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Many processes involving ions, polar molecules, or polar moieties take place in an external
medium with heterogeneous dielectric properties. Examples range from protein folding in a
polarizable solvent to contact electrification induced by the rubbing of two dislike solids. When
simulating such processes, it is not appropriate to decomposethe electrostatic forces between
the central atomistic degrees of freedom into (effective) two-body contributions. Instead, one
needs to consider the dielectric response of the external medium, which one may want to rep-
resent as a continuum. In this contribution, we show that the split-charge equilibration (SQE)
method can be used to describe continua with well-defined dielectric properties, although it
was originally designed to assign atomic charges on the fly. Assuch, SQE bears much potential
for hybrid particle-continuum simulations. The comparison of dielectric response functions as
obtained by SQE and point dipole methods reveals many advantages for SQE. The main points
are: SQE requires fewer floating point operations, non-local dielectric properties are more eas-
ily embedded, and the leading-order corrections to the continuum limit are isotropic on the
simple cubic lattice in contrast to point dipole models.

1 Introduction

The electrostatic polarization of an embedding medium can strongly affect the interac-
tion between ions, polar molecules, or other polar degrees of freedom. To illustrate this
point, consider an anion with elementary charge close to a surface of a highly polarizable
medium, such as water or, in the extreme case, a metal. If we neglect the surface dipole
of the polarizable medium and the induced dielectric response, no (long-range) interaction
takes place. However, assuming an ideal mirror charge, the anion feels a Coulomb attrac-
tionV = −e2/4πε0d, whered is the distance between the anion and its mirror image. The
numerical value of the correction to a non-polarizable treatment ford = 10 Å amounts to
as much asV ≈ 1.44 eV, which is roughly 55 times the thermal energykBT at room tem-
perature. This number distinctly exceeds the typical energy difference of ten timeskBT
between the ground state energy of a folded protein and the first meta-stable conformation.

If the ion is part of a fluid or a solid, that is, if it is part of the central zone of interest, the
“effective self-interaction” that the ion experiences from the external medium is not quite
as strong as if the ion is in isolation. This is because condensed matter tends to arrange
such that it avoids local electrostatic monopoles. The ion then experiences not only its
own induced mirror charge but also that of a nearby charge-balancing counterion. As an
example, an ideal point dipole of 1.85 D (the value for an isolated water molecule) must
be as close as 5.5̊A to its mirror dipole to acquire an effective self-interaction energy of
roughlykBT . Yet, the annihilation of the induced forces may not be sufficiently systematic
to make polarization corrections negligible, because polar molecules or moieties can adopt
a preferential orientation near interfaces formed by two materials with different dielectric

1



properties. For this and related reasons, the electric polarization needs to be accounted for
in accurate simulations of ionic and polar media1–4. Since most systems are heterogeneous
and boundary conditions are more complicated than those of semi-infinite metal walls, it
is futile to derive effective interactions between the explicitly treated atomistic degrees of
freedom. Instead, it is desirable to compute the polarization of the embedding medium,
ideally by exploiting continuum descriptions and appropriate meshing far away from the
zone of interest.

Often, polarization in condensed matter systems is accounted for by placing inducible
(point) dipoles onto atoms or (super) atoms5–7. However, in addition to electrostatic polar-
ization of atoms, there can be charge transfer between them.Although there is nounique
scheme breaking down the polarization into intra- and inter-atomic contributions8 (mainly
because partial atomic charges cannot be defined unambiguously9), recent advances show
that it is yet both meaningful and practical to do so10. We shall not repeat the arguments
here and instead simply assume as a heuristic working hypothesis that charge transfer be-
tween atoms and the polarization of atoms can be assigned meaningfully.

Determining the set of partial charges{Q} and/or atomic dipoles{µ} – plus potentially
higher-order multipoles – is usually done using minimization principles11. The idea is
to find an approximation for the potential energy of the system V = V ({Q,µ ...}) by
Taylor expandingV with respect to the set of the (small) parameters{Q,µ, ...} and to find
well-motivated expressions for the expansion coefficients. In this work, we will base this
expansion on the split-charge equilibration (SQE) model12, in which atomic charges result
from the charge transfer through chemical bonds. In addition to fractional charges, atoms
can receive integer charges, which, however, are not subjected to bond energy penalties
but only to on-site interactions. The SQE method has been recently justified from density-
functional theory based arguments10. The gist of this justification is that the non-locality
of the kinetic energy in DFT (which leads to the shell structure of atoms and to band gaps
in solids) can be expressed correctly in leading order by thesplit-charge terms (which are
needed to yield a dielectric response differing from that ofmetals).

The SQE method was proposed as a unified model of the original chemical-potential-
equalization method also known as charge equilibration13,14 (QE) and the atom-atom
charge transfer approach (AACT)15. It turns out that SQE avoids the (mutually exclusive)
disadvantages of QE and AACT method without introducing newones. For example,
QE automatically produces a metallic response, i.e., a diverging dielectric permittivity,εr,
while AACT can only mimic systems for whichεr − 1 . 1 holds16. In contrast, SQE
can reproduce any arbitrary value ofεr > 1. In this contribution, we focus on the dielec-
tric properties of SQE and compare them to those produced by approaches in which the
dielectric response results from point dipoles.

The remaining part of this chapter is organized as follows: In Section 2, the charge
transfer and point dipole models are introduced within one common framework. In Sec-
tion 3, the continuum limit is derived for a pure SQE model anda pure point dipole model
on the simple cubic lattice. Further properties of charge-equilibration methods, that is,
those pertaining to molecular systems, are summarized in Section 4. Conclusions are
drawn in Section 5. In the appendix, Section 6, details on thedipole-dipole interactions are
presented.
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2 Charge transfer approaches and the split charge model

As mentioned in the introduction to this chapter, the goal isto find an expansion for the
energy as a function of the partial charges and the dipoles – plus potentially higher-order
electrostatic multipoles – as a function of the atomic coordinates:

V ({R, Q, µ}) = V ({R, Q0, µ0}) +
∑

i

{

∂V

∂Qi

∆Qi +
∂V

∂µiα

∆µiα

}

+
∑

i,j

{

1

2

∂2V

∂Qi∂Qj

∆Qi∆Qj+
∂2V

∂Qi∂µjα

∆Qi∆µjα +
1

2

∂2V

∂µiα∂µjβ

∆µiα∆µjβ

}

.(1)

We truncate after second order and after the dipole terms. Here, {Q0} and{µ0} denote,
respectively, a set of reference values for atomic charges and dipoles. In the following, we
will assume that these can be set to zero unless mentioned otherwise. Moreover, Roman
indices refer to atom numbers while Greek indices enumerateCartesian coordinates, e.g.,
µiα ≡ µiα0 + ∆µiα is theα component of the dipole on (super)atomi. For Cartesian
indices, we use the summation convention. Some terms in the Taylor expansion Eq. (1)
can be readily interpreted.

For isolated atoms,∂V/∂Qi corresponds to the electronegativityχi (plus potentially
a coupling to an external electrostatic potential), while∂2V/∂Q2

i can be associated with
the chemical hardnessκi. They can be parameterized via finite-difference approximations
of the ionization energyIi and electron affinityAi. The latter two quantities can be be
obtained by removing or adding an elementary chargee from atomi,

Ii =
κi

2
e2 + χie (2)

Ai =
κi

2
e2 − χie (3)

and thusκi = (Ii+Ai)/e
2 andχi = (Ii−Ai)/2e. (These quantities are commonly stated

in units of eV, which means that the underlying unit system uses the elementary charge as
the unit of charge.) In principle,κi andχi should depend on the environment, but within a
reasonable approximation, they can be taken from values measured for isolated atoms. In
practical applications, i.e., when allowingκi andχi to be free fit parameters, they turn out
within O(10%) of their experimentally determined values12,17. Furthermore, it is tempting
to associate the mixed derivative∂2V/∂Qi∂Qj (i 6= j) with the Coulomb potential, at
least ifRi andRj are sufficiently distant. For nearby atoms, one may want to screen the
Coulomb interaction at short distance to account for orbital overlap.

All terms related to the atomic dipoles can be interpreted ina straightforward fashion.
The negative of∂V/∂µiα is theα component of the electrostatic field atRi due to ex-
ternal charges. The single-atom terms∂2V/∂µiα∂µiβ , can be associated with the inverse
polarizability 1/γi of atom i. Unlike for the charges, practical applications find a large
dependence of the polarizability on the chemical environment (in particular for anions)18,
including a direction dependence for directed bonds. The two-atom terms∂2V/∂Qi∂µjα

and∂2V/∂µiα∂µjβ correspond to the charge-dipole and dipole-dipole Coulombinterac-
tion, respectively, at least for large distancesRij between atomsi andj.

Unfortunately, it is incorrect to assume that the second-order derivatives∂V 2/∂Qi∂Qj

quickly approach the Coulomb interaction asRij increases beyond typical atomic spac-
ings, which one might conclude from the argument that chemistry is local. This can be
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seen as follows: we know that isolated fragments (such as atoms or molecules) take in-
teger charges, in many cases zero charge. If we separate two atoms, such as sodium and
chlorine to large separation, we would find that the fragments carry a fractional charge

QNa,Cl = ±
χCl − χNa

κNa + κCl − 1/(4πε0RNaCl)
, (4)

assuming that∂V 2/∂Qi∂Qj quickly approaches the Coulomb potential. Using element-
specific numerical values19, one obtains partial charges of±0.4 e for a completely disso-
ciated dimer. However, both atoms should be neutral, because INa > ACl, which requires
one to prevent non-local (fractional) charge transfer.

What needs to be done is to penalize the transfer of (fractional) charge over long dis-
tances, i.e., when the overlap of orbitals of isolated atomsor ions ceases to be of impor-
tance. This can be done as follows. We write the charge of an atom as12,16

Qi = nie+
∑

j

qij , (5)

whereni is called the oxidation state of the atom andqij is the charge donated from atom
j to atomi, which is called the split charge. By definition,qij = −qji. (One may ob-
ject that such an assignment is meaningless as electrons areindistinguishable. However,
assignments can be made unique, e.g., by defining an appropriate Penrose inverse for the
reconstruction of split charges from charges10.) Next, we do not only penalize built-up
of charge on atoms but also the transfer of charge. Thus, the terms in Eq. (1) exclusively
related to partial atomic charges become

V ({R, Q, · · · }) =
∑

i

{κi

2
Q2

i + (χi +Φext
i )Qi

}

+
∑

i,j>i

{

κij

2
q2ij +

Sij(Rij)

4πε0Rij

QiQj

}

+O(µ). (6)

Here, we have introduced the split-charge or bond hardnessκij , which is generally distance
and also environment dependent, i.e., it diverges asRij becomes large, prohibiting the
transfer of charge over long distances. Moreover,Sij(Rij) denotes a screening at small
distances withSij(Rij) → 1 for Rij → ∞.

Eq. (6) represents the SQE model. The original QE arises in the limit of vanishing
bond hardness termκij , while the AACT model neglects the atomic-hardness termsκi.
Partial charges of atoms are deduced by minimizing the energy with respect to the split
chargesqij . The total charge of the system automatically adjusts toQtot =

∑

i nie ow-
ing to theqij = −qji symmetry. The minimization ofV with respect to the split charges
can be done with the usual strategies for finding minima of second-order polynomials,
such as steepest descent (good and easy for systems with large band gap, i.e., large values
of κs, reasonable convergence in two or three iterations), extended Lagrangians (not effi-
cient for systems with zero or small band gap), or conjugate gradient (probably best when
dealing with small or zero band gap systems). Matrix inversion of the Hessian matrix
is strongly disadvised due to unfavorable scaling with particle number. Once the partial
charges are determined, forces arising due to electrostatic interactions can be computed
from ∂V ({R, Q, · · · })/∂Riα.
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The numerical overhead of SQE versus QE is minimal, if present at all. As a matter
of fact, since QE models all materials as metallic (as we shall see later), SQE requires
much fewer iterations to convergence than QE, at least for systems with a band gap. How-
ever, there is a memory overhead within the SQE formulation.For example, assuming 12
neighbors per atom on average, one obtains six split chargesper atom, which need to be
stored in memory. Despite of this memory overhead in SQE, thenumber of floating-point
operations per SQE minimization step is not much larger thanfor QE. The reason is that
the bulk of the calculations is related to the evaluation of the Coulomb potentialVC and
the derivatives∂VC/∂Qi. Once the latter are known and stored in arrays, the derivatives
∂VC/∂qij can be obtained with little CPU time via

∂VC

∂qij
=

∂VC

∂Qi

−
∂VC

∂Qj

, (7)

sincedQk/dqij = δik − δjk.

3 The continuum limit of charge equilibration models

In this section, the (static) dielectric response functionof the SQE model (augmented with
inducible point dipoles) is explored in the continuum limit. Such a treatment contains the
original QE and the AACT model as limiting cases. The presentation here explores a sim-
ilar model discussed previously20, i.e., a simple cubic crystal in which a “slowly” varying
electrostatic fieldEext(R) produced by “external” charges is added.a The derivation of
the dielectric permittivity pursued is simplified with respect to the original one and more-
over, we no longer restrict ourselves to the capacitor geometry.

The chargeQ(R) at lattice siteR/a = lex+mey +nez (a being lattice constant) can
be calculated through the following second-order, finite-difference approximation to

Q(R) = −
∑

∆R

∆R · ∇q(R,∆R), (8)

where∆R is a lattice vector. For∆R being a nearest-neighbor vector, the split-charge
field q(R,∆R) shall be interpreted as follows:q([x + a/2, y, z], ae1) is the split-charge
donated from the atom located at(x, y, z) to that at(x+a, y, z). (This way, the expression
∆R q(R,∆R) can be seen as a dipole centered atR+∆R/2.) Because similar relations
hold for split charges shared between next-nearest atoms, etc., the summation in Eq. (8) can
be generalized to any lattice vector∆R. To clarify Eq. (8), we note that the split-charge
field on the r.h.s. is a function defined on a continuous variable R. The field is chosen
such that it is as smooth as possible but nevertheless represents exactly the true split charge
exchanged between nearest (or farther) neighbors at the center of the (imaginary) bond of
the two atoms exchanging a split charge. The l.h.s. of Eq. (8)is a discrete charge at lattice
siteR. By dividingQ(R) througha3, it can be turned into a continuous charge density.

aIt is probably more meaningful to refer to a continuous-background charge distribution that is not treated ex-
plicitly rather than to an external charge distribution. Moreover, the term “slowly varying” shall imply that the
charge distribution is continuous, e.g., it only lives on one single wavelength within the first Brillouin zone of the
crystal.
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In reciprocal space, Eq. (8) becomes

Q̃(k) = −i
∑

∆R

k ·∆R q̃(k,∆R). (9)

A difficulty that arises when exchanging split charges with next-nearest neighbors is
that we need additional split charge fields, i.e., those living on lattice sites for which
l+m+ n is odd and those for whichl+m+ n is even. This means that our simple cubic
lattice needs to be subdivided into two interpenetrating face-centered cubic lattices, which
makes the analytical discussion intransparent. The need for different lattices will disappear
for external fields that have a wavelength much exceeding a lattice constant. It is only in
this latter case that the conversion from a discrete theory to a continuum theory as initiated
in Eq. (9) is meaningful. Short wavelengths would have to be treated differently. At this
point, it shall suffice to state that it is possible, in principle, to tune the next-nearest neigh-
bor bond hardness independently from that of nearest neighbors. This would mean that
the polarizability at a wavelength2a can be set independently from that at wavelengtha.
Similar comments apply when including third-nearest neighbors, etc. Therefore, it should
be possible to design a dielectric permittivity such that itreproduces a desired wavelength
dependence. For reasons of clarity, we keep Eq. (9) without introducing independent split
charges fields living on different sublattices. (Of course,an alternative approach to in-
creasing the unit cell would be to couple differentk vectors defined for the original unit
cell.)

Including point dipoles to the lattice sites, the split-charge energy for a perfect (mono-
atomic,χ ≡ 0) lattice reads

V =
∑

R

{

κ

2
Q2(R) +

∑

∆R

κs(∆R)

2
q2(R,∆R)−E

ext(R) ·∆R ∇q(R,∆R)

}

+
∑

R

{

1

2γ
µ2
α(R)− Eext

α (R)µα(R)

}

+
∑

R,R′

{

J(∆R)

2
Q(R)Q(R′)

+ Jα(∆R)Q(R)µα(R
′) +

Jαβ(∆R)

2
µα(R)µβ(R

′)

}

. (10)

Here, J(∆R) is the (screened) Coulomb interaction between the chargesQ(R) and
Q(R′), the singly-indexedJα(∆R) represents the (screened) charge-dipole interaction,
and the doubly-indexedJαβ(∆R) is the dipole-dipole interaction. Moreover,∆R ≡
R−R

′ and any Coulomb coupling (from monopole-monopole to dipole-dipole interaction)
is set to zero for∆R = 0.

Eq. (10) is easily transformed into reciprocal space, as only bilinear coupling oc-
curs. To do so, one needs to replace sums overR with sums overk and follow the
known rules for Fourier transforms, for instance, the atomic hardness term becomes
∑

k
κQ̃(k)Q̃∗(k)/2. See also the appendix.
The solutions̃q(k,∆r) minimizingV must satisfy∂V/∂q̃(k,∆R) = 0, which reads

{

κ+ J̃(k)
}

kα∆RαQ̃(k) + κs(∆R)q̃(k,∆R) = Ẽeff
α (k)∆Rα (11)

with

Ẽeff
α (k) = Ẽext

α (k)− kαJ̃β(∆k)µ̃β(k). (12)
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Figure 1. (a) Minimum eigenvalues of the dipole coupling matrix J̃αβ(k) for selected paths in the first Brillouin
zone of the simple cubic lattice. (b) The coupling of dipoles oriented parallel to the givenk vector as a function
of the wavenumber along selected paths. (c) Fourier transform of the Coulomb interactioñJC(ak) for the simple
cubic lattice.

In reciprocal space, the minimization condition∂V/∂µi(R) = 0 becomes
{

δαβ
α

+ J̃αβ(k)

}

µ̃β(k) = Ẽext
α (k)− J̃α(k)Q̃(k). (13)

From the set of coupled equations (11) and (13), one can deduce the dielectric response to
an external field. We will discuss these solutions in a separate paper. In this contribution,
for reasons of simplicity, we focus on the limit in which the coupling between monopoles
and dipoles can be neglected. This allows one to work out the differences between the
dielectric response functions that are due to either pure dipole or pure bond polarization.

3.1 Pure dipole polarizability

We start our analysis of the dielectric response by neglecting charge transfer. For reasons of
simplicity, we consider a sinusoidal electrostatic field that is aligned parallel to thez-axis of
our simple cubic solid, i.e.,Eext(r) = E3e3 exp(ik3z). To this end, we need expressions
for the J̃αβ(k3e3) elements, see also the appendix. The off-diagonal elementsmust be
zero (fork parallel toz) for reasons of symmetry. Numerically, we find for unscreened
dipole-dipole interactions that the diagonal elements canbe represented quite accurately
via

J̃11(k3e3) = J̃22(k3e3) ≈
δk30 − 1

3ε0a3
{

1 + 0.156(5) sin2(ak3/2)
}

(14)

J̃33(k3e3) = −2J̃11(k3e3), (15)

which includes the discontinuous drop from a finite value atk3 = 0+ to zero atk =
0. It is furthermore well known21 that the dispersion of thẽJαβ(k) depends onk. This
dependence is sketched along some lines in the first Brillouin zone in Fig. 1(b). One can
see that the corrections to the continuum limit depend not only on the magnitude ofk but
also on its orientation.

We start our discussion with the analysis of the split charges exchanged in a direction
normal to the external field, i.e., inx-direction. According to Eq. (9)

{

1

γ
+ J̃11(k3e3)

}

µ̃1(k3e3) = 0, (16)
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Using Eq. (14) forJ̃11(k3e3), one can see that the prefactor on the l.h.s. of the equation
can become zero at a finite densityρ, which is defined asρ = 1/a3. This means that
the system can acquire a finite polarization without energy penalty, which in turn implies
a polarization catastrophe. For small but non-zerok3, this happens at the same density
ρ = 3ε0/γ at which the Clausius-Mossotti (CM) relation for dipoles (see Eq. (23) for
k3 → 0) indicates a diverging dielectric constant, namely forγρ = 3ε0.

The discrete simple cubic solid becomes unstable at an even smaller density, e.g., for
dipoles associated with the wavevectork = π(0, 0, 1)/a and at even smaller densities for
k = π(1, 1, 0), as one can see from Fig. 1a. Specifically, dipoles with the wavevector
(π/a)(1, 1, 0) already become unstable at a density ofρ = ε0/0.4259(3)γ rather than at
3ε0/γ as in CM.

We next analyze the split-charge response parallel to thez axis. Deriving the regular
CM relation from the present treatment is not easily possible. The reason is that the sum
over dipoles is only conditionally convergent – hence the discontinuity of theJ̃αβ(k) at
theΓ point. Due to the conditional convergence, the shape of the material matters when
determining its dielectric response. For the regular capacitance geometry, the static di-
electric constant consistent with CM relation requires summing up planes of interacting
dipoles, where each plane is normal to the thez axis22. Here, we proceed using a different
approach, previously pursued to derive the (macroscopic) dielectric response function23.

What we seek is a relation between the polarizationP ≡ 〈µα〉eα/a
3 and the coarse-

grained total electrostatic fieldEtot through the equation

1

a3
µ̃α(k) = ε0 {ε̃αβ(k)− δαβ} Ẽ

tot
β (k), (17)

whereε̃αβ(k) is the dielectric tensor. So far, we only have a relation between the dipoles
and the electrostatic field due to external charges, i.e., for thez-component

{

1

γ
+ J̃33(k3e3)

}

µ̃3(k3e3) = Ẽext
3 (k3e3). (18)

The total field is the superposition of a slowly varying field due to external charges and
a rapidly varying field produced by the dipoles. The latter consists of two contributions.
One is the field coming from “outside” the dipoles, i.e., the one we used to sum up the
dipole-dipole interactions. The other contribution stemsfrom the “internal” field within
the point dipole23. It can be represented as aδ-function singularity if the dipole is located
at the origin, see the appendix:

Eint
α (r) = −µα

δ(r)

3ε0
. (19)

At a given lattice point, we define the coarse-grained field according to

Etot
α (R) = Eext

α (R) +
1

a3

∫

VE(R)

d3r

{

Edip
α (r)−

µα(R)

3ε0

}

, (20)

whereVE(R) is a cubic elementary cell of sizea3 with its center of mass located atR.
With this choice, the dipole field from the dipole contained in VE(R) does not contribute
to the coarse-grained field. To leading order, we approximate the value ofEdip

α (r) within
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VE(R) throughEdip
α (R) produced by dipoles from outside ofVE(R). This makes the

J̃33(k3e3) term on the r.h.s. of Eq. (18) disappear and thus
{

1

α
−

1

3ε0a3

}

µ̃3(k3e3) ≈ Ẽtot
3 (k3e3). (21)

At this level of approximation, i.e., for〈Edip
α (r)〉VE(R) ≈ Edip

α (R), the response function
is dispersion-free and moreover continuous at theΓ point. However, each mode becomes
unstable at the same value ofk3. This contradicts our previous result (exact for point
dipoles) for the polarization catastrophe inx direction, which – for simple cubic – is sym-
metry related to that inz. The problem can be fixed by re expressing Eq. (21) as

ε0a
3

{

1

γ
−

δk30

3ε0a3
−

J33(k3e3)

2

}

µ̃3(k3e3)

a3
= ε0Ẽ

tot
3 (k3e3), (22)

where we have introduced some factors to simplify the comparison to Eq. (17). Such a
comparison yields

ε̃33(k3e3)− 1 =
γ/ε0a

3

1− γδk30/3ε0a
3 − γJ̃33(k3e3)/2

=
γ/ε0a

3

1− γ/3ε0a3
{

1 + 0.156(5) sin2(ak3/2)
} (23)

The last two relations state that the dielectric tensor elementJ̃33(k3e3) is continuous at the
Γ point. Furthermore, Eq. (23) is equivalent to the CM relation atk3 = 0 andk3 → 0.

The treatment parallel to other (symmetry) directions is similar to the one presented
so far. However, it becomes more complicated whenk does not lie on a symmetry line,
because the eigenvectors of the coupling matrix are no longer purely parallel or orthogonal
to k. This means that the polarization induced in the crystal is no longer parallel to the
(static) electrostatic field induced by the external chargedistribution. Thus, the dielectric
response functions quickly deviates from being isotropic with increasing wavenumber.

3.2 Pure charge transfer polarizability

As argued before, one of the promising properties of the SQE model is that one can define
non-local charge transfer resulting in non-local responsefunctions. However, there are
quite a few differences between point-dipole polarizability and split-charge polarizability
at a level where we only allow for charge transfer between adjacent atoms on the simple
cubic lattice.

To keep the formalism transparent, we will first restrict split charges to nearest neigh-
bors.b In analogy to our previous treatment20, we write nearest-neighbor split charges as
a vectorqα(R), whereq1(R+ ae1/2) is the split charge donated from the atom located at
R to the one atR+ ae1. This allows one to rewrite Eq. (9) as

Q̃(k) = −ikαq̃α(k). (24)

bWhen describing non-local charge transfer on the continuum scale through Eq. (9), one can proceed as done
in the current text. One only needs to divide Eq. (11) byκs(∆R), multiply the equation with the wavenumber
and sum it over all∆R. This way, one obtains an equation forQ̃(k) with effective values for the split-charge
hardness and the Coulomb interaction.
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Assuming the same sinusoidal electrostatic field parallel to thez axis as in the previous
section and no point dipoles on atoms, Eq. (11) can be writtenas

[{

κ+ J̃(k3e3)
}

(ak3)
2 + κs

]

q̃3(k3e3) = aẼext
3 (ke3). (25)

To derive the expression for the dielectric permittivity, we proceed similarly as in the pre-
vious section, rather than as in the original literature20. First we identifyaq3(R) as the
dipole per volumeVE = a3 and thusP3(R) = q3(R)/a2 is the local polarization. Next
we convert from an external electrostatic field to a total, coarse-grained field on the r.h.s.
of the equation by eliminating the Coulomb interaction on its l.h.s. The difference to the
previous section is that we do not need to take care of internal dipole fields, because the
Coulomb interactions are solely related to point charges. Thus,

aε0
{

κ(ak23) + κs

} q̃(k3e3)

a2
= ε0Ẽ

tot
3 (ke3). (26)

Comparison with Eq. (17) yields

ε̃33(k3e3)− 1 =
1

ε0a{κs + κ(ak3)2}
, (27)

which is equivalent to Eq. (27) in Ref. 16 but contains in addition a dispersion correction
due to atomic hardness. Here, we note that we used simple finite-difference approximations
to deduce the charges from the split-charge field. This is whyε̃33(k) does not turn out
periodic in the Brillouin zone. The problem can be easily fixed without changing the
leading-order behavior of the dielectric susceptibility by replacing Eq. (27) with

ε̃33(k3e3)− 1 =
1

ε0a{κs + 4κ sin2(ak3/2)}
, (28)

which is equivalent to replacing Eq. (24) with the accurate relation Q̃ =
∑

∆R
{exp(−ik ·∆R)− 1} q̃(k,∆R).

Formally, Eq. (28) expresses a similar functional dependence of ε̃33(k3e3) on k3 as
that derived for pure dipole polarization, see Eq. (23). However, there are differences
between them in practice. First, the leading continuum corrections for small but finitek
are isotropic for the SQE model but not for the point dipole model. Second, the prefactor
to the corrections is small for dipoles, i.e., of order 0.1. Conversely, the ratioκ/κs tends
to be of order unity or much greater. This is becauseκse

2 can be associated with the band
gap of solids16 (in fact,κs is an upper bound for the band gap), so thatκs (for true chemical
bonds) can be anything between zero and values a few times theatomic hardness. Next, the
dielectric response in the SQE formalism does not automatically diverge at high density
for fixed dipole or bond polarizability. The reason is that the total Hessian can be made
positive definite through the choice of large atomic hardness. This is different from the
AACT model, which necessitates small bond polarizability to keep the Hessian positive
definite.

Fig. 2 demonstrates that the dielectric permittivity,εr = ε̃33(0), is indeed indepen-
dent of the atomic hardness. Moreover, one recognize that the dielectric response does
indeed not diverge even ifκs is very small. For the smallest value of the bond hardness
(κs = 1/4ε0a), the point-dipole model with equivalent local polarization (γ = a2/κs)
would have been already beyond the polarization catastrophe, i.e., it would have produced
a negative dielectric constant ofεr = 4/(1− 4/3) = −12.
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Figure 2. Dielectric permittivity for different choices ofκ andκs. The numerical results were obtained in a
regular capacitor geometry, in whichNz = 100 layers containing10× 10 atoms were placed into a simulation
cell. Periodic boundary conditions were applied in all three spatial dimensions, however, in the direction of the
electrostatic field, a gap was introduced. The dielectric permittivity was obtained by measuring the coarse-grained
total electrostatic field within and outside the material. From Ref. 16.

The reason whyκs can be made small even at large density is that the atomic hardness
impedes large local dipole gradients. Thus, the atomic hardness must introduce some
smearing of the response function. To elucidate this claim,we analyze the split-charge
response in a capacitor geometry. Thus, we consider an external electrostatic potential that
has a constant slope in a periodically repeated cellΦ(z) = E3z but goes back to zero when
the periodic image is repeated. The required non-zero Fourier coefficients for the resulting
electrostatic field read16

Ẽ3(k3e3) = −2E3 for k3 = 2πn/L, n ∈ N. (29)

The associated split charge response is

q̃(k3) ≈
−2E0

{

κ+ J̃(k3e3)
}

(ak3)2 + κs

, (30)

where a reasonable approximation toJ̃(k) was found to be20

J̃(k) =
1− ν(ak)2

ε0a(ak)2
. (31)

A value ofν = 0.22578 expresses the (isotropic) leading-order discretization corrections
for the simple cubic lattice, see Fig. 1. Inserting Eq. (31) into (30) can be written as follows

q̃s(k3) =
−2E0

κ′(ak)2 + κ′
s

(32)

with κ′ = κ − ν/ε0a andκ′
s = κs + 1ε0a. When solving the response of the dielectric

medium, i.e., with the help of the residue theorem, it becomes clear that the roots of the
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denominator of Eq. (32) have the meaning of an inverse (exponential) decay lengthδ−1.
This can be solved to yield

δ = a

√

ε0aκ− ν

1 + ε0aκs
. (33)

Thus, the split charge field decays withq(z) ∝ exp(−|z− z0|/δ) from the surface located
at z0. The surface polarization charge must obey the same exponential law, because it is
proportional to the derivative ofq(z). Fig. 3 demonstrates that the expected behavior is
borne out in numerical simulations. Their set-up is described in the caption of Fig. 2.

It is instructive to analyze the properties in the limits where either the bond hardnessκs

disappears (as in conventional QE methods) or the atomic hardnessκ (as in AACT). First,
for κs = 0 the dielectric constant diverges for small wavevectors according to Eq. (27).
This is the behavior of an ideal metal. This result implies that electric field lines are per-
pendicular to the surface of material modeled within the QE approach. (This is observed
in simulations, which shall not be shown here.) Second, forκ = 0, the dielectric constant
is finite. However, a problem that arises is that the Hessian must be positive definite. The
smallest value that̃J(k) takes for unscreened Coulomb interactions on the simple cubic
lattice is−(3π2)M/4πε0a, whereM = 1.748 is the Madelung constant of the rock salt
lattice. Thus,κs must exceed the largest negative eigenvalue of theJ̃αβ(k) matrix. This is
found atk = (π/a)(1, 1, 1) and the resulting limitation for the the dielectric permittivity
is εAACT

r − 1 < 1/1.748, at least for unscreened Coulomb potentials. This is less than
the corresponding value of any condensed matter material. Very small values observed in
reality are, for exampleεr & 2 for Teflon or polyethylene. These values are similar to
ε∞r (NaCl) = 2.56.
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4 Further properties of charge equilibration models

Most charge-transfer studies do not focus on periodic systems but are predominantly con-
cerned with molecules. In that context, deficiencies of various models were noted before
the analysis presented in the previous section had been conducted. Here, we summarize
some of the results on molecular systems.

One of the first problems noted with regular QE is that it does not obey the neutral dis-
sociation limit24, as can be seen from Eq. (4). The original proposition to fix this problem
was to screen chemical potential differences as a function of distance24. Unfortunately,
this fix is hardly justified in reality and its implementationactually leads to artifacts, e.g.,
batteries could not work if the chemical potentials betweenatoms were screened as a func-
tion of distance. Screening is only meaningful for electrostatic field lines when there is a
medium whose influence is not considered explicitly. But even if field lines were screened,
this does not mean that energy differences would be completely damped out. The line in-
tegral from one point to another would still remain finite owing to near-field contributions.
Moreover, how can screening be justified for a dimer placed invacuum?

Approaches in which the concept of bond hardness is introduced can be easily param-
eterized to yield dissociation limits in which the atoms areneutral12,25 – or have non-zero
integer charge16,26. All that needs to be done is to make the bond hardness divergewhen
two atoms or two molecular fragments are moved to large separation. In fact, a quantitative
analysis revealed that making the bond stiffness between two atoms simply a function of
the distances between the two atoms (without including an environment dependence) al-
ready lead to reasonably accurate partial atomic charges ofthe reactants (initially and near
the transition state) and of the products of the bond breaking25.

It had also been observed that the polarizability of polymersγ(N) (e.g. simple alkanes)
as treated with QE growths with the third power of the degree of polymerizationN in the
limit of largeN . The correct scaling is linear27,17. Some representative results are shown
in Fig. 4 and compared to quantum chemical calculations. Onecan see that the QE model
systematically overestimates polarizabilities while SQEshows the correct trend. The SQE
data only tends to lie slightly below the quantum chemical results, which is easily explained
because the employed SQE model did not allow for atom polarizability. Lastly, QE models
ignoring the bond hardness term produce alcohols whose dipole moment increases as the
fatty tail of the molecule is made longer, while the dipole quickly levels off at a realistic
value within an SQE type treatment28.

The AACT models do not suffer from the shortcomings of pure QEmodels. However,
they have different deficiencies. For example, they barely show any dispersion of the
alkene polarizabilityγ(N) at smallN in contrast to the real behavior and that exhibited by
SQE models27. This behavior can be rationalized from the small (zero) penetration depth
δ derived for solids in the last section. Moreover, the AACT model produces negative
(chemical) hardnesses of molecules when excess charge is added to a molecule16.

In conclusion, neither pure bond nor conventional QE model produce the correct con-
stitutive equations, while their combination in form of SQEcan be parameterized to re-
produce meaningful numbers. In fact, even absolute numbersturn out reasonable12, e.g.,
partial charges deduced from SQE were withinO(10%) accuracy as compared to DFT-
based results while QE and AACT deviated byO(30%). A comprehensive comparison
between SQE and QE also found that SQE clearly outperformed the original QE in all 23
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Figure 4. Polarizability of (a) QE and (b) SQE as a function ofthe polarizability deduced from quantum me-
chanical calculations on a variety of molecules. Green, red,and blue data points reflect the smallest, the medium,
and the largest eigenvalue of the polarizability tensor fordifferent molecules (including varying conformations).
From Ref. 17.

benchmark tests on a set of more than 500 organic molecules17.
The true advantage of SQE, when applied at a molecular level,might yet be a different

one: It allows one to introduce formal oxidation states and to treat meaningfully excess
integer charge in molecular systems16,26. This makes it possible to reproduce the generic
features of contact electrification as well as the dischargeof batteries, which will be shown
in future work.

5 Concluding Remarks

The main part of this contribution is the analysis of the dielectric permittivity as pro-
duced by the regular split-charge equilibration model and amodel in which point dipoles
are placed on discrete lattice sites. While both methods havesimilar low-density, long-
wavelength response functions, there are quite a few differences between them. First, the
SQE model is based on summing up (eventually screened) Coulomb interactions between
point charges while the point dipole models are based on dipole-dipole interactions. Since
the resulting sums are conditionally convergent in both cases, neither one can be cut off
at a finite distance without uncontrollable errors. The advantage of the SQE model is that
fewer floating point operations are required to evaluate pair interactions, since the cou-
pling of point charges is described by a scalar rather than bya tensor of rank two as for
dipoles. Moreover, fast summation methods for Coulomb interactions are readily avail-
able. Second, the SQE model produces response functions on the (easy-to-code) simple
cubic lattice that are isotropic not only in the continuum limit but also with respect to their
leading-order continuum corrections, which are of orderk

2. Point dipole models on the
simple cubic lattice have direction-dependentk

2 interactions.
A potentially useful advantage of SQE over point-dipole models is that the SQE model

can reflect non-local dielectric response functions. This can be done, in principle, by intro-
ducing non-local charge-transfer variables. This abilitymakes the SQE model a promising
candidate as a coarse-grained model for water, which is known to have a strong wave-
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length dependent dielectric constant29. Another advantage of the SQE model is that it is
isomorphic to elastic models. The split charges can be treated in analogy to (elastic) dis-
placements in the solid. Thus, coarse-graining of the region and adaptive mashing of SQE
can be done in analogy to elastic models.
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6 Appendix: Dipole-dipole interactions in real and reciprocal space

The field of a dipoleµ centered at the origin can be represented according to

E(r) =
1

4πǫ0
∇

(

µ · ∇
1

r

)

=
1

4πǫ0

(

3(µ · r)r− µr2

r5

)

−
µ

3ǫ
δ(r) (34)

Thus, the potential energyV gained when a second dipole is placed atr 6= 0 reads in tensor
notation

V = Jαβ(r)µ1αµ2β (35)

with

Jαβ(r) =
−1

4πǫ0

3rαrβ − r2δαβ
r5

. (36)

If dipoles are placed onto a Bravais lattice, such as the simple cubic lattice, it is readily
shown – using the properties of the Fourier transform – that the net potential energy

V =
1

2

∑

i,j 6=i

Jαβ(Ri −Rj)µα(Ri)µβ(Rj) (37)

can be expressed in reciprocal space as

V =
1

2

∑

k

J̃αβ(k)µ̃α(k)µ̃
∗
β(k), (38)

wherek is a reciprocal lattice vector. Moreover

J̃αβ(k) =
∑

R 6=0

−1

4πǫ0

3RαRβ −R2δαβ
R5

exp(−ik ·R), (39)

where the summation runs over all lattice vectorsR.
Similar comments apply to the point-point and point-dipoleinteractions.
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