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In this work, we study how including charge transfer into force fields affects the predicted elastic
and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical
and numerical calculations, we find that charge transfer generally leads to a negative contribution
to the Cauchy pressure, PC ≡ C12 − C66, where C12 and C66 are elements of the elastic tensor.
This contribution increases in magnitude with pressure for different charge-transfer approaches in
agreement with results obtained with density functional theory (DFT). However, details of the
charge-transfer models determine the pressure dependence of the LO-TO splitting and that for
partial charges. These last two quantities increase with density as long as the chemical hardness
depends at most weakly on the environment while experiments and DFT find a decrease. In order to
reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical
(bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Lastly,
the adjustable force-field parameters only turn out meaningful, when the expansion is made around
ions.

PACS numbers: 34.20.-b, 34.20.Cf, 62.20.D-. 34.70.+e

I. INTRODUCTION

A prominent manifestation of many-body interactions
is the violation of Cauchy relations in situations where
they would hold if atoms interacted in a pair-wise fash-
ion: crystals near mechanical equilibrium, in which all
atoms occupy centrosymmetric positions [1]. Cauchy vi-
olations are quantified in terms of so-called Cauchy pres-
sures, e.g., PC ≡ C12−C66, the only Cauchy pressure for
crystals of cubic symmetry. Reproducing large positive
Cauchy pressures typical for simple metals received sig-
nificant attention in the context of embedded-atom and
related models [2–4]. In contrast to metals, many alkali
halogens, in particular those composed by light elements,
have a negative PC, whose magnitude can even exceed
0.2 C12 [5]. Another manifestation of many-body effects
is that infrared spectra can in general not be described
accurately in terms of models assuming constant atomic
charges or constant dipoles [6].

Different approaches have been pursued to describe
many-body effects in simple ionic solids. Early many-
body potentials for ionic compounds assumed polariz-
able anions and placed shells [7] or classical Drude os-
cillators [8, 9] on them. By now it has become good
practice to include dipolar and even quadrupolar polar-
izability into force fields, e.g., for the simulation of ionic
liquids [10]. However, inducible dipoles, or other multi-
poles below hexadecupoles, cannot account for a non-zero
Cauchy pressure (in rocksalt), because they remain zero
upon a homogeneous deformation of a centro-symmetric
crystal so that only two-body interactions account for its
elastic tensor. More recent approaches assume that ions
can change their size [11] and later also their shape [12] in
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response to their environment, whereby they effectively
introduce short-range many-body interactions. Properly
parametrized models of these so-called breathing-shell
potentials [13, 14] can then correctly describe the elas-
ticity of ionic solids.

Despite the success of breathing-shell models, the as-
sumption of a constant partial charge may not always be
justified. Even in a homogeneous system like rock salt
one may expect that a certain amount of charge is re-
distributed between atoms when a crystal is deformed.
In fact, the quantum mechanical ground state of a hypo-
thetical NaCl crystal with infinitely large lattice constant
is composed of neutral atoms rather than of ions [15].
As a consequence of charge redistribution, the force on
an atom induced by a (local) electrostatic field can be
affected by the deformation of the crystal. This, how-
ever, is not properly reflected in fixed-charge models.
Charge-transfer potentials (CTP) [16–20] — in particular
those based on the electronegativity principle proposed
by Sanderson [21] — can overcome this limitation.

In this work, we study analytically and by means of
computer simulations how including charge transfer into
force fields affects the elastic and vibrational (Γ-point)
properties of (centrosymmetric) ionic solids. Towards
this end, we focus on NaCl in the rocksalt structure, for
which we develop an interaction model that only con-
tains two-body short-range repulsion and charge-transfer
related energies. Regarding elasticity, our emphasis lies
on the Cauchy pressure and how it changes with density.
As finite Cauchy pressures are solely due to charge trans-
fer between atoms in CTP-based force field that contain
no additional many-body interactions, we also study how
partial charges change with density. Since the splitting
of longitudinal optical (LO) and transverse optical (TO)
is in turn related to Born effective charges, we also inves-
tigate the pressure-dependence of the LO-TO frequency
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splitting in the center of the Brillouin zone.
A highly accurate and transferable potential cer-

tainly necessitates many-body contributions in addition
to charge transfer terms, for example, those contained
in breathing shell or quantum Drude oscillator models.
They would affect the predictions for elasticity and LO-
TO splitting. However, we ignore these contributions,
because our objective is to scrutinize the generic proper-
ties of charge-transfer potentials rather than to develop
a highly-accurate interaction potential for rock salt.

The remainder of this work is structured as follows:
Section II contains numerical methods and some theo-
retical background, specifically a brief review on classical
elasticity theory for finite stress, a generalization of the
Cauchy violation to non-zero pressure, and the defini-
tion of Born effective charge (tensors) or Bader charge.
Additionally, we present the DFT methodology that was
used to produce the reference data for NaCl. The gen-
eral form of CTPs are described in Section III, where
we also derive how CTPs affect the Cauchy pressure and
partial charges, which in turn drive the LO-TO splitting.
In section IV, we parametrize different CTP approaches
and compare the predictions of the respective force-field
based simulations to analytical formulae and DFT re-
sults. Conclusions are drawn in section V.

II. METHODS AND THEORETICAL
BACKGROUND

A. Elasticity at zero and non-zero stress

In this section, we review basic aspects of the theory of
elasticity at finite stress. We see such an overview as nec-
essary because we are not aware of a compact represen-
tation that explains why the definition of elastic strain is
not unique and how seemingly subtle differences between
them — as well as the choice of the thermodynamic refer-
ence potential — affects the results for elastic constants.
The presented subtleties are irrelevant for most solids at
ambient pressures, but care needs to be taken whenever
the bulk or the shear modulus of a solid is no longer large
compared to an external stress. Therefore, we repeat
common definitions for strain, stress, and elastic tensors,
which become relevant at large pressure P , and summa-
rize their mutual relations. This includes a generalization
of the Cauchy violation to finite pressures.

We note that the full tensor notation is used only here
in section II A, while Voigt notation is employed outside
of it. In the Voigt notation, pairs of indices are lumped
into a single index. For example, selected strain tensor
components read ε11 → ε1 and ε12 → 2ε6.

1. Strain tensors

Solids deform under a change of external stress. Math-
ematically, the deformation is stated by a mapping x(X),

where X denotes a (Cartesian) coordinate of one particu-
lar material point in the original reference structure and
x denotes the final position of the same material point.

In this work, we restrict our attention to linear map-
pings for which the displacement field

u(X) ≡ x(X)−X (1)

is a linear function of X. Component by component,
Eq. (1) reads uα = xα−Xα with α = 1, 2, 3. To describe
(the rotationally invariant part of) linear deformations,
two (symmetric) tensors of rank two can be defined.

The Eulerian strain tensor [22] is defined by

εαβ =
1

2

(
∂uα
∂Xβ

+
∂uβ
∂Xα

)
. (2)

It relates the original coordinate — up to a rotation —
to the final coordinate via the linear transformation

xα = (δαβ + εαβ)Xβ , (3)

where we have used, as we will in the following, the Ein-
stein summation convention. Since ε is symmetric, it has
six independent coefficients in three-dimensional space.

The Lagrangian strain tensor η [23] — also known
as Green-Lagrangian finite-strain tensor — is defined
such that the squared vector length of any final coor-
dinate in a linear mapping is given by

x2 = X2 + 2ηαβXαXβ . (4)

The components of the Lagrangian strain tensor are given
by

ηαβ =
1

2

(
∂uα
∂Xβ

+
∂uβ
∂Xα

+
∂uγ
∂Xα

∂uγ
∂Xβ

)
. (5)

The two strain tensors are only equivalent up to linear
order. Their relation can be expressed as:

ηαβ = εαβ +
1

2
εαγεγβ (6)

εαβ = ηαβ −
1

2
ηαγηγβ +O(η3). (7)

Since Eulerian and Lagrangian strain tensors are
equivalent only in the first order, the second derivatives
or the second-order expansion coefficients of a quantity T
(taken with respect to the strain tensor components) are
not identical unless the first derivatives disappear. This
can be seen from expressing the Taylor series expansion
of a function T

T = T0 + T
(η)
αβ ηαβ +

1

2
T

(η)
αβγδηαβηγδ +O(η3) (8)

in terms of ε. Substituting equation (6) into (8) and
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rearranging terms yields

T = T0 + T
(η)
αβ εαβ +

1

2

(
T

(η)
αβγδ + T

(η)
αδ δβγ

)
εαβεγδ + . . . ,

(9)
where δβγ is the Kronecker delta. Thus, by comparing
coefficients, one can conclude that the first derivatives
with respect to η or ε coefficients are identical and that
the second-order coefficients obey

T
(ε)
αβγδ = T

(η)
αβγδ + T

(η)
αδ δβγ (10)

In this expansion, we have not yet exploited the sym-
metry of the strain tensor. Since εαβ = εβα, any tensor
can be symmetrized accordingly. For example, when us-
ing

T sym
αβγδ =

1

4
(Tαβγδ + Tαβδγ + Tβαγδ + Tβαδγ) (11)

in a Taylor series expansion instead of the original sec-
ond derivatives, the result remains unchanged. In the
following, we assume that all tensors are symmetrized.
Second-order expansion coefficients then obey

∆Tαβγδ =
T

(η)
αδ δβγ + T

(η)
αγ δβδ + T

(η)
βδ δαγ + T

(η)
βγ δαδ

4
, (12)

where ∆T ≡ T (ε) − T (η). Selected components are

∆T1111 = T11 (13)

∆T1122 = 0 (14)

∆T1212 =
1

4
(T11 + T22) , (15)

which are useful relations for the analysis of elastic ten-
sors for (cubic) systems under finite stress.

As an example, we consider the volume. If V0 denotes
the volume of the reference structure, the volume of a
strained structure is

V = V0

∣∣∣∣∣∣∣∣
1 + ε11 ε12 ε13

ε12 1 + ε22 ε23

ε13 ε23 1 + ε33

∣∣∣∣∣∣∣∣ . (16)

Thus, the relative volume change, ∆v ≡ (V − V0)/V0 to
second order in ε is

∆v = ε11 + ε22 + ε33 + ε11ε22 + ε22ε33 + ε33ε11

−
(
ε212 + ε213 + ε223

)
. (17)

Substitution of eq. (7) into the above equation gives

∆v = η11 + η22 + η33 + η11η22 + η22η33 + η33η11

−1

2

(
η211 + η222 + η233

)
− 2

(
η212 + η213 + η223

)
. (18)

One can see that ∂2∆v/∂ε212 = −2, while ∂2∆v/∂η212 =
−4. The difference between these second derivatives is
equal to ∂∆v/∂η11 + ∂∆v/∂η22. When considering the

degeneracy factor of the expansion, this result is readily
seen to be consistent with equation (15).

In reference to computer simulation of periodically re-
peated cells, we note that the Eulerian strain is useful
when taking numerical derivatives of the energy with re-
spect to strain and even more so in the context of con-
stant stress simulations, in which case the six indepen-
dent tensor components are treated as dynamical vari-
ables. If the vectors spanning the simulation box are
arranged in a matrix h, the component of a real coor-
dinate (of unit length) is given by Rα = hαβR̃β , where

R̃ with 0 ≤ R̃α < 1 denotes a reduced cell coordinate.
Deformation of the reference box can then be described
in a straightforward fashion by

hαβ = (δαγ + εαγ)hrefγβ , (19)

where href is the reference h-matrix, e.g., the expected
average shape of the simulation cell at the reference pres-
sure.

2. Stress and elastic tensors

Stress and elastic or stiffness tensors can be loosely
defined as the first and the second derivative of the en-
ergy density of a solid with respect to the strain. These
lax definitions are sufficient for practical purposes when
both external stress and thermal fluctuations can be con-
sidered small. Numerical values for the pertinent ten-
sor elements are then automatically close to those de-
duced from acoustic phonons or stress-strain measure-
ments [24]. Once stress can no longer be conidered small,
the elastic tensor elements differ between the two strain
defintions. Once thermal fluctuations start to matter
(as well), different results can be obtained depending
on which thermodynamic potential T is converted into
energy density. Candidates are internal energy U , free
energy F , enthalpy H, Gibbs free energy G, or for non-
isotropic stresses, an appropriate generalization of the
Gibbs free energy. Since we do not examine finite tem-
perature in this work, we consider the thermodynamic
potentials U and H (both evaluated at zero tempera-
ture) by default. Readers interested in finite temperature
elasticity and Maxwell relations for elastic tensors may
consider reading Ref. 25.

In the last section, we showed that the first derivative
of an arbitrary function with respect to strain does not
depend on which definition for strain is used. Thus, we
obtain the same stress tensor σ when defining it as the
first derivative of the energy with respect to either Eule-
rian or Lagrangian strain. Such an equivalence no longer
holds for the second derivatives.

Different names are used for the elastic constants in
the literature depending on the choice of thermodynamic
potential and strain [24, 26, 27]. For example, Voigt
(Brugger) constants are the second derivative of the inter-
nal energy density with respect to Eulerian (Lagrangian)
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strain [27]. In addition, at non-zero temperature, one
can distinguish between isothermal and adiabatic elastic
constants, depending on the thermodynamic boundary
conditions or the choice of the thermodynamic poten-
tial [28].

To avoid confusion between the zoo of possible defini-
tions for elastic tensor elements, we specify elastic con-
stants with two superscripts. The first gives the ther-
modynamic potential and the second provides the strain
definition, for example,

CHηαβγδ ≡
1

V0

∂2H

∂ηαβ∂ηγδ
. (20)

These coefficients are called the Birch coefficients [26].
The tensor of Birch coefficients has special significance,
because it has to be positive definite in order for a struc-
ture to be stable at constant pressure [29, 30].

In numerical calculations of stiffness coefficients, it is
easiest to work with the Eulerian strain and the internal
energy. To determine elements of CUεαβγδ of a cubic struc-
ture, it is then beneficial to know the relation between
the bulk modulus

B ≡ − ∂P

∂ lnV
(21)

and the CUεαβγδ. For an isotropic pressure, applied to a
solid of cubic symmetry, it is readily shown that

CUε1122 =
3

2
B − 1

2
CUε1111 −

P

2
. (22)

By applying equation (10) to equation (22), the
Lagrange-strain-based elastic tensor can be calculated
in a straightforward fashion from the Euler-strain-based
one, where Tαβ corresponds to the stress tensor element
σαβ . As a result, one obtains

CUη1111 = CUε1111 + P (23)

CUη1122 = CUε1122 (24)

CUη1212 = CUε1212 + P/2. (25)

3. Cauchy relations for central potentials at finite stress

The Cauchy relations state that the elastic tensor of
a crystalline structure is symmetric in all indices, e.g.,
C1212 = C1122 [1]. They hold, for non-fortuitous reasons,
if atoms sitting on symmetry sites interact through cen-
tral potentials and thermal (or ionic quantum) fluctua-
tions are negligible. At finite pressures, Cauchy relations

are valid only for CUηαβγδ, as we quickly demonstrate in
the following.

Let us denote atomic coordinates in the reference frame
by Ri and in the strained lattice by ri. For central po-
tentials, the total energy of a (strained) crystal can be

written as

U =
∑
i,j>i

Wij(r
2
ij), (26)

where r2ij is the squared distance between atoms i and j
and Wij a distance-dependent two-body potential. The
energy can be differentiated twice with respect to La-
grangian strain tensor components using equation (4).
The result of the differentiation gives the elastic tensor
elements at the reference structure

CUηαβγδ = 4
∑
i,j>i

Rij,αRij,βRij,γRij,δW
′′
ij(R

2
ij), (27)

if not only the initial but also the final atomic positions ri
correspond to equilibrium (symmetry) sites. Obviously,
the CUη stiffness tensor remains invariant to any per-
mutation of indices. Thus, the CUη satisfy the Cauchy
relation not only at zero but any isotropic stress under
the given conditions. We therefore define a general ex-
pression for Cauchy pressure as

Pc = CUη12 − C
Uη
44 (28)

B. Bader and Born effective charges

A central aspect of this work is to investigate how
charge-transfer potentials affect the violation of the
Cauchy relations, whereby we correlate a (predicted)
deformation-induced redistribution of charge and the
Cauchy pressure. It is certainly desirable to also di-
rectly compare the predicted charge redistribution to
those of full quantum-mechanical treatments. Doing
this is difficult, because charge distribution in our force-
field description is fully characterized by partial atomic
charges, which, however, are not uniquely defined in a
full quantum-mechanical treatment [31–35].

Despite these difficulties, there are well-defined quan-
tities that reflect charge (re)distribution in both force-
field-based and full electronic-structure approaches. One
such quantity is the Born effective charge (tensor), which
has, amongst others, the following advantages: first, un-
like some other charge-assignment schemes, its definition
does not require biased input. Second, the Born effective
charge (tensor) follows from the redistribution of electron
density that occurs in response to a (non-homogeneous)
deformation, i.e., it relates to a change of charge distribu-
tion rather than to “absolute charges”. Third, the Born
effective charge can be deduced experimentally from the
LO-TO splitting given that the high-frequency dielectric
permittivity is known [36, 37].

The elements of the Born effective charge tensor of a
given atom i (in a finite system, i.e., one in which no
periodic boundary conditions apply) can be defined as

Q∗i,αβ ≡
∂µα
∂ri,β

, (29)
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where µα is the α component of the total dipole of the
system.

Unfortunately, dipoles cannot be uniquely defined in
periodically repeated system. However, one can relate
the dipole to the polarization p times the primitive
cell volume Ω and consider the pertinent expression in
Fourier space in the long wavelength limit [38]. This
leads to an alternative definition of the Born effective
charge tensor in periodically repeated systems as

Q∗i,αβ ≡ Ω lim
|k|→0

∂p̃α(k)

∂r̃i,β(k)

∣∣∣∣
E=0

, (30)

while setting macroscopic electric field E to zero. We
note that the charge tensor of an atom located in a cubic
environment has only one independent component Q∗i ,
i.e., Q∗i,αβ = Q∗i δαβ . In this case one can call it the Born
effective charge.

A disadvantage of the Born effective charge for the
present purpose is that it contains distributions related
to the polarization within an atom, i.e., the Born effective
charge of a fixed-charge, inducible-dipole potential is not
constant. Since we ignore such polarizability, we may not
be in a position to reproduce the Born effective charge
to a high accuracy, the more so as it can (and does, see
the result section) exceed an elementary charge in alkali
halides. We therefore also consider Bader charges [32] as
an alternative, unambiguous charge assignment scheme.
Bader divides the space into regions separated by the
zero-flux surface of the electron density. Each such re-
gion contains a nucleus and all electron density in that
region is assigned to that nucleus. In this work, we used
the Bader Charge Analysis code as described in refer-
ences 39–41.

C. DFT methods

In order to have full control over the proper defini-
tion of elastic tensor elements we decided to parametrize
and compare our force-field approach only to density-
functional theory (DFT) [42, 43] results rather than to
experiments. However, we chose the DFT method which
best reproduced experimental results. In addition, by
comparing to DFT simulations, we can deduce Born ef-
fective charges at any given stress or density.

All calculations were performed using DFT as imple-
mented in the QUANTUM ESPRESSO code [44]. To
identify a suitable DFT method for our purpose, we in-
vestigated different combinations of exchange-correlation
functionals and basis sets. Among the available function-
als we chose the approximations for exchange-correlation
functionals by Perdew, Burke and Ernzerhof [45] (PBE),
Becke, Lee, Yang and Parr (BLYP) [46] as well as Perdew
and Wang [47] (PW91). As pseudopotentials we consid-
ered norm-conserving Trouiller-Martins (MT) [48], norm-
conserving Hartwigsen-Goedecker-Hutter-Teter [49] and
the projector augmented wave (PAW) basis [50]. All

pseudopotentials were downloaded from the QUANTUM
ESPRESSO library. We ensured convergence with re-
spect to the plane-wave cutoff energy together with the
Monkhorst-Pack sampling of the Brillouin zone [51] in all
runs.

Out of the tested combinations, we found that
PBE+PAW (PBE functional combined with projected-
augmented waves basis) and PW91+MT (PW91 func-
tional combined with Trouiller-Martins norm-conserving
pseudopotential) reproduced best the ratios of the dif-
ferent elastic tensor elements that were measured exper-
imentally at low temperature. Out of these two, we
chose PW91+MT, as it was closer to low-temperature
experimental results (see Table I). For this combination,
it proofed sufficient to truncate the plane-wave expansion
of the electronic wavefunctions at 110 Ry and to sample
the Brillouin zone on a 14x14x14 Monkhorst-Pack mesh.

III. CHARGE-TRANSFER POTENTIALS

Polarizable force fields approximately describe the
redistribution of charge induced by deformations of
molecules and solids. Phenomenologically, one can dis-
tinguish between on-site polarizability, e.g., in the form
of inducible point dipoles [56], and/or, charge transfer
between sites [19]. In this work, we only consider the
latter for mainly two reasons. First, in simple ionic com-
pounds, crystalline positions lie on symmetry sites so
that no dipoles develop during a homogeneous deforma-
tion. Second, including on-site polarizability complicates
all analytical expressions without affecting qualitatively
results deduced in this work.

A. General formulation

In the present work we consider a force field of the form

U = USR + UCTP (31)

where USR is a two-body, short-range potential and UCTP

a charge-transfer potential.
The simplest and most successful functional form for

short-range repulsion is a simple exponential [57],

USR =
∑
i,j<i

U0,ij e
−rij/aij , (32)

where U0,ij and aij are parameters of unit energy and
length, respectively. For NaCl in the rocksalt structure,
one usually only considers short-range repulsion between
(adjacent) sodium and chlorine ions, although we also
include short-range repulsion between chlorine ions.

The charge-transfer potential allows one to assign par-
tial atomic charges on the fly. In general, the assign-
ment of charges is done following a minimization prin-
ciple. Here, we consider the split-charge equilibration
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a0 B0 −PC PA ωLO ωTO P (V1,2) χ2
PW91+MT χ2

exp

PW91+MT 5.628 23.9 1.55 -4.43 245.9 149.5 6.77, -3.18 n.a. 1.59

PBE+PAW 5.689 23.2 0.54 -5.30 243.3 150.3 8.43, -2.75 0.94 1.71

exp [52] 5.634 28.0 8.93, -3.29 2.22 n.a.

exp [53] 5.640 23.8 257.0 164.7

exp [54] 26.6 2.08 -9.74

exp [55] 27.4 1.39 -9.90

TABLE I. Data contained in the learning set (PW91+MT). For comparison, we include an alternative DFT method
(PBE+PAW) as well as experimental values. When comparing to experimental data, we always choose the most recent
experiment (i.e., the top one). PA is the “anisotropy pressure”, which we define as C44 − (C11 − C12)/2. The units are Å for
length, GPa for pressure, and cm−1 for frequencies.

(SQE) model [19] as a prototypical charge transfer poten-
tial. It is a hybrid between the traditional electronega-
tivity equalization model (EEM) [16] and the atom-atom
charge transfer (AACT) model [18]. Recently, SQE has
been derived from a controlled approximation of density
functional theory [20].

In SQE, an atomic charge is written as

Qi =
∑
j

qij , (33)

where qij represents the amount of charge transferred
from atom j to atom i, which implies the antisymmetry
of q: qij = −qji. The total charge-transfer potential to
be minimized in SQE reads:

U tot
CTP =

∑
i

(
χiQi +

1

2
κiQ

2
i

)
+

1

2

∑
i

∑
j>i

κijq
2
ij

+
1

2

∑
i

∑
j 6=i

Jij(rij)QiQj. (34)

The first-order parameter χi and the second-order pa-
rameter κi are the atomic electronegativity and hard-
ness respectively [17], κij is called the hardness of the
bond connecting atoms i and j (similar to the one intro-
duced in Ref. 58). EEM is obtained in the limit κij → 0,
while AACT corresponds to κi → 0. Jij(rij) represents
the electrostatic interaction between two atoms. Various
terms appearing in equation (34) are now discussed in
more detail.

In our parameterization, we use the Mulliken definition
of atomic electronegativity and hardness, which both rep-
resent the finite difference approximation of the electron
energy with respect to the total number of electrons,

χi =
Ii +Ai

2
(35)

κi = Ii −Ai. (36)

Here, Ii and Ai are atomic ionization energies and elec-
tron affinities, respectively.

The electrostatic potential Jij(rij) in equation (34) is
often approximated as a Coulomb interaction between
point charges. Sometimes, however, the singularity of
the Coulomb interaction is screened, e.g., via

Jij(rij) =
erf(αijrij)

rij
. (37)

It represent the coupling between two Gaussian charge
distributions g(r) given by

gi(r) =

{
1

2πρ2i

}3/2

exp(−(r− ri)
2/2ρ2i ), (38)

where ri is the position of atom i, while ρi can be viewed
as an effective radius of atom i. For this Gaussian charge
distribution, the parameter αij in (37) reads

αij =

(
1

2ρ2i + 2ρ2j

)1/2

. (39)

1. Application to the rocksalt structure

When considering neutral atoms as reference, the en-
ergy per atom in the rocksalt structure can be written in
a compact form as

UCTP = ∆χQ+
1

2
κCQ

2. (40)

Here, Q represents the charge on a sodium atom and ∆χ
is the electronegativity difference normalized to atoms
rather than to dimers, that is,

∆χ ≡ (χNa − χCl)/2. (41)

The term κC includes all hardnesses summarized in

κT =
κNa + κCl

2
+
κNaCl

12
(42)
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as well as the Coulomb interaction, i.e.,

κC = κT −
αM(η)

a
, (43)

where αM(η) represents the Madelung “constant”, which
we consider a function of the strain. In the case of
screened Coulomb potentials, it also depends on the ref-
erence bond length a.

The charge minimizing UCTP is

Q = −∆χ/κC (44)

so that the minimized energy reads

UCTP = −∆χ2/2κC. (45)

B. Redox-reactive charge-transfer potentials

Chemical reactions, in particular redox reactions, usu-
ally imply a quasi-discontinuous change of the electronic
structure upon small atomic displacements. Such sud-
den changes are not captured by force fields assigning
a unique potential energy surface that smoothly evolves
as a function of atomic coordinates. The description of
(redox) reactions requires one to formulate potentials on
different energy surfaces, that is, one needs a description
not only for the quantum mechanical ground state sur-
face (whose energy generally does evolve smoothly with
coordinates) but also for excited states.

In the context of modeling redox reactions with CTPs,
it was recently proposed to include a formal oxidation
number ni for each atom as a discrete variable such that
the set of oxidation number defines the Landau Zener
level on which the system is moving [15, 59]. An atomic
charge — in the redox split-charge equilibration (R-SQE)
method — then reads

Qi = nie+
∑
j

qij . (46)

We refer to the literature for technical details [59, 60]
and also discuss some aspects in section III B 1. Here,
it shall suffice to state that the inclusion of formal oxi-
dation numbers (a) allows one to extend simulations to
non-equilibrium situations, such as they occur, for exam-
ple during triboelectrification [59], or the discharge of a
Galvanic element [60, 61], (b) is needed to properly de-
scribe the polarizability of zwitter-ionic molecules [62],
(c) does not require one to make major modifications
to the formulae derived in this manuscript for conven-
tional CTPs, however, (d) does require one, in principle,
to assign (independent) interaction parameters for each
oxidation state of an element.

1. Application to the rocksalt structure

Expressing the CTP energy in the R-SQE formalism
can be done in a similar fashion as in CTPs having neu-
tral atoms as reference. This time, the energy reads

UR−SQE = ∆χR(Q− 1) +
κR
2

(Q− 1)2 − αM

2a
Q2, (47)

where ∆χR is now defined with respect to the ionized
states, i.e., ∆χR = (χNa+ − χCl−)/2, κR is the (total)
chemical hardness relevant for the ionized or redox ref-
erence state without Coulomb interactions, i.e., the ana-
logue to κT introduced in the previous section.

By regrouping the terms in equation (47), UR−SQE can
be brought into the same functional form as the conven-
tional CTP energy in equation (40):

UR−SQE = const+(∆χR−κR)Q+
(
κR −

αM

a

) Q2

2
, (48)

where const = κR/2−∆χR.
Equation (48) reveals that — at this level of theory

— there are no formal differences between a CTP ex-
pansion around neutral atoms or ions, at least as long
as we disregard an environment dependence of the hard-
ness terms. Thus, a potential based on R-SQE can be
parametrized to give identical results to those of a CTP
with neutral atoms in the reference. The only difference
lies in the numerical values of the coefficients and their
interpretation.

C. Environment-dependent redox charge-transfer
potentials

So far, we have treated all potential interaction pa-
rameters as being constant. The underlying assumption
is that quantities such as atomic hardness or electroneg-
ativity are (effectively) only mildly environment depen-
dent. However, there is at least one parameter in our
model for which this assumption may be poorly justified.
According to Cioslowski [58], the chemical bond hard-
ness has exponential asymptotics at large atomic separa-
tion. Its specific distance or environment dependence for
bond lengths close to equilibrium may no longer satisfy
the exponential asymptotics. Nonetheless, in a previous
study on the NaCl molecule [59], an exponential distance
dependence of κNa+Cl− allowed us to reproduce partial
charges deduced from DFT-based calculations quite rea-
sonably.

In a solid, the bond hardness terms can potentially
have a more complex environment dependence than in
molecules. As a starting point, we nevertheless assume
their asymptotic, exponential form for the lack of an obvi-
ous, similarly simple alternative. In our parameterization
study, we only consider such an environment dependence
for an expansion around the ionic state and abbreviate
the ensuing full method “environment-dependent redox
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split-charge equilibration” as EDR-SQE. However, as a
default, that is in all other CPTs studied here, we keep
treating all hardness terms as constant.

One could certainly also expect κNaCl to be distant
or environment dependent if one took neutral atoms as
reference. However, this will not be investigated in this
work for the following reason: Atomic reference states are
only meaningful for bond lengths exceeding ≈ 3.7 nm,
at which point the difference between the ionization
energy of sodium and the electron affinity of chlorine,
INa − ACl ≈ 1.5 eV exceeds the Coulomb interaction in
the rocksalt structure.

Another environment-dependent term in a R-SQE
model could be the electron affinity of an anion, e.g.,
ACl− . For an isolated anion, it should be very small, be-
cause the second excess electron will delocalize at a large
distance of the original anion thereby keeping its kinetic
energy as well as Coulomb and exchange interaction to a
minimum. In a solid, however, the additional excess elec-
tron is effectively confined to the space attributed to the
anion. This space becomes rather small at large pressure
so that A−Cl can become a large negative number. As we
have no model to account for this effect, we exclude large
positive pressures from our EDR-SQE analysis.

It might be worth mentioning that including
environment-dependent terms in an R-SQE model, such
as distance dependent bond hardnesses, requires one to
compute additional derivatives when calculating forces
on atoms. In general, the evaluation of these derivatives
can be implemented such that only few extra floating-
point operations need to be conducted.

D. Cauchy violation in CTPs at finite pressure

To discuss the effect of charge-transfer potentials on
the Cauchy violation, we need to calculate the second-
order derivatives of the energy UCTP with respect to
strain-tensor elements. We do this for the rocksalt struc-
ture but note that the equations are similar for other
ionic solids with inversion symmetry.

Expanding the UCTP{∆χ, κC, Q} in equation (40)
around a (cubic) reference state, one time assuming a
fixed charge of Q = −∆χ2/κC(ηref) in the FC approach,
and another time allowing charge transfer in the CTP ap-
proach, leads to the following relation for second deriva-
tives of the energies

∂2U(FC)

∂ηi∂ηj
− ∂2U(CTP)

∂ηi∂ηj
=

∆χ2

κC

∂ lnκC
∂ηi

∂ lnκC
∂ηj

= κC
∂Q

∂ηi

∂Q

∂ηj
(49)

This equation reveals that the Cauchy pressure contri-
bution from charge transfer potentials in NaCl struc-
tures is strictly non-positive in cubic structures, since
∂Q/∂η1 = ∂Q/∂η2 is not identical zero unlike ∂Q/∂η4.

Including the possibility for a strain-dependence of the

bond hardness, κNaCl(η), the following Cauchy pressure
can be obtained from evaluating equation (49) around a
cubic reference structure

−PC =
1

V0

{
κC

(
∂Q

∂η1

)2

+
Q2

24

(
∂2κNaCl

∂η26
− ∂2κNaCl

∂η1∂η2

)}
. (50)

The second summand in the curly brackets on the r.h.s.
of equation (50) can, in principle, take any aribitrary
value. However, it disappears as long as the individ-
ual κNaCl are constant or merely distance dependent. In
this approximation, CTP-induced Cauchy pressures are
strictly negative and thus we still find that

C12(CTP) < C66(CTP). (51)

E. Born effective charges in CTPs

For a system without periodic boundary conditions,
the dipole of a CTP system, assuming no on-site polar-
izability, is defined as

p =
∑
j

Qjrj . (52)

The Born effective charge tensor elements of atom i then
read

Q∗i,αβ = Qiδαβ +
∑
j

∂Qj
∂ri,β

rj,α, (53)

where we have expanded around neutral atomic refer-
ences nj = 0 ∀ j.

For periodically repeated systems, the dipole cannot be
defined for reasons discussed in more detail in the litera-
ture [63]. However, an excess dipole ∆p can be defined in
a straightforward fashion in the context of models where
charge transfer only occurs locally, as is the case in the
AACT or the SQE model. One can then write

∆p =
∑
ij

qijrij , (54)

where the rij must abide the minimum-image conven-
tions. The Born-charge tensor elements then become

Q∗i,αβ =
∑
j

(
qijδαβ +

∂qij
∂rij,β

rij,α

)
. (55)

for a reference state consisting of neutral atoms. Thus, in
general, the Born charge tensor of an atom is not simply
proportional to the identity matrix. Instead, its symme-
try reflects the symmetry of the environment into which
the given atom is embedded.

When free ions are the reference, their integer charges
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need to be added to the Born effective charge tensor
in (55), i.e.,

Q∗i,αβ → nieδαβ +Q∗i,αβ . (56)

The Born effective charge tensor is identical to the par-
tial charge times the identity matrix as long as atoms is
located in a site with inversion symmetry and induced
dipoles are neglected. This is because the sum over the
second term on the r.h.s. of equation (55) adds up to zero
under these circumstances. Otherwise Born and partial
charge may differ.

Since the qij and the rij change sign upon reversing
the order of their indices, the SQE-based Born effective
charge tensors obey the so-called acoustic sum rule [64]∑

i

Q∗i,αβ =
∑
i

nieδαβ , (57)

where the sum over all oxidation numbers on the r.h.s.
of the equation is the net charge of the system.

IV. RESULTS

A. DFT results and force-field parameterization of
fixed-charge potentials and conventional CTPs

In order to parametrize a potential, it is beneficial to
have reliable, self-consistent, and sufficient data. Often,
there is not enough experimental information to fully de-
fine the adjustable parameters in a meaningful fashion
and/or to have a consistent set of data to test force-field
based predictions. This is why we parametrize the force
fields in the work exclusively to DFT-based data.

Our fixed-charge potential, which we consider for
comparison purposes, has five adjustable parameters,
U0,NaCl, aNaCl, U0,CaCl, aClCl, and QNa. In the con-
ventional charge-transfer potential, QNa is no longer a
parameter, but instead we need to adjust κT and ∆χ.
Thus, we need to calibrate our potential against at least
six independent reference data points. The parameteri-
zation of our EDR-SQE potential is handled differently
than for the CTPs in which the (bond) hardness terms
are treated constant, see section IV B.

As input reference data we chose: the lattice con-
stant a0, three independent components of the elastic
tensor (rewritten as bulk modulus, Cauchy pressure, and
anisotropy pressure), the two optical vibrational frequen-
cies at the Γ-point ωLO,TO — all at mechanical equilib-
rium — as well as the pressure at one density 15% above
and another density 15% below the equilibrium density
(which allows one to fix the change of bulk modulus with
pressure B′ = dB/dP ). The numbers are listed in table I.

To calibrate the parameters, we construct a χ2 penalty

a0 B0 −PC PA ωi P (Vi)

wn 1 0.5 0.25 0.25 0.5 0.25

∆On 0.01 a0 0.1B0 0.1B0 0.1B0 0.05ωi 0.1P (Vi)

TABLE II. Significance and the weight of observables entering
the fit.

function according to

χ2 =
1∑
n wn

∑
n

wn
{On −On(DFT)}2

(∆On)2
. (58)

Here On is the n’th observable as predicted by a model
potential, On(DFT) the corresponding value from DFT,
∆On is the target accuracy of the observable, and wn
is the weight of the observable reflecting its importance
that we assign to it. The χ2 penalty function is therefore
designed such that χ2 = 1 separates the domain where
the target accuracies are reproduced on average from that
where they are not achieved. The respective accuracies
and weights are summarized in table II. The fits turn
out rather robust, which means that as long as we do not
alter the weights by an order magnitude, the deduced
force field parameters vary only mildly.

The parameters obtained from minimizing our χ2

penalty function are listed in table III. The results for
each parameterization are summarized in table IV.

We first discuss the results from our fits in the con-
text of an expansion about neutral atoms. Taking val-
ues for electron affinities and ionization energies of neu-
tral atoms, which were obtained from DFT, i.e., ACl ≈
5.5 eV, ANa ≈ 2.1 eV, ICl ≈ 11 eV, INa ≈ 3.5 eV,
we would have expected ∆χ ≈ −2.7 eV and κT =
3.5 eV + κNaCl/12. Thus, our result for ∆χ is off by
a factor of five. Moreover, the estimate for κNaCl would
be 260 eV. This value seems unreasonably large, as one
might expect κNaCl to correlate with the band gap of
NaCl [15]. Given that the experimental band gap of rock
salt is around 9 eV [66], the bond hardness turns out
roughly thirty times greater than expected.

In the context of R-SQE, one also can assume most
terms from DFT calculations, ANa+ = INa, INa+ ≈
42 eV, and ICl− = ACl, however, ACl− is not known and
therefore treated as a fit parameter. Likewise, κNa+Cl−

is deduced from the fit, i.e., (∆χ†, κR) in table III can be
used to get estimates for ACl− and κNa+Cl− . Using the
definitions from section III B one can write

ACl− = INa+ +ANa+ − ICl− − 4∆χR. (59)

We find a value of ACl− = −3.05 eV, which is perfectly
meaningful, since it is energetically unfavorable to place
an extra electron onto a chlorine ion. Solving a linear
equation for κNa+Cl− in the R-SQE formalism leads to
κNa+Cl− = 18.5 eV. This value is only a factor of 2 higher
than the experimental value rather than a factor of 30 as
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U0,NaCl aNaCl U0,ClCl aClCl QNa -∆χ† κT,R

Fixed point charges 15362.0 0.2296 25.9 0.5973 0.88

Fixed distributed charges 36053.5 0.2082 51.7 0.5542 0.89

CTP point charges 48497.1 0.2067 59.5 0.5470 14.32 25.11

CTP distributed charges 84291.8 0.1941 99.0 0.5124 13.07 23.37

TABLE III. Force field parameters. The units are eV for energy, Å for length, and the elementary charge for charges. To
describe distributed charges, Gaussians centered on atoms, atomic radii proposed by Shannon [65] were used: RNa = 0.51 Åand
RCl = 0.91 Å. The term ∆χ† is identical to ∆χ for an expansion about a reference of neutral atoms. In expansions about ions,
∆χ† corresponds to ∆χR − κR.

a0 B0 −PC PA ωLO ωTO P (V1,2) χ2

Fixed point charges 5.607 25.8 0.00 -5.83 248.0 135.2 7.24, -3.21 0.804

Fixed distributed charges 5.606 25.7 0.00 -5.83 249.1 135.2 7.24, -3.19 0.794

CTP point charges 5.600 25.1 3.20 -5.27 251.8 139.9 7.20, -2.93 0.511

CTP distributed charges 5.600 25.1 3.04 -5.34 253.0 139.2 7.22, -2.90 0.573

TABLE IV. Learning set produced by models. The units are Å for length, GPa for pressure, and cm−1 for frequencies.

before. Thus, the adjustable parameters take physically
meaningful values.

B. Parametrization of EDR-SQE

An immediate consequence of treating (bond) hardness
terms constant is that the partial charge of ions in rock
salt (and other ionic solids) is generally predicted to in-
crease monotonically with increasing pressure. The rea-
son is that the Coulomb interactions favors large charges
at small interatomic distances. However, in experimen-
tal [67] and DFT-based [68] studies of ionic crystals – and
also in our DFT calculations of rock salt – the trend is
opposite: partial charges (Bader or effective Born, differ-
ent in DFT but identical in CTPs that do not consider
dipoles on atoms) initially increase when bond lengths
are stretched from equilibrium to larger distances, even if
the ultimate dissociation limit should be neutral atoms.
These trends are revealed for NaCl in figure 1, where
we show not only Born effective charges but also Bader
charges.

To reproduce the correct trend, we follow the sug-
gestion [59] to expand SQE around ions and to make
the combined hardness increase when the bonds are
stretched. We name such an expansion environment-
dependent redox (EDR) split-charge equilibration (SQE),
or EDR-SQE. For the NaCl dimer, a reasonable descrip-
tion of partial charges was given by introducing an ex-
ponential distance dependence of the bond hardness [59].
Unfortunately, there can be a more general environment
dependence of the (bond) hardness terms in the bulk.
The simplest approach giving reasonable (Bader) charges
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, 
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a
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DFT
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CTP
EDR-SQE

Born
effective charge

Bader charge

FIG. 1. Born effective and Bader charges (different in DFT
but identical in the other shown approaches) as a function of
the isotropic pressure P as obtained by DFT, by the fixed
charges approximation, the conventional charge-transfer po-
tential (CTP), and the environment-dependent redox-split-
charge equilibration (EDR-SQE) potential.

is to make the total hardness an exponential function
of the bond length a. Assuming ACl− = −12.1 eV and
κT(a) = 2.66 eV exp(−a/0.928 Å) while keeping all other
ionic terms fixed to their experimental values gives the
EDR-SQE charge shown in figure 1. The short-range in-
teractions of the EDR-SQE were then fitted to the same
set of data as the other CTPs. We only excluded the
Cauchy and the anisotropy pressure from the parameter-
ization, as their fit would have necessitated knowledge of
the environment dependence of the total hardness beyond
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U0,NaCl aNaCl U0,ClCl aClCl

EDR-SQE point-charges 438.4 0.3683 0.01046 2.664

TABLE V. Short-range interaction parameters of the redox-
SQE force field with environment-dependent bond hardness
term. The units are eV for energy, Å for length.

isotropic compression. The adjustable parameters defin-
ing the short-range interaction in EDR-SQE are listed in
table V

C. Pressure dependence of selected quantities

To investigate the quality of potentials outside the do-
main of the learning set, we compute the pressure depen-
dence of most quantities on which the adjustable param-
eters were gauged. However, we restrict our attention
to three cases, which are representative for a number of
possibilities that result from switching “on” or “off” the
following options: short-range repulsion between chlorine
anions, distributed charges, charge transfer. In the lat-
ter case we can furthermore ignore or consider an ionic
reference state and an environment dependent chemical
hardness. Out of these possibilities, we decided to con-
sider one fixed-charge, one conventional charge-transfer
potential, one charge transfer potential with non-zero ref-
erence redox state and EDR-SQE. In all four cases, we
include the short-range repulsion between chlorine atoms,
as it is not possible otherwise — in the realm of the po-
tential surfaces investigated here — to obtain reasonably
accurate optical frequencies in the Γ point. For the fixed-
charge approach we used distributed charges, while for
the fluctuating charge models we used point charges, as
these gave slightly better fits near equilibrium for the re-
spective treatments for the system in either case. We
note that this means only one additional adjustable pa-
rameter for the charge-transfer potential, as many of its
parameters are taken either from DFT or from the liter-
ature and not fine tuned any further. This includes the
screening lengths for short-range Coulomb interactions
as well as the ionization energies and electron affinities
of the involved atoms or ions. Thus, in one case, we have
the fixed charge as a fit parameter, and in the other case
a total hardness as well as an effective electronegativity.

We start the analysis of our “test set” with the pressure
dependence of the Cauchy pressure in Fig. 2. One can
readily notice that the charge-transfer potentials produce
the Cauchy pressure with the correct sign at ambient con-
ditions. However, they overcorrect it by a non-negligible
amount compared to a fixed-charge approach, for which
PC in rock salt disappears by definition. Yet, the charge-
transfer potentials produce the correct trend, that is, the
negative of the Cauchy violation increases with increas-
ing isotropic pressure P .

We note that it appears necessary to induce another
many-body term into our force field in addition to charge
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FIG. 2. Negative of the Cauchy pressure PC as a func-
tion of the isotropic pressure P obtained either by DFT
or the fixed-distributed-charges approximation, or the point-
charge-transfer potential, or environment-dependent redox-
SQE point charges potential. Dashed lines represent the an-
alytical solutions according to equation (50).

transfer, i.e., one that counteracts the overestimation of
−PC and that can reproduce positive Cauchy pressures
for P < −2 GPa. A natural candidate for this would be
to augment the charge-transfer potential with terms de-
riving from quasi-atom theory, as done, for example, by
Streitz and Mintmire [69]. Such additional terms natu-
rally lead to positive Cauchy pressures. We abstain from
parametrizing such a potential here, as the focus of this
study is on investigating the generic effects of charge-
transfer potentials on physical properties rather than on
designing a highly accurate and transferable potential.
To achieve the latter, our aim would be — as in our de-
sign of potential for copper [70] — to construct it such
that the potential does not only work for a single geom-
etry, i.e., for rock salt but for many different bonding
environments. Such an endeavor is outside of the present
scope.

We next investigate the equation of state (EOS) in fig-
ure 3. The fixed-charge approach appears to reproduce
the EOS slightly better than conventional CTPs, how-
ever, differences are only minor. In these two cases, the
predicted isotropic pressure becomes too large at large
densities, which could mean that the exponential repul-
sion is too stiff at high compression. However, the EDR-
SQE model, which best reproduces the EOS, underesti-
mates the pressure at small volumes. We conclude that
the EOS is an unsuitable function on which to gauge ad-
justable, charge-transfer related parameters.

The pressure dependence of longitudinal and trans-
verse optical frequencies in the Γ point also turns out
rather insensitive to whether charges are fixed or ad-
justable, as one can see in figure 4. This result, however,
can be readily rationalized: for crystals in which each
atom has an equilibrium position with inversion symme-
try, induced charges can only be quadratic in the dis-
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FIG. 3. Equation of state, P (V ), as obtained by DFT, by
the fixed-distributed-charge approximation, the point-charge-
transfer potential, and the environment-dependent redox-
SQE point charges potential. The inset shows the equation
of state with larger magnification around small pressures.

placement of an optical Γ-point vibration. As such, Γ-
point frequencies remain unaffected by the charge trans-
fer induced by an optical Γ-point vibration. This time,
the EDR-SQE model appears to show the least satisfac-
tory agreement with the DFT data. This shortcoming
might have been expected as we have not optimized the
general strain dependence of the total hardness beyond
isotropic compression. However, as we demonstrate next,
EDR-SQE best reproduces how the LO-TO splitting de-
pends on pressure.
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FIG. 4. Longitudinal (ωLO) and transverse (ωTO) opti-
cal Γ-point frequencies as a function of the isotropic pres-
sure P as obtained by DFT, by the fixed-distributed-charges
approximation, the point-charge-transfer potential, and the
environment-dependent redox-SQE point charges potential.

In figure 5 we show the pressure dependence of the LO-
TO splitting as a function of pressure P . More specifi-
cally, we show the splitting ω2

LO−ω2
TO times the volume

of the primitive unit cell, Vp, as this product is constant
in a fixed-charge approach. Conventional CTPs without
environment-dependent or bond-length-dependent chem-
ical hardnesses predict the wrong slope for how our mea-
sure for the LO-TO splitting depends on pressure. This
was to be expected, as the LO-TO splitting is induced
by the long-range electric fields of the (Born effective)
charges [36]. In fact, the ratio Vp(ω2

LO − ω2
TO)/(Q∗αα)2

turns out to be insensitive to density. Thus, since the
conventional CTPs predict the wrong sign of dQ/dP ,
they also predict the wrong trend for how our measure
for the LO-TO splitting depends on P .
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as a function of the isotropic pressure P as obtained by DFT,
by the fixed-distributed-charges approximation, the point-
charge-transfer potential, and the environment-dependent
redox-SQE point charges potential. Vp is the primitive cell
volume.

The EDR-SQE potential predicts the correct trend for
how our measure for the LO-TO splitting depends on
P ; however, the slope turns out too small. This short-
coming could have also been expected since the Bader
charges, on which we parametrized the potential, show
a smaller pressure dependence than the Born effective
charges. We deduce from figure 5 that charge transfer
only accounts for roughly 25% of the pressure depen-
dence of the LO-TO splitting. The missing contribution
must come from the atomic polarizability, which can be
reflected, for example, by models originally proposed by
Madden and Wilson [10, 71].

V. CONCLUSIONS

The first main result of this study is that charge trans-
fer potentials generally induce a negative contribution to
the Cauchy pressure, which increases in magnitude with
increasing density. This type of behavior is revealed in
rock salt, however, to a lesser extent than one would
expect if charge transfer were the only many-body in-
teraction. Thus, it seems as if additional many-body ef-
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fects inducing positive Cauchy pressures were needed for
this — and in all likelihood for any — ionic solid. An
ionic solid for which charge transfer might dominate the
Cauchy pressure even at ambient pressure is lithium hy-
dride (LiH). Like NaCl, LiH has no directed bonds and
crystallizes in the rocksalt lattice. However, the value for
C44 ≈ 48 GPa exceeds that for C12 ≈ 14 GPa by more
than a factor of three, which results in a Cauchy pressure
of −34 GPa [72].

Our analysis also reveals that, as long as the environ-
ment dependence of bond hardnesses is ignored, differ-
ent charge-transfer approaches are formally equivalent
as far as structural or elastic Γ-point properties are con-
cerned, e.g., elastic tensor, equation of state, Γ-point op-
tical phonons and even partial or Born effective charges.
Results can also be identical between CTPs expanding
around the atomic or the ionic reference state. In this
sense, fitting adjustable parameters to Γ-point proper-
ties does not allow one to ascertain which CTP is the
best suited. This might be counterintuitive as the dielec-
tric response function of different CTPs can differ quite
substantially, i.e., conventional CTPs treats systems as
perfect metals, while the split-charge model behaves like
a dielectric unless the bond hardness is set to zero, in
which case SQE reduces to a conventional CTP.

The difference between various CTP approaches with-
out environment-dependent hardnesses (in regard to Γ
point properties) lies in the numerical values for the pa-
rameters and their subsequent interpretation. For exam-
ple, if we parametrized our potential relative to neutral
atoms and used reasonable values for electron affinities
and ionization energies, then we would need to boost
the hardness term by as much as 22 eV. Irrespective
of whether the boost of hardnesses is placed directly as

an environment correction to the atomic hardnesses (the
measured combined hardness being 3.5 eV) or as an ex-
tra bond hardness (which would need to be as large as
260 eV), the added hardness would have to be called
meaningless. The increase of the electronegativity differ-
ence between Na and Cl atoms from 5 eV for free atoms
to 29 eV in the crystal appears to be even more non-
sensical. In contrast, when the parameterization is inter-
preted as being an SQE expansion around ionic states,
we only need to introduce a bond hardness of 18 eV. This
is perfectly meaningful, as the SQE bond hardness can
be interpreted as a measure for the band gap, which in
NaCl happens to be 9 eV.

Models with constant bond hardness predict a decrease
in the Born effective charges, as well as formal atomic
charges, with increasing bond length, which is contrary
to DFT results. In order to fix this issue one can intro-
duce environment-dependent (bond) hardnesses, which
should increase monotonically at large separations. In
the simplest approach, one could assume that the (bond)
hardness is simply an exponential function of the bond
length. While this approach allows one to reproduce
(Bader) charges reasonable well, reality might be more
complicated. A simple bond-length dependence of the
(bond) hardness leads to a rather large overestimation of
the (negative) Cauchy pressure. The correct functional
dependencies for the (hardness) parameters in charge
transfer potentials remains to be researched.
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