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On the linearity of contact area and reduced pressure
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Abstract Computer simulations, Persson theory, and

dimensional analysis find that the relative contact area

between nominally flat surfaces grows linearly with the

reduced pressure p∗ at small loads, where p∗ is the ra-

tio of the macroscopic pressure p and the contact modu-

lus times the root-mean-square height gradient ḡ. Here,

we show that it also holds for Hertzian and other axi-

symmetric indenters – as long as ḡ is determined over

the true contact area and p is defined as the load di-

vided by an arbitrary but fixed reference area. For a

Hertzian indenter, the value for the proportionality co-

efficient κ turns out to be κ = 3π/
√

32. The analy-

sis explains why mathematically rigorous treatments of

Greenwood-Williamson type models identify a sublin-

ear dependence of contact area on load.

1 Introduction

The recent past has seen much work on the linear elas-

ticity of solids with nominally flat surfaces. It is now

well established [1–7] that the equation

arel = κp∗ (1)

describes the dependence of the relative contact area on

the reduced pressure p∗ quite well, where p∗ ≡ p/E∗ḡ is

assumed to be small compared to unity. In this defini-

tion, E∗ is the contact modulus, and ḡ the root-mean-

square gradient of the air gap between the two solids

before they touch. If the height topographies are ran-

domly rough (to be precise, if the Fourier components
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of the height topography satisfy the random-phase ap-

proximation), the value of κ turns out to be slightly

greater than two with a rather weak dependence on the

Hurst roughness exponent [2,3,7]

Since Eq. (1) was also obtained from dimensional

analysis [7], the question arises why it does not appear

to hold for those cases, where analytical relations are

known such as Hertzian or other axisymmetric inden-

ters. In this Letter, it is shown that this perception is

erroneous and that Eq. (1) also applies to certain single-

asperity contacts.

2 Theory

We start our calculation by assuming that

arel = κp/ḡE∗ (2)

is satisfied for an axisymmetric indenter with a har-

monic height profile

h(ρ) =
R

n

( ρ
R

)n
(3)

for n > 0. Here ρ gives the distance from the symmetry

axis and R is a variable of unit length. For a Hertzian

indenter (n = 2), R is the radius of curvature. Assuming

an arbitrary but fixed apparent contact area over which

the pressure is averaged, Eq. (2) can be rewritten as

πa2c =
κL

ḡE∗ . (4)

The root-mean-square gradient of the undeformed

gap profile, averaged over the true contact is

ḡ =
1√
n

(ac
R

)n−1

. (5)
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Replacing ḡ in Eq. (4) leads to the equality

L =
πE∗

κ
√
n
a2c

(ac
R

)n−1

, (6)

which reduces to the well-known L ∝ a3c relation for a

Hertzian contact.

From Sneddon’s analytical solution for axisymmet-

ric indenters, see Eqs. (4.3) and (7.3) in Ref. [8], one

obtains

L = cnE
∗a2c

(ac
R

)n−1

(7)

with

cn =

√
πΓ (n

2 + 1)

Γ (n
2 + 3

2 )
, (8)

where Γ (•) represents the gamma function. Thus, for

Eq. (6) to be correct, we need to set

κ =
π

cn
√
n

. (9)

Evaluating κ at n = 2 yields

κH =
3π√
32

(10)

for a Hertzian indenter.

3 Discussion and Conclusions

In this Letter, it is demonstrated that Eq. (2) does not

only apply to randomly rough surfaces but also to axi-

symmetric punches whose height profile is a harmonic

function of degree n in the distance from the symme-
try axis. Eq. (2) must therefore also hold for a collec-

tion of indenters if the patch-area distribution function

does not change with load. The numerical value for an

individual Hertzian indenter, κH ≈ 1.67, is markedly

different from that obtained in the famous paper by

Bush, Gibson, and Thomas [9], κBGT =
√

2π ≈ 2.52,

but close to Persson’s original estimate [1] of κ, namely

κP =
√

8/π ≈ 1.60. One difference between our and

these previous treatments is that we determine ḡ solely

over the real contact area, while the usual definition of

ḡ considers the full surface. However, this difference is

not significant for randomly rough surfaces, which we

tested numerically.

Simulations reveal that there must be a character-

istic (maximum) cluster size in real contacts, which in-

creases with load [10]. As a consequence the mean value

of ḡ also increases with load for n > 1 and decreases for

n < 1 and thus a rigorous treatment of the Greenwood-

Williamson model [11] model must lead to a slightly

sublinear dependence of ar with p for n > 1. Given the

computational resources in the mid 1960’ies, it might be

understandable that GW did not realize the deviation

of the true arel(p) relation in their model from linearity.

However, it is astounding to notice that since then only

one numerical GW study [4] appears to have been suf-

ficiently carefully designed to unravel that discrepancy.

This adds to our previous criticism that bearing-area

models predict contacts to be much too clustered near

the highest peak [12,13] and to substantially underes-

timate the mean displacement at small loads [14].
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