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2 Dept. of Materials Science and Engineering, Saarland University, 66123
Saarbrücken, Germany

Constraints on phase stability, defect energies, and
elastic constants of metals described by EAM-type
potentials

Abstract. We demonstrate that the embedded-atom method and related
potentials predict many dimensionless properties of simple metals to depend
predominantly on a single coefficient µ, which typically lies between 0.3 and 0.45.
Among other relations presented in this work, we find that Ec ∝ Zµ, Ev/Ec = µ,
and G/B ∝ µ hold within 25% accuracy and also find a linear dependence
of the melting temperature on µ. The used variables are cohesive energy Ec,
coordination number Z, vacancy energy Ev, and bulk modulus B, while G is
the average of ordinary and tetragonal shear modulus. We provide analytical
arguments for these findings, which are obeyed reasonably well by several metals.
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1. Introduction

Large-scale simulations of metals [1, 2, 3, 4, 5] are frequently based on atomistic
potentials deriving their theoretical justification from quasi-atom theory (QAT) [6].
It states that the energy gained when placing an atom into a configuration of other
atoms depends in leading order on the electronic density that exists at the embedding
site before the extra atom is added. While the embedded-atom method (EAM) [7, 8, 9]
is arguably the most popular QAT-based potential, different formulations exist that
— like EAM — contain the following three ingredients: a two-body pair repulsion
between cores, UR(rij), the electronic charge density of individual atoms φ(|r − rj |)
adding up to the charge density ρi =

∑
j 6=i φ(rij) at the embedding site ri, and the

embedding function F (ρi). The total energy in QAT-inspired potentials thus reads

UT =
∑
i,j>i

UR(rij) +
∑
i

F (ρi) (1)

in its most generic form, which does not include square-gradient [6, 10] or related
corrections [11] derived from higher-order derivatives of the charge density at the
embedding site. Approaches merely differ in their functional forms assumed for
repulsion, charge density, and embedding function.

The list of QAT-based potentials include the Gupta potential [12], which
originally was proposed as the second-order moment expansion of a tight-binding
model [12, 13, 14], the glue potential [15], and the Finnis-Sinclair potential [16], to
name a few. Although EAM is by far the most used QAT potential, it requires complex
input in form of numerical tables and when tested for transferability, e.g., towards
structures with small coordination, EAM apparently falls behind much simpler QAT
variants [11, 17]. In particular the four-parameter Gupta potential clearly outperforms
EAM (original and reparametrized) as well as other QAT variants when fitted to
either copper [11] or aluminum [17] structures encompassing clusters, one-dimensional
chains, two-dimensional tilings, and three-dimensional crystals. Adding complexity
to the simple functional dependencies of the Gupta potential (exponential two-body
repulsion, exponential charge density of atoms, and a square-root for the embedding
energy) improves fits to a broad set of structures at most marginally but in most
cases deteriorates transferability [11, 17]. We therefore see the Gupta potential as the
most suitable QAT variant to investigate the intrinsic properties and limitations of
the class of potentials whose total energy is given by equation (1). Results obtained
for the analytically amenable Gupta potential should therefore also relate to other
EAM-type potential of similar accuracy and transferability.

Despite their wide-spread use, only few systematic studies [11, 17, 18] of the
generic properties of EAM-type potentials seem to exist. Most works are instead
limited to the question of how well a fixed functional form of a potential can minimize
an arbitrarily chosen χ2 penalty function on a small set of properties and metals.
However, it has not yet been addressed how different properties, as predicted by
QAT-based potentials, correlate (irrespective of a given parameterization) and to
what degree real metals show this correlation. For example, it is not clear why some
defect energies cannot be well described or if it is possible to fine tune a vacancy
energy (expressed in units of the cohesive energy) independently of the shear modulus
(expressed in units of the bulk modulus). Although these issues have been touched
upon to some degree, e.g., it is well known that EAM-type potentials usually give
unsatisfactory surface energies [19, 20, 21], or, that hcp structures have only three
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rather than five fully independent elastic constants [22, 23], there are no closed-form
analytical expressions giving general answers to the just-raised questions. Moreover,
it appears to have remained unnoticed hitherto that a single (relevant) dimensionless
parameter determines many dimensionless properties in the Gupta potential. This
restriction may lie at the root of why different materials properties cannot be fine
tuned simultaneously in the realm of the considered class of potentials.

In this work, we investigate numerically but also analytically the generic
properties of the Gupta potential. For comparison, we also study an alternative
potential similar to the one proposed by Sutton and Chen [24]. The goal is to better
understand the intrinsic limitations of this class of potentials and to identify simple
rules that allow one to assess the degree of accuracy in which a given element can
possibly be described without introducing fundamental modifications to the formalism.
The remainder of this article is organized as follows: In section 2 we introduce the
two investigated potentials. Section 3 examines if these two potentials can identify
bcc as energetically more favorable than fcc. Defect energies and elastic properties are
then investigated in sections 4 and 5, respectively. Section 6 contains an analysis of
how different (dimensionless) properties correlate, such as shear modulus in units of
the bulk modulus and kBTm divided by the cohesive energy, where Tm is the melting
temperature. Conclusions are drawn in section 7.

2. Investigated potentials

The total potential energy of a (mono-atomic) system described by the Gupta potential
can be written as

UT =
∑
i,j>i

VR exp(−rij/σR)−W
∑
i

√
ρi (2)

with

ρi =
∑
j 6=i

exp(−rij/σQ). (3)

Here, the parameters VR and W have unit of energy while σR and σQ have unit of
length. We note that element-specific prefactors for the estimated charge-density, ρi,
have to be used when considering alloys. When written in this form, the potential
for a mono-atomic system contains two dimensionless variables, that is, VR/W and
σR/σQ. Numerical values for the Gupta potential parameters can be taken from a
study by Karolewski [25], who parameterized the Gupta potential in the context of
second-moment tight-binding potentials for a total of 32 metals.

The various terms of the Gupta potential were motivated in the original paper [12]
within the tight-binding approximation as well as in a later study by Cleri and
Rosato, [14] who criticized the interpretation of the approach within the conventional
EAM picture. However, it appears as though the employed embedding functions can
also be obtained directly within effective-medium theory [26], which is analogous to
QAT, by embedding atoms into a constant electron-density background.

In some cases, we focus our analysis on copper, in which case we use the
parameters presented in previous, own work [11], i.e., W = 8.227 eV, σQ = 0.6404 Å,
and the dimensionless parameters VR/W = 1183 and σR/σQ = 0.3567, which yields a
bond length of a0 = 4.03 σQ in the fcc phase. Karolweski’s parameters for copper read
W = 12.568 eV, σQ = 0.6404 Å, and VR/W = 896 and σR/σQ = 0.4149. The small
differences between our [11] and Karolewski’s [25] parameters supposedly arise from
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the fitting procedures. Karolewski determined the adjustable parameters by fitting to
elastic and defect properties of fcc copper, while we optimized the parameters on a
set of defect-free copper structures ranging from the dimer via the linear chain and
various tilings to bulk structures.

In most cases, we use σR/σQ as a (quasi-continuous) variable. One then needs to
fix the ratio VR/W , or, alternatively the ratio a0/σQ, where a0 represents the bond
length of the given metal in the fcc structure. As a default value, we choose a0/σQ = 4,
for mainly two reasons. First, it fits our parameterization of copper reasonably well.
Second and more importantly, it is at the lower end of values proposed by Karolewski,
thereby being representative of those cases, in which the nearest-shell approximation
may be the least justified.

Various classes of EAM-type potentials exist in addition to those isomorphic to
Gupta, in particular that introduced by Finnis and Sinclair [16]. Sutton and Chen
proposed a simple and also successful form of the Finnis-Sinclair-type potential [24],
which we consider here for comparison in a slightly altered form. We combine the
used expression for the electron charge density, which is a 1/r6 power law, and replace
the original repulsion, also a power law, with a supposedly more realistic exponential
repulsion. Thus, the potential energy can be cast as

UT = VR

∑
i,j>i

exp(−rij/σR)−
∑
i

√∑
j 6=i

(σQ/rij)6

 (4)

so that it only depends on one dimensionless variable σQ/σR. This time and in contrast
to the Gupta potential, one cannot relate this ratio to a meaningful dimensionless range
of adhesion (expressed in units of σR), since the assumed 1/r6 decay of the electronic
density is scale free. We note in passing that, in principle, the singularity of the
embedding density needs to be obliterated when two atoms approach each other closely
to avoid a collapse into unphysical structures. This can be achieved, for example, by
making σQ distance dependent at small rij . However, such a precautionary measure
is not needed when only small deformations of structures around either fcc or bcc are
considered, as long as σQ/σR is small enough for the dimer to develop a local energy
minimum at a finite bond length.

3. Crystal phase stability

In leading order, the energetics of crystalline structures can be estimated by only
considering interactions of atoms with their nearest neighbors. This can be seen, for
example, from the numerical values obtained for σQ in the Gupta potential [25], which
are always much smaller than the nearest-neighbor spacing a0. Thus, for most phases,
the contribution of the embedding density from non-nearest neighbors is typically at
most in the order of 20%. The one possible exception for simple lattices is bcc, where
next-nearest neighbors are only 2/

√
3 times more distant than the nearest ones. Since

bcc structures play an important role in this work, we therefore often include next-
nearest neighbors into our analysis. This moves the leading error to the embedding
density to less than 10% for physically meaningful parameterizations.

Although the contribution of distant shells to the cohesive energy Ec is small,
so is the difference between the (predicted) cohesive energies of bcc and fcc. It is
therefore possible to construct (analytical) EAM potentials [27, 28] which give bcc
as more stable than fcc, given that the charge density cutoff lies between the the
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second and third neighbors in bcc but between the first and second neighbors in fcc.
To evaluate energy differences between phases accurately, one should therefore either
include sufficiently many neighbor shells or consistently estimate the cutoff correction,
e.g., in a mean-field or mean-density approximation. In this section, we explore both
analytically and numerically how the way in which charge density and short-range
potential are cut off affects the cohesive energy differences between ideal fcc and bcc.
Since the energy differences between fcc and hcp are marginal, as long as no the
potential has no explicit or implicit angle dependence, we do not consider hcp in this
study.

3.1. Gupta potential

For sufficiently small values of σQ/a0, one can ignore the effect of the next-nearest
neighbor shell. The bond length, a0, and the binding energy per atom, Ec, then
are [11]

a0 =
2σQσR

2σQ − σR
ln

(√
Z
σQVR
σRW

)
(5)

Ec = Zµ0Ed, (6)

with

µ =
σQ − σR
2σQ − σR

(7)

Ed =
2σQ − σR

2σR

(
W

VR

σR
σQ

)2σQ/(2σQ−σR)

VR, (8)

assuming simple crystalline structures, where all atomic positions are equivalent.
Thus, the cohesive energy of a Gupta crystal is only Zµ0 times the binding energy
of a dimer, Ed, rather than Z0Ed, which would be a reasonable approximation for a
short-ranged two-body potential. This is quite a significant difference because typical
values for µ range from roughly 0.2 to 0.45. Assuming that the potential is sufficiently
accurate for a given metal, the value of µ can be obtained from the dependence of the
cohesive energy on the coordination number, though one may want to exclude dimers
from the determination of µ, because square-gradient corrections may be particularly
large, or, if experimental data were used, the dimer ground state could be in a triplet
state.

From equation (6) follows that large coordination, i.e., Z0 = 12, is preferred if
σQ > σR while dimerization occurs for σQ < σR < 2σQ. For typical parameterizations
one would find that in the nearest-neighbor approximation the fcc binding energy
exceeds that of bcc by 12% to 20%. We next explore if including next-nearest or
more distant neighbor interactions can change this ranking and turn the bcc crystal
energetically favorable over fcc. Such a scenario could appear possible in light of the
argument that bcc effectively corresponds to Z0 = 14, as the second shell with six
atoms is very close to the first one having eight.

The potential energy per particle of an unstrained crystal with arbitrary cutoff
radius can be written as

u =
ṼR
2

∑
s

Zsṽs − W̃
√∑

s

Zsw̃s (9)
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where Z0, Z1, · · · are the number of atoms in the nearest, next-nearest-neighbor, etc.
shell, respectively, and

ṼR = VR exp{−a0/σR} (10)

W̃ = W exp{−a0/2σQ} (11)

ṽs = exp{−(ds − 1)a0/σR} (12)

w̃s = exp{−(ds − 1)a0/σQ}. (13)

Here, we have introduced ds = as/a0 as the ratio of spacing of an atom in the s’th
shell and the nearest-neighbor (s = 0) shell. This representation of the energies proves
particularly useful in the evaluation of elastic constants.

Unfortunately, there are no closed-form analytical expression for either the bond
length or cohesive energy beyond the nearest-shell approximation when taking VR, W ,
σR, and σQ as given. However, numerical estimates are readily obtained for arbitrary
choices of (Z0, Z1, d1), including those representative for fcc (12, 6,

√
2) and bcc (8, 6,

2/
√

3). As revealed in figure 1, the ratio Ec(fcc)/Ec(bcc) drops significantly from the
first estimate of 12%-20% to 5%-7% but still remains above one if a direct summation
is truncated after next-nearest neighbors. When including more distant neighbors and
continuum corrections to the direct summation, a small domain appears (outside the
shown parameter range), where bcc can be made marginally more stable than fcc – but
never more than 0.4%. It is therefore not possible to make the Gupta potential clearly
prefer bcc over fcc at zero stress and temperature. While there is a small domain in
which the cohesive energy of bcc is marginally larger than that of fcc — it just touches
the lower left corner of the right graph shown in figure 1, i.e., within our numerical
precision fcc and bcc are degenerate at the point where VR = 10W and σR = 0.2σQ
— the bcc shear modulus is not positive in that domain so that bcc is mechanically
unstable. Moreover, σQ significantly exceeds a0 whenever Ec(bcc) > Ec(fcc), which is
not physically meaningful. This is why we abstain from identifying stable phases in
the domain, where bcc is energetically favorable over fcc.

Despite this negative result, which apparently supports Cleri and Rosato’s
conclusion [14] that the Gupta potential cannot describe bcc metals, it is somewhat
redeeming to notice that parameters pertaining to bcc metals lie in a range where the
fcc binding energy merely exceeds that of bcc by ≈ 0.5% or less.

We conclude this section by analyzing in more detail the effect of the cutoff
shell as well as that of continuum corrections. The latter is obtained as follows:
We assume the same atomic number densities N/V within and outside the radius
Rc, at which we cross over from a discrete to a mean-density description. Rc is
chosen such that the number density of explicitly included shells within Rc is equal
to that outside, i.e., 4πR3

c/3 = (V/N)(1 + Z0 + Z1 + · · ·). Instead of summing up
individual shell contributions (to either repulsive potential or embedding density), we
integrate analytically the respective contribution from Rc to∞. As a result we obtain
effective coordination numbers for repulsion and adhesion, which are second-order
polynomial functions of Rc/σR and Rc/σQ. Figure 2 confirms that the next-nearest
neighbor approximation for Ec(fcc)/Ec(bcc) still gives relatively inaccurate fcc-bcc
energy differences even with continuum corrections. However, including them gives
highly accurate results when truncating after the third shell.
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Figure 1. Ratio of the fcc and bcc cohesive energies, Ec(fcc)/Ec(bcc), in the
Gupta potential as a function of its two dimensionless numbers σR/σQ and W/VR.
Left: Next nearest-neighbor approximation without continuum corrections.
Right: Direct summation over the eight nearest shells plus a continuum correction.
Chemical symbols are placed according to the parameterization of Karolewski [25].
Circles indicate fcc metals while crosses refer to bcc metals.
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Figure 2. Ratio of fcc and bcc cohesive energies, Ec(fcc)/Ec(bcc), as a function of
the number of neighbor shells. Summations are done directly without corrections
(black circles) and with continuum corrections (blue squares). Dotted lines are
drawn to guide the eye. Solid lines indicate one and the asymptotic energy ratio.
The employed parameters reflect copper [11].

3.2. Sutton-Chen embedding density

As for the Gupta-potential, one can simplify the expression for the energy of a crystal
when using the potential energy in equation (4). However, this time, there is no
closed-form expression for Ec(σQ/σR) in the nearest-neighbor approximation. It is
yet relatively easy to investigate how σQ/σR affects Ec(fcc)/Ec(bcc), since our variant
of a Sutton-Chen potential depends merely on one dimensionless parameter. To do
so, we restrict ourselves to the domain 0 < σQ/σR < {(4/e)4/6}1/3 ≈ 0.92, in which
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Figure 3. Ratio of fcc and bcc cohesive energies, Ec(fcc)/Ec(bcc), in our variant
of a Sutton-Chen potential as a function of the dimensionless number σQ/σR.
Four curves are presented: two shells without corrections (open circles), 15 shells
without corrections (open squares), 15 shells with continuum corrections (filled
squares) and two shells with continuum corrections (filled circles). The domain
is restricted to those values of σQ/σR in which the dimer has a (relative) energy
minimum at finite bond lengths.

a (relative) minimum of the dimer energy occurs at a finite bond length. Throughout
this domain, fcc is energetically preferred over both bcc and dimer. The ratio of
a0(fcc)/σR ranges from roughly eight to thirteen, which lies within the range of values
of a0(fcc)/σR that Karolewski identified for the Gupta potential.

A central reason for why we investigated Sutton-Chen atomic densities is that
they decay less quickly than the exponentials assumed in the Gupta potential. We
considered it plausible that this might help to increase the (relative) importance of the
second-shell contribution in bcc thereby making bcc stable without having to introduce
cutoff functions that usually induce artifacts. Apparently, more care has to be taken
in the construction of the embedding density to make this happen. However, we
suspect a success in this endeavor to result in quite artificial atomic charge densities,
for example, with a shoulder near bcc next-nearest neighbor distances. We therefore
expect that reasonably simple and transferable functions cannot favor bcc over fcc
in an EAM-type potential and that angular dependencies need to be included, be it
implicitly, as in the systematically modified EAM potential [11] or explicitly as in
analytical bond-order potentials for bcc materials [29].

4. Vacancy and surface energies

In this section, we analyze what parameters determine the energetic costs for vacancies
and surfaces. Since both break perfect periodicity, both shall be labeled as defects
hereafter. To rationalize trends, we derive approximate expressions for defect energies
in the nearest-shell approximation. They are obtained by assuming that the relaxation
of the lattice is only displacive and not reconstructive after the defect has been
introduced. Moreover, each atom adjacent to a defect is assigned the optimum
cohesive energy for its given coordination number so that we obtain a lower bound for
the defect energy in the nearest-neighbor approximation. The analytical treatment
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is complemented with numerical results for defects in the next-nearest neighbor
approximation by neglecting the lattice relaxation all together. The resulting values
constitute upper bounds for defect energies in the next-nearest-shell approximation.

We begin with the analysis of the lower bound for a vacancy energy. Irrespective
of the QAT-based potential used, Z0 (remaining) atoms can no longer be assigned the
original binding energy and instead have one neighbor less. Thus,

Ev . Z0Ec(Z0)− Z0Ec(Z0 − 1), (14)

i.e., in the nearest-neighbor approximation of the Gupta potential

Ev . Z0 {Zµ0 − (Z0 − 1)µ}Ed (15)

≈ µZµ0Ed for large Z0. (16)

For a short-range two-body potential, a similar estimate for the vacancy energy would
have turned out Z0Ed assuming that Ed corresponds again to the cohesive energy per
atom in the dimer.
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Figure 4. Ratio of the fcc vacancy and fcc cohesive energy per atom, Ev/Ec, in
the Gupta potential as a function of σR/σQ. Lines represent analytical results for
the upper bound in the nearest-shell approximation. Symbols refer to numerical
results on a lower bound in the next-nearest shell for a0 = 4σQ.

Analytical and numerical results for the different bounds on Ev are presented
in figure 4. Since our two approaches give quite similar values, we assume that it is
legitimate to draw the following conclusion: The ratio of vacancy energy and cohesive
energy is predetermined in the Gupta potential once we know the ratio of the dimer
energy (or better some other low-coordinated structure such as the linear chain) and
the fcc cohesive energy. This conclusion trivially holds for our version of the Sutton-
Chen potential, since it only has one dimensionless parameter. However, it should also
hold reasonably well for other QAT-based potentials (without square-gradient and
related corrections) that approximate not only the elastic tensor of dense structures
but also how the cohesive energy as a function of the coordination number down to
low-coordinated structures. An interested reader may refer to figure 5 in reference [11]
or to figure 1 in reference [17].

Surface energies can be calculated in a similar fashion as vacancy energies. A
surface atom missing ∆Z neighbors increases its potential energy by

∆Es . Ec(Z0)− Ec(Z0 −∆Z), (17)
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which in the nearest-neighbor Gupta potential becomes

∆Es . {Zµ0 − (Z0 −∆Z)µ}Ed (18)

≈ µ ∆Z

Z1−µ
0

Ed for small ∆Z/Z0. (19)

Thus, the lower bound of the surface energy, at this level of approximation, is merely
a function of the dimer energy, the ideal bulk coordination number Z0, and the
dimensionless coefficient µ, which itself depends only on σQ/σR.

To translate our results into surface energies of the fcc lattice, we need to
normalize ∆Es(∆Z) with the area ∆Aijk per surface atom, which depend on the
Miller indices (ijk) of the surfaces. Since (∆Z, ∆A/a20) is equal to (3,

√
3/2) for (111),

(6,
√

2) for (110), and (4, 1) for (100) surface orientations, one obtains the following
surface energies for fcc lattices

γ111/γ̃ = 2
√

3 (20)

γ110/γ̃ = 3
√

2 (21)

γ100/γ̃ = 4 (22)

(23)

with

γ̃ ≈ µEd

Z1−µ
0 a20

. (24)

keeping the same approximation as in equation (18). More accurate estimates can
be obtained by using the correct expression for ∆Es, i.e., equation (17), instead of
equation (18) in the calculation of the various surface energies. Representative results
are shown in figure 5 for the (111) surface. They are compared again to upper bound
estimates in the next-nearest shell approximation. This time the two estimates for
the defect energies — normalized to the (surface) atom and expressed in units of the
binding energy — are not quite as close as for the vacancy energies. However, in the
relevant range of 0.25 < σR/σQ < 0.75, the agreement is still within 15%. Similar
statements can be made about the other surface energies that we investigated for this
study, i.e., (100) and (110).

5. Elastic properties of EAM-type potentials

Often, parameters for EAM-type potentials are fitted to the elastic tensor of a given
metal. The common believe may be that one can deduce three independent parameters
for cubic systems. Here, we show that this is not possible, since one cannot fully adjust
three independent tensor elements simultaneously in EAM-type potentials.

5.1. General relations

In this section we reiterate [8, 18, 30, 31] but also extend and simplify analytical
expressions for the elastic constants of an EAM crystal with inversion symmetry
in which all atoms are equivalent, i.e., we consider a homogeneous deformation
characterized by the Eulerian strain tensor ε. The latter relates the coordinate r of a
given material point in the deformed structure to that in the undeformed structure r0
via

r = (I + ε) r0, (25)
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Figure 5. Dimensionless energy per surface atom E111/Ec as a function of
σR/σQ for an fcc Gupta metal. Solid lines refer to numerical results on an upper
bound in the next-nearest shell approximation for a0/σR = 4. Symbols represent
numerical data from MD for relaxed structures, also for a0/σR = 4, and a cutoff
including the nearest four shells. Dashed lines represent analytical results for the
upper bound in the nearest-shell approximation.

where I is the identity matrix.
The elastic tensor elements can be defined at zero stress, ∂UT/∂εαβ = 0, as

Cαβγδ =
1

V

∂2UT

∂εαβ∂εγδ
, (26)

where V is the total volume of the N -particle system. After some algebra, one obtains
for periodically repeated systems in mechanical equilibrium [8],

V

N
Cαβγδ =

∑
j

{
r2ijU

′′
R(rij)− rijU ′R(rij)

}
nij,αβγδ

+ F ′(ρi)
∑
j

{
r2ijφ

′′(rij)− rijφ′(rij)
}
nij,αβγδ

+ F ′′(ρi)
∑
j,k

rijrikφ
′(rij)φ

′(rik)nij,αβnik,γδ (27)

with

nij,αβ··· ≡
rij,α
rij

rij,β
rij
· · · (28)

To proceed further, it is beneficial to regroup the sums on the r.h.s. of
equation (27) as sums over individual shells. One then needs to evaluate each function
only once at a given shell distance, e.g., at a0 for the nearest-neighbor shell (s = 0),
or at a1 for the next shell (s = 1), etc. This way, the effect of shell geometry and

occupancy is expressed by the term n
(s)
αβ··· defined in equation (33). Specifically,

V

N
Cαβγδ =

∑
s

{f(as) + F ′(ρi)g(as)}n(s)αβγδ

+ F ′′(ρi)
∑
s

h(as)n
(s)
αβ

∑
s

h(as)n
(s)
γδ (29)
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with

f(as) = a2sU
′′
R(as)− asU ′R(as) (30)

g(as) = a2sφ
′′(as)− asφ′(as) (31)

h(as) = asφ
′(as) (32)

n
(s)
αβ··· =

∑
j∈s

rij,α
rij

rij,β
rij
· · · (33)

From equation (29), it becomes immediately clear — as originally discussed
by Daw and Baskes [8] — that the elastic tensor is fully symmetric in all four
indices when F ′′(ρ) disappears, in which case the embedding function is linear and
interactions subsequently pairwise. In other words, the Cauchy relations would hold,
e.g., C1212 = C1122, or, in Voigt notation, C44 = C12 for cubic systems. However,
embedding functions usually have a positive curvature so that C1122 > C1212. This
inequality is certainly not universally valid; including strain-induced charge transfer
between ions usually induces the opposite sign, i.e., C1122 < C1212 [32].

Table 1 lists the numerical values of the non-vanishing tensor elements n
(0)
αβ and

n
(0)
αβγδ for fcc, bcc, and sc. It enables one, together with equation (29), to evaluate

the elastic tensor for a cubic structure described by EAM-type potentials without
much bookkeeping up to the next-nearest-neighbor approximation. This is because
the next-nearest shell of fcc, bcc, and sc have the nearest-neighbor shell topology of
sc, again sc, and fcc, respectively. For bcc and sc one could even go one shell further,
since their s = 2 shell topography is fcc and bcc-like, respectively. To include the s = 2
fcc shell, table 1 would have to be extended with a sum over directors proportional to
(±2,±1,±1).

n
(0)
11 n

(0)
1111 n

(0)
1122

fcc 4 2 1
bcc 8/3 8/9 8/9
sc 2 2 0

Table 1. Non-zero nearest shell tensor elements n
(0)
αβ···. n

(0)
22 , n

(0)
2222, etc. are

obtained by symmetry. The symmetry of the next-nearest shell is sc for fcc and

bcc so that n
(1)
11 (fcc) = n

(1)
11 (bcc) = n

(0)
11 (sc).

Although Cauchy relations do not hold for EAM-type potentials, cubic systems
only have two independent elastic constants in the (dominant) nearest-neighbor
approximation. From equation (29) and table 1 one can deduce in a straightforward
manner that the so-called tetragonal shear modulus defined as

CS =
C11 − C12

2
(34)

is subject to the following constraints

C
(0)
S (fcc) =

C
(0)
44 (fcc)

2
(35)

C
(0)
S (bcc) = 0. (36)

Since isotropic materials automatically satisfy CS = C44, the (relative) deviation of
CS from C44 can be seen as a measure of elastic anisotropy.
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Including more distant shells formally lifts this limitation of EAM-type potentials.
Since both fcc and bcc have a next-nearest neighbor shell topology identical to the
nearest-neighbor simple-cubic shell, the following leading-order correction applies in
either case

V

N
∆C

(1)
S = f(a1) + F ′(ρi)g(a1) (37)

with which the shear modulus in the s = 1 approximation becomes C
(1)
S = C

(0)
S +

∆C
(1)
S . It is not a-priori possible to predict how large the ∆C

(1)
S corrections are in

practice. However, at least for fcc, they should be small for similar reasons as why
next-nearest neighbors do not contribute much to the cohesive energy. The relative
importance of the corrections in bcc might be slightly larger. To investigate the issue
further, we analyze the elastic tensor in more detail in the context of the Gupta
potential and our variant of the Sutton-Chen potential.

5.2. Gupta potential

The specific functional form of the Gupta potential induce constraints for the (nearest-
neighbor) elastic constants in addition to those mentioned in equations (35) and (36).
They can be derived in closed form if we use a0 at equilibrium rather than W as
natural variable. The elastic tensor in the nearest-shell approximation then simply
reads

C
(0)
αβγδ = C̃

{(
1− σR

σQ

)
n
(0)
αβγδ +

1

2Z0

σR
σQ

n
(0)
αβn

(0)
γδ

}
(38)

with

C̃ =
N

V

a20
σ2
R

ṼR
2
. (39)

Thus, ratios of the elastic tensor elements in the nearest-shell approximation of a
given crystalline structure are fully determined by σQ/σR, just like the ratios of the
various defect energies. For example, the orientationally averaged shear modulus
G ≡ (CS + C44)/2 can be written as

G(0)(fcc) =
9

8
µB(0)(fcc) (40)

G(0)(bcc) = µB(0)(bcc). (41)

Analytical expressions for C
(1)
αβγδ are more involved than for the elastic tensor

in the nearest-neighbor shell approximation (an interested reader is referred to the
electronic supplement). We abstain from giving them here and instead show results
graphically in figure 6. Since results for dimensionless quantities may now also depend
on W/VR, we need to assign reasonable ratios for that quotient. This is done by
constraining a0(fcc)/σQ to representative values for reasons stated in section 2. As
discussed in more detail in the conclusions section, the precise value of a0/σQ does
not affect many dimensionless properties in a significant fashion, except perhaps when
numbers are “small” such as the relative difference between fcc and bcc cohesive
energies.

Although the ratio G/B appears rather insensitive to the specific value of µ,
the relative contribution of C44 and CS to their average G can be affected in a non-
negligible way by next-nearest neighbors. This is because the contribution of the
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Figure 6. Dimensionless ratios 8G/9Bµ (fcc, left figure) and G/Bµ (bcc, right
figure) as a function of the coefficient µ for representative values of a0/σQ. In the
nearest-neighbor approximation, both ratios equal one. Maximum and minimum
values for a0/σQ were chosen to represent roughly the extreme values identified
by Karolewski. For bcc the full black line indicates the values of µ, where the
tetragonal shear modulus changes sign.

next-nearest shell (which is simple cubic for both fcc and bcc) is small (actually zero)
for C44 but relatively large for CS. This is opposite to the trend of the nearest-neighbor
shells in fcc and bcc. Pertinent results are presented in section 6.

6. Comparison of dimensionless materials properties

In this section, we analyze how well different metals obey the correlations that we
found to be intrinsic to the Gupta potential. Towards this end, we express by default
elastic tensor elements in units of the bulk modulus, and all energies, including thermal
energies, e.g., kBTm, in units of the cohesive energy. Quantities normalized in this
way will be called reduced quantities, e.g., the reduced shear modulus for a bcc metal
would read C̃44 ≡ C44(bcc)/B(bcc).

We first analyze to what degree it is possible to correlate the regular, reduced shear
modulus C̃44 with the symmetrized, reduced shear modulus G̃. Mechanical stability
not only demands both to be positive but also C̃44 to be less than G̃/2 since otherwise
the tetragonal shear modulus would not be positive. Fig. 7 reveals that the linear
relation — as obtained for the Gupta potential in the nearest-shell approximation —
is a reasonable approximation to the full Gupta potential without truncation. Also
many experimental results appear to be consistent with the conveyed trend for the fcc
structure. If we allow for a relative deviation of 10% for individual elastic constants,
then all elements would be in a range covered by the Gupta potential. Only a few
of the considered fcc metals (Th, Rh, Ir, Sr) are outside the range that is feasible
within a Gupta description. The corresponding values still obey the nearest-neighbor
prediction G = 3C44/4 reasonably well.

In contrast to fcc, bcc structures are described relatively poorly and deviations
of experimental data from the theoretical curve are substantial. While some elements
(Li, Na, K, Rb, Cs) appear close to the allowed C44/B values, they all assume values
for G/B for which Gupta bcc is mechanically unstable. This further substantiates the
old finding by Cleri and Rosato [14] that Gupta is not appropriate for bcc metals. One
may yet notice that the trend appears correct, i.e., a small shift of the Gupta lines by
∆G/B = 0.2 to the right would nicely reflect the experimentally observed trends and
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Figure 7. Reduced shear modulus C44/B as a function of the reduced
symmetrized shear modulus G/B for fcc (left) and bcc (right). For bcc, vertical
lines indicate the change of sign for CS. Experimental results are included for
selected elements (Ag [33], Al [33], Au [33], Ca [34], Cs [33], Cu [33], Fe [33],
Ir [33], K [33], Li [33], Mo [33], Na [33], Ni [33], Nb [33], Pb [33], Pd [33],
Pt [33], Rb [33], Rh [35], Sr [36], Ta [33], Th [33], V [33], W [33]). Values for Ba
{bcc, (0.878,0.781) [36]} and Cr {bcc, (0.668,0.406) [33]} lie outside the presented
region. Experimental data was selected for the lowest available temperature.

only few of the bcc elements (Mo, W, Ba, Cr) would remain far from the curve.
To better unravel relative errors of the shear modulus, we normalize C44 with

the symmetrized shear modulus CS times a constant factor, which is chosen such
that the ratio yields one in the nearest-neighbor approximation, see figure 7. For fcc,
the nearest-neighbor predictions remain within 20% accuracy in the relevant range
of G/B > 0.2. Corrections to the nearest-neighbor approximation in bcc are even
smaller. However, the discrepancy between the theoretical and experimental values
of C44/G in bcc metals becomes particularly apparent in this representation. It
also becomes clear that changing the functional form of the atomic densities from
exponential in the Gupta to 1/R6 does not allow one to alter trends, at least not in
the practically relevant domain of G/B > 0.2.
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Figure 8. Measure for the relative contribution of C44 to the orientationally
averaged shear modulus G ≡ (C44 + CS)/2 as a function of G/B for fcc (left)
and bcc (right). The measure is normalized such that the nearest-neighbor shell
approximation is equal to one. Systems with bcc structure are mechanically
unstable when C44/2G exceeds one. Values for Ba {bcc, (0.878,0.781) [36]} and
Cr {bcc, (0.668,0.406) [33]} lie outside the presented region.
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We proceed with the analysis of vacancy energies in figure 9. Unfortunately,
experimental data appears to be plagued with large uncertainties. Estimates for Ev

deviate by as much as a factor of two between different methods. For example, positron
measurements report the values of 3.0 eV for Mo [37], while the specific heat ones –
2.24 eV [38] (with 1.6 eV when extrapolated to zero temperatures). Some interesting
observations can yet be made. Results for fcc metals appear to be in the correct
ball park for a fair fraction of the considered fcc metals. Even the Gupta results
most inconsistent with experiments are still much more accurate than those that one
would obtain with two-body potentials. In the latter case, Ev automatically turns
out smaller than but close to Ec, e.g., in the fcc nearest-neighbor approximation
11Ec/12 ≤ Ev ≤ Ec. More interesting may be that the results for most considered
bcc metals would have again been quite satisfactory if the theoretical results could be
shifted to slightly larger values of ∆G/B.
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Figure 9. Dimensionless vacancy energy Ev/Ec as a function of G/B for fcc
(left) and bcc (right). Full lines show the lower-bound estimates in the nearest-
neighbor approximation. Filled squares represent results from molecular dynamics
simulations. Experimental results are included for selected elements (cohesive
energies are taken from Kittel’s book [39]; vacancy energies are provided for:
Ag [37], Al [37], Au [37], Cs [40], Cu [37], Fe [37], Ir [41], K [40], Li [40], Mo [37],
Na [40], Nb [37], Ni [37], Pb [37], Pd [37], Pt [37], Rb [42], Rh [41], Ta [37],
Th [43], V [37], W [37]). Values for Cr {bcc, (0.668,0.488) [37]} lie outside the
presented region.

We next investigate surface energies for fcc metals in figure 10, where we excluded
data on bcc — as well as in a later analysis of melting temperatures — because bcc
Gupta is mechanically unstable, or at best marginally stable, for most G/B values of
interest. Trends on surface energies, or more precisely, on energy per (111) surface
atom, are consistent with those on vacancy energies. Whenever E111/Ec is (much)
above or below the predicted value at that ratio of G/B, so is Ev/Ec. Yet, the only
fcc metal, for which defect energies are off by a factor of two, is palladium.

Up to this point, we have focused on dimensionless quantities that depend only on
G/B in the nearest-shell approximation of the Gupta potential. For these quantities,
one would therefore expect little sensitivity on W/VR, or, alternatively on a0/σQ. One
quantity that however does depend on a0/σQ is the cohesive energy density expressed
in units of the bulk modulus, i.e., Ec/BV0. In the nearest-shell approximation, one
obtains for bcc and fcc — just as for simple cubic, diamond, and hcp — that

Ec

BV0
= 18

σQσR
a20

(42)
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Numerical and experimental results for Ec/BV0 are presented as a function of G/B
in figure 11. For fcc metals, one can see that most elements – at least those with
G/B < 0.5, i.e., those potentially consistent with Gupta – are consistent with values
of a0/σQ between four and eight, which is the range of values that Karolewski found
to be useful as well. Regarding bcc metals, one can observe that experimental data
for most considered elements would again only lie within the “allowed domain” if we
could shift the theoretical curves to slightly larger values of G/B.
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Figure 11. Dimensionless cohesive energy Ec/BV0 as a function of G/B for fcc
(left) and bcc (right). Full lines refer to the nearest-shell approximation. The
tetragonal shear modulus, CS, is negative in the bcc phase for G/B values to the
left from the black dashed line for Gupta potential. For the Sutton-Chen variant
of the potential the critical value is G/B ≈ 0.21. Ba [bcc, (0.878, 0.557)] and Cr
[bcc, (0.668,0.281)] are outside of the presented region and are excluded from the
graph.

The last dimensionless quantity that we analyze in this paper is the reduced
thermal energy at the melting temperature, kBTm/Ec, as a function of G/B in
figure 12. Some elements behave in agreement with the trends revealed in figure 11,
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Figure 12. Thermal energy at the melting point kBTm (times hundred) in units
of cohesive energy per atom as a function of the dimensionless symmetrized shear
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– to the value of a0/σQ = 4. Lines are drawn to guide the eye. Experimental
results are included for selected elements (melting temperatures are taken from
Kittel’s text book [39])

e.g., Au, Pt, Pb, and Pd all lie close to the a0/σQ = 8 line. However, other elements,
in particular Ca, would get assigned different values for σQ/a0 from figures 11 and
12, which implies that calcium, amongst other metals, cannot be described to large
accuracy with Gupta or related potentials.

It is interesting to observe that there is an essentially linear trend of kBT/Ec

with G/B within the Gupta potential for a fixed value of a0/σQ. It might be possible
to rationalize this as follows: Defects become numerous in the crystal before they
melt and are frequently seen as nuclei for the transition to occur. The energy of
isolated defects, in particular that of dislocations, tends to have one contribution
from the core and another one from the elastic deformation outside the core. While
(dimensionless) core and elastic contributions supposedly depend linearly on µ – at
least in the nearest-shell contribution – their relative weight should depend on a0/σQ,
since this ratio affects Ec/BV0. Once this relative weight is fixed, both defect and
elastic energy scale linearly with µ.

7. Discussion and Conclusions

In this work, we have analyzed the origin of the correlation between various
(dimensionless) materials properties predicted by the Gupta potential for monoatomic
systems. We chose the Gupta potential for mainly two reasons: In the class
of EAM-like potentials, it has best described elemental systems with largely
varying coordination number. More importantly, many properties can be expressed
analytically within the nearest-neighbor approximation in terms of the four parameters
that fully determine the potential for an individual element. This allows one to cover
the possible parameter space quite easily. Since two parameters of a potential energy
surface can be used to define the units for energy and length, two dimensionless
parameters remain, which then fully determine the dimensionless properties of the
element under consideration. Here, we find that only one of the two dimensionless
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parameters is truly significant for many dimensionless properties, namely the ratio
σR/σQ, or, alternatively the coefficient µ = (1 − σR/σQ)/(2 − σR/σQ). For a given
value of µ, many dimensionless properties, such as G/B, Ec(Z)/Ec(Z = 1), Ev/Ec,
or surface energies (in units of Ec/a

2
0) are predetermined within a few percent and

relatively insensitive to the ratio VR/W .
At first sight, it might be surprising that the ratio VR/W does not allow one to fine

tune many (dimensionless) materials properties in a significant fashion. We rationalize
this as follows: rather than taking VR/W as the second dimensionless parameter of the
Gupta potential, one may as well use the ratio a0/σQ. This latter number essentially
only affects to what extent next-nearest or more distant neighbors contribute to the
embedding density, or, in an even lesser way, to the repulsive potential. In chemically
relevant parameterization, a0/σQ & 4 so that the relative contribution of nearest
neighbors to the total embedding density is & 80%. Thus, the second dimensionless
parameter cannot be used to fine tune meaningfully all those properties that only
depend on the coefficient µ in the nearest-neighbor approximation. In fact, any
reasonable parameterization should reflect that the direct effect of next-nearest or
further neighbors on a central (fcc) embedding site must be small. In sophisticated
bond-order potentials [45], which like EAM-type potentials contain a second-moment,
tight-binding approximation as a limiting case [46], the direct influence of non-nearest
atoms on a central atom is actually screened. The one important effect that the ratio
a0/σQ does have is that the ratio Ec/BV0 can be tuned with it. This in turns affects,
for example, the relative contributions of a dislocation energy coming from its core
and the elastic displacement field.

One might wonder to what degree the insights gained for the Gupta potentials
pertain to related potentials. While details might differ, we argue that (rough)
trends should be similar for the following reason: In any reasonable parameterization,
the nearest-neighbor shell dominates all other shells. At typical nearest-neighbor
distances, one should then be in a position to approximate the repulsive interactions
as well as the charge densities by exponentials. The second-order derivatives might
deviate by perhaps as much as 30%, but not by large factors. The one single expression
that might allow for more flexibility is the embedding function. We would yet expect
that it is possible to approximate F (ρ) with a polynomial F ∝ ρd around typical
embedding densities and that the exponent d is not too different from 1/2. At least, in
our experience, allowing d to differ from 1/2 does not lead to substantial improvements.
For these reasons all accurate EAM-type potentials should reveal similar trends as the
Gupta potential. This expectation was met by our variant of a Sutton-Chen potential,
which revealed slightly different numbers than Gupta but almost identical trends.

Our claim that findings for the Gupta potential relate to all conventional QAT-
based potentials can certainly be challenged: Dai et al. [28] developed a rather simple
Finnis-Sinclair type potential, which seems to work better for bcc metals than we
appear to deem possible. Although we see their potentials as valuable and do not
hesitate to recommend their use, we also have two points of fundamental criticism:
First, the charge density is expanded into powers of (r−d), for interatomic distances r
below the cutoff d & 4 Å and set to zero outside the interaction range. Thus, the total
interaction between two atoms is non-attractive for interatomic distance exceeding
d, which is incorrect and supposedly problematic for simulation of systems other
than bulk materials. Second, the elastic constants computed for zero temperature
are compared to those measured experimentally at finite temperature. Though this
is frequently done, it is quite problematic. The shear elastic constants can change
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to a non-negligible degree in this temperature range. For example, for potassium,
G̃44(T = 300 K) ≈ 0.32, which is close to the value achieved in the potential of Dai et
al., while the true target should be G̃44(T = 4 K) ≈ 0.44.

How does this work help to identify parameters for a specific element? If various
target quantities are known, one can check if the correlation between them correspond
to those of the Gupta potential presented here. The supposedly best number to get
a first estimate for µ is the ratio G/B. If other dimensionless observables that are
also expected to depend only on µ deviate strongly from their expected value, neither
the bare Gupta potential nor another conventional EAM-type potential will be a
good choice. If, however, the match is reasonable, one may proceed by fixing the
second dimensionless coefficient, W/VR or alternatively, σR/a0. This can be done
by adjusting the respective numbers such that the desired value of the reduced bulk
modulus, BV0/Ec, is matched. If only Tm but not Ec is known reliably, which is
sometimes the case, one might want to estimate Ec from Tm and µ. Alternatively, one
can fit to the equation of state up to high pressures, which also helps in identifying
the ratio W/VR. Once the two dimensionless variables are fixed, it is straightforward
to set the absolute value of σQ by choosing it such that the potential matches the
lattice constant. Next, one can chose the prefactor W to reproduce, for example, the
bulk modulus.

A revealing result of our work is that some bcc materials appear to be almost
consistent with the Gupta potential except for two issues: Without problematic
cutoffs, the predicted fcc energy is always slightly larger than for bcc, while in reality,
this ordering is, by definition, the other way around. In addition, the computed values
for G/B at zero temperature are very often around 20% smaller than experimental
values. To fix the fcc versus bcc energy issue, we only need a small perturbation
that reverses the order of fcc and bcc cohesive energies without changing anything
much else. One possibility to achieve this is to include corrections to the embedding
function that depend on the fourth-order derivatives of the charge density, which is
the lowest-order tensor entering a QAT potential expansion allowing one not only to
lift the (quasi) degeneracy of fcc and hcp but also to favor bcc and eventually simple
cubic over fcc or hcp [11]. Once bcc is more stable than fcc, the tetragonal shear
modulus no longer disappears in the nearest-neighbor approximation, which in turn
might help to solve the problem that the (zero-temperature) G/B ratio is generally
too small for bcc metals. We plan on investigating these expectations in the future.
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