systematically overestimates polarizabilities while S€iBws the correct trend. The SQE
data only tends to lie slightly below the quantum chemicsalits, which is easily explained
because the employed SQE model did not allow for atom palaility. Lastly, QE models
ignoring the bond hardness term produce alcohols whoséedipoment increases as the
fatty tail of the molecule is made longer, while the dipoledjly levels off at a realistic
value within an SQE type treatméht

The AACT models do not suffer from the shortcomings of purer@diels. However,
they have different deficiencies. For example, they barbbwsany dispersion of the
alkene polarizabilityy(N) at smallV in contrast to the real behavior and that exhibited by
SQE model&. This behavior can be rationalized from the small (zero)gpetion depth
0 derived for solids in the last section. Moreover, the AACTdmbproduces negative
(chemical) hardnesses of molecules when excess chargeed &mla molecufé.

In conclusion, neither pure bond nor conventional QE modadipce the correct con-
stitutive equations, while their combination in form of S@Q&n be parameterized to re-
produce meaningful numbers. In fact, even absolute nunibarsout reasonabtg, e.g.,
partial charges deduced from SQE were wittii10%) accuracy as compared to DFT-
based results while QE and AACT deviated 8¥30%). A comprehensive comparison
between SQE and QE also found that SQE clearly outperforheedriginal QE in all 23
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Figure 4. Polarizability of (a) QE and (b) SQE as a functiorthef polarizability deduced from quantum me-
chanical calculations on a variety of molecules. Green,aad blue data points reflect the smallest, the medium,
and the largest eigenvalue of the polarizability tensodifierent molecules (including varying conformations).
From Ref. 17.

benchmark tests on a set of more than 500 organic molééules

The true advantage of SQE, when applied at a molecular Ieight yet be a different
one: It allows one to introduce formal oxidation states amttéat meaningfully excess
integer charge in molecular systefhd®. This makes it possible to reproduce the generic
features of contact electrification as well as the dischafgatteries, which will be shown
in future work.

5 Concluding Remarks

The main part of this contribution is the analysis of the elitlic permittivity as pro-
duced by the regular split-charge equilibration model anabael in which point dipoles
are placed on discrete lattice sites. While both methods kewiar low-density, long-
wavelength response functions, there are quite a few diffars between them. First, the
SQE model is based on summing up (eventually screened) @bulteractions between
point charges while the point dipole models are based orleligipole interactions. Since
the resulting sums are conditionally convergent in botlesareither one can be cut off
at a finite distance without uncontrollable errors. The atkge of the SQE model is that
fewer floating point operations are required to evaluate ijpdéractions, since the cou-
pling of point charges is described by a scalar rather thaa tgnsor of rank two as for
dipoles. Moreover, fast summation methods for Coulombrauigons are readily avail-
able. Second, the SQE model produces response functiorte edsy-to-code) simple
cubic lattice that are isotropic not only in the continuumitibut also with respect to their
leading-order continuum corrections, which are of orkfer Point dipole models on the
simple cubic lattice have direction-dependghinteractions.

A potentially useful advantage of SQE over point-dipole elads that the SQE model
can reflect non-local dielectric response functions. Tarslee done, in principle, by intro-
ducing non-local charge-transfer variables. This abitigkes the SQE model a promising
candidate as a coarse-grained model for water, which is krtowhave a strong wave-
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length dependent dielectric const&ntAnother advantage of the SQE model is that it is
isomorphic to elastic models. The split charges can beddeatanalogy to (elastic) dis-
placements in the solid. Thus, coarse-graining of the regia adaptive mashing of SQE
can be done in analogy to elastic models.
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6 Appendix: Dipole-dipole interactions in real and reciprocal space

The field of a dipole: centered at the origin can be represented according to

Br) = - (V1)

47eq r
1 3(u-1)r — pr? I
= — =4 34
47eg ( rd 3e =) (34)

Thus, the potential enerdy gained when a second dipole is placed & 0 reads in tensor
notation

V = Jap(r)prapizp (35)
with

-1 3TaT5 — Tz(saﬁ (36)

Jap(r) = 47eq 70

If dipoles are placed onto a Bravais lattice, such as thelsioybic lattice, it is readily
shown — using the properties of the Fourier transform — thenet potential energy

1
V=35> Jap(Ri = Rj)pta(Ri)pp(R;) (37)
INE
can be expressed in reciprocal space as
1 T ~ ~x
V=35> Jap()fia (k)i (k). (38)
k
wherek is a reciprocal lattice vector. Moreover
= —1 3R,Rp — R%*Sup )
Jap(k) = —ik - R), 39
5(k) R%jo e @ ok R) (39)

where the summation runs over all lattice vectBrs
Similar comments apply to the point-point and point-dipokeractions.
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