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In his comment [1] on the Contact-Mechanics Chal-

lenge [2], Ciavarella reports his difficulties to repro-

duce one data set of the submission of one contributor,

namely the gap-load relation by Persson. The comment

could convey the impression that Persson’s model was

not fully defined, which might imply by a worst-case

extension that Persson’s data was fudged. After all, the

term fudge factor appears three times in the comment.

I respond to the comment as the corresponding author

of the study, who designed the challenge, who collected

all data from all contributors, who prepared all figures,

and who ultimately wrote the paper with helpful feed-

back from many co-authors and steady encouragement

from two Tribology Letters editors.

First and foremost, I feel the desire to state that

my own reference data had not been disclosed to any-

body before I collected the results. In some cases, I

noticed potential errors in the submissions, which ap-

peared unrelated to the used methodologies themselves,

but seemed to be unit-conversion problems or similar

misunderstandings. In these cases, I told the contribu-

tors where I believed the errors to be, asked them to

consider my findings and to resubmit. This was done

without the passing on of any reference data or of hints

if some predicted number was too large or too small.

Persson was the second participant of the challenge

to submit his data. There was no need to ask for resub-

mission, because his data matched my full Green’s func-

tion molecular dynamics (GFMD) [3] based simulations

within the small deviations that usually occur when

both theory and simulations are carefully conducted. I
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Department of Materials Science and Engineering, Saarland
University, Campus, 66123 Saarbrücken, Germany E-mail:
martin.mueser@mx.uni-saarland.de

can thus assure that there was no fudging in Persson’s

or any other submission. As a personal note I may add

that I used to be skeptical of the good match of his the-

ory with experimental data myself. This is why I asked

Persson in 2011 to make predictions on the Reynolds

flow through the thin gap between a randomly rough

surface (defined with mathematical precision) and an

elastic manifold with equally well-defined elastic prop-

erties. During the write-up of this personal challenge, I

did not share my data with him either, until I prepared

the figures of the final write-up, which was published

in Physical Review Letters [4]. This procedure between

Persson and me is now established whenever we collab-

orate.

In his comment, Ciavarella asks for the results to be

completely accessible. As the corresponding author of

the Contact-Mechanics Challenge, I rewrote all model

descriptions such that anybody with access to the in-

ternet and my modest background in contact mechan-

ics would be in a position to reproduce the gist of every

contribution. In some cases, it took many iterations and

perhaps some frustration on behalf of my co-authors

until I felt to be in a position to (roughly) reproduce

each submitted data set from scratch. The one contri-

bution that I would not dare trying to reproduce is the

stunning experimental work of Greg Sawyer’s group. As

a two-left-handed theorist, I should not be allowed to

enter a real laboratory.

However, it should be clear to anyone that a paper

such as that summarizing the Contact-Mechanics Chal-

lenge needs to remain within a reasonable page limit

and that this cannot be achieved if every theoretical

approach is described in such excruciating detail that

every reported number can be reproduced to several

decimal digits. While it might have been appropriate to

state explicitly that the elastic energy expression from
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Reference [5] was taken, the description of Persson the-

ory in the Contact-Mechanics Challenge closes with a

clear reference to my own work with Wang [6], where

we explain and extend Persson’s submission, for anyone

interested in more details.

Persson’s submission happens to be the only one

that I recomputed (with my own, independently writ-

ten code), i.e., the one that Ciavarella reports to be

irreproducible. I was dissatisfied by the small number

of data sets that Persson had submitted and wanted to

find out for myself how well his theory works for some of

the properties that he had not predicted, since my own

previous tests of Persson theory had not included adhe-

sion. I, personally, had no trouble reproducing Persson’s

data.

Interestingly, Ciavarella ignored adhesion and yet

compared his data to calculations that included it. While

the Contact-Mechanics Challenge was addressed to sci-

entists with the ability to model adhesion – other in-

terfacial properties are indeed much more affected by

moderate adhesion than the gap-load relation – I ex-

tend the Contact-Mechanics Challenge in this response

to the gap-load relation without adhesion in order to

properly address the comment. Results, which deviate

quite strongly from those reported by Ciavarella, are

presented in Fig. 1. GFMD and Persson theory only dif-

fer noticeably in the investigated pressure range when

corrections are switched off completely. This, however,

is well known and the reason why Persson introduced a

correction to his theory – based on comparisons to ex-

perimental data (!) – to begin with [5]. This correction

factor will be touched upon again later. Here, it shall

suffice to state that slightly different versions of the cor-

rection factor produce results within the line width of

the Yang-Persson data set shown in Fig. 1 and that

different versions of Persson theory do not deviate by

500% as Ciavarella claims it to be the case. The original

Persson prediction to the Challenge (blue line) touches

the GFMD data (full circles) as well as the new, inde-

pendent calculation conducted for this comment (long,

dashed line) at the reference pressure of p = 0.01E∗ḡ

and at larger pressures.

It is certainly not infrequent that an attempt to re-

produce data from others first fails. If these data were

produced by one scientist and then reproduced inde-

pendently by another (who just successfully compared

his own simulations to those of the rest of the world),

one would assume it to be good scientific practice to

troubleshoot the code that gave contradictory results.

Ciavarella chose to write a comment instead.

It is not my job as organizer of the Contact-Mechanics

Challenge to troubleshoot code of people, who do not

succeed in reproducing the calculations of one of the
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Fig. 1 Mean gap as a function of pressure as reported in
Fig. 12 of the Contact-Mechanics Challenge [2] for the GFMD
reference data and Persson’s submission. Two new data sets
are included, for which adhesion was not included.

participants. This is why, I cannot say why Ciavarella’s

attempt to reproduce Persson’s gap-load relation failed.

When ignoring adhesion, Persson theory is mathemat-

ically isomorphic to a diffusion equation with an ab-

sorbing boundary and thereby constitutes one of the

simplest, standard partial-differential equation to be

solved. It should not require much prudence to code it

up correctly. However, the comment contains so many

deficiancies that I consider it quite plausible that Pers-

son theory was coded incorrectly as well. The first item

that could be pointed out is that insufficient care was

taken to reproduce correctly the title of the paper that

was commented on. Unfortunately, there are many other

mistakes and false or misleading statements that need

correction. Since some of his views are widespread in

the field, I seize the opportunity to address them in

detail.

Linearity between relative contact area and

pressure. In his opening paragraph, Ciavarella claims

that the Greenwood-Williamson (GW) model explains

linearity between the relative contact area ar and pres-

sure p in an elastic contact between nominally flat sur-

faces. It does so at best up to extremely small rela-

tive contact areas of O(10−4) [7], while careful simu-

lations of well-defined Gaussian surfaces (thus reflect-

ing the conditions for which GW was constructed) re-

veal linearity up to O(10%) according to the relation

ar = κp/E∗ḡ. Here, κ is a unitless prefactor, which

turns out close to two, E∗ is the contact modulus, and

ḡ is the root-mean-square gradient of the surface [8,9].

For ar exceeding 10%, corrections of order O{(p/E∗ḡ)3}
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become noticeable [8,9] – in full accordance with Pers-

son theory.

In contrast, the prefactor relating ar and p in the

GW model disappears with the root of the standard de-

viation of the peak heights σh [10] (I thank Ciavarella

for pointing out the reference to me). This is why κ

becomes arbitrarily small in the limit of macroscopic

surfaces. However, there is a well-defined limit for the

proportionality coefficient when σh tends to infinity, as

can be concluded, for example, from Fig. 2 in Ref. [9].

Thus, while GW might result in a linear ac(p) rela-

tion, the prefactor is not meaningful, and, as such, no

serious scientific paper or comment should claim the

GW model to explain linearity between contact area

and load in elastic contacts – even if modification of

the GW theory [11,12] – which are qualitative in na-

ture rather than corrective factors of order unity – are

consistent with a linear ac(p/E
∗ḡ) relation at small p. I

would always thank Greenwood for important contribu-

tions to contact mechanics. However, I do not see that

GW has any predictive ability, even if the GW paper

has guided our intuition for more than five decades and

rightfully deserves credit for having opened up a new

field of study.

False use and false interpretation of Persson

theory. Ciavarella claims that a normal reader gets the

impression when reading Persson, that (that) equation

(no number given, but Ciavarella meant to refer to his

equation 1, which relates pressure and mean gap) should

indeed hold for pure power-law spectra without roll-off.

I am not sure what a normal reader is and I somehow

doubt that a good tribologist can be or even should

be normal. However, an intelligent reader would only
use the equation under those circumstances for which

it was derived, i.e., when there are many decades of

wave vectors on which the surface-height spectrum ex-

hibits power-law scaling and also restrict its applicabil-

ity to the appropriate pressure range. The used ratio

of qs/qr = 200 (qs,r being the wave numbers associ-

ated with the short-wavelength cutoff and the roll-off,

respectively) could simply not be enough for the equa-

tion to be very accurate. More importantly, the honest

scientist, who had carefully studied Yang and Persson

(2008) [13], would not claim that a normal reader could

believe Persson’s asymptotic p(u) equation to be gen-

erally applicable. Yang and Persson explicitly write in

their paper [13]: For this reason it is important to accu-

rately describe how Uel depends on Pp(q) for all p, even

if one is only interested in the relation between ū and

p for very small p. Not only intelligent but also nor-

mal readers would use the p(u) relation with caution

and abstain from writing a comment that it produces

inaccurate numbers.

A normal, fair-minded reader might not write ei-

ther that ...require a number of “corrective or fudge

factors”, as Wang & Müser [3] themselves discuss at

some length, when the word fudge was not used in the

cited paper and the authors clearly emphasized that a

single corrective term remained of order unity.

Approximate nature of Persson theory. In his

comment, Ciavarella writes: Persson’s theories remain

always approximative. It is not clear to me whether he

meant to convey that Persson’s theory cannot be cor-

rected such that it becomes an exact theory, or, that

Persson claims his theory to be correct, but I am telling

you that it is not. Neither claim would be correct. I

demonstrated a decade ago that Persson’s approach re-

flects the leading-order terms of a rigorous perturbation

theory (in form of a cumulant expansion) for linearly

elastic systems [14]. The approach implicitly contains a

recipe for how to correct the theory for the case where

there is correlation. Since this recipe implies the cou-

pling of the displacements at different wave vectors, it

may not be practicable. The work did however reveal

that Persson theory can be corrected systematically and

thereby turned into an exact theory. In addition, I am

not aware of a publication where Persson claims his the-

ory to be exact – unless for full contact, which had been

solved before.

In this context, but also because Ciavarella so heav-

ily criticizes at various instances the use of fudge factors

(in fact, Persson usually only uses one coefficient, which

has remained pretty constant over time, while a true

fudge factors would get adjusted for each new predic-

tion), I wish to remind the reader that Persson theory

is a renormalization group approach. Kenneth Wilson
was awarded the Nobel prize in physics for his work

on critical phenomena using the renormalization group

(RG) in 1982. It is probably fair to say that Wilson’s

RG work, together with that of Fisher and Kadanoff,

is the most influential work in statistical physics of the

post Boltzmann-Einstein-Langevin area. In many RG

approaches, including those pursued by Widom, Fisher,

and Kadanoff, the main goal is to identify correct func-

tional forms and correct exponents. A precise determi-

nation of prefactors is often not possible. Yet, Persson’s

approach can be turned into a quantitative theory with

the help of a single coefficient of order unity. I, person-

ally, find it quite amazing that such a minor fine tuning

turns a rather simple RG theory into something that

carefully working scientists can now use as a quanti-

tative tool for the study of a rather complex problem.

In retrospect, it is surprising that it took so long until

the usefulness of RG was successfully applied to tribol-

ogy and it is revealing how much difficulty many in the

community have to apply it correctly.
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Use of the random-phase approximation. In

the opening paragraph, Ciavarella comments that these

efforts focusing on roughness remain largely academic.

Since I do not assume that Ciavarella intends to dis-

credit all of linear elasticity with or without adhesion

(Hertz, Johnson-Kendall-Roberts, Maugis, etc.) as a

mere academic exercise, the comment can only be a

criticism of the models for roughness, in particular the

random-phase approximation (RPA) defined further be-

low. While I do not dare to contradict his assessment

that I may have indulged myself in this academic ex-

ercise in the past!, it might be wise to only speak for

oneself. This also holds for comments such as tribology

remains too complex for quantitative modeling. As long

as ten years ago, the contact mechanics of aluminum-

silicon surfaces with quite complex surface topographies

deviating substantially from self-affine scaling, could

be studied very accurately with computers that were

less potent than today’s smart-phone processors [15].

Yet, interesting results were found: Small variations in

the concentration of the silicon content induced signif-

icant changes of stress distribution functions on both

the mesoscale and the microscale. Moreover, the tail

of the stress distributions showed an exponential decay

at large stress rather than Gaussian scaling, which is

found for randomly rough surfaces. I mention this to

demonstrate my willingness to identify shortcomings in

Persson theory or in the assumptions that it is based

on.

I feel that the reasons why relatively simple model

topographies were used in the Contact-Mechanics Chal-

lenge – although it would have been an easy matter

to consider an experimentally measured profile instead

– are sufficiently well explained in the original liter-

ature. Yet our choice keeps drawing criticism beyond

Ciavarella’s comment. Several people (whose names I

forget) have suggested that it would have been more

meaningful to base the surface topography on the Weier-

strass function. It is sometimes used to model self-affine

surface roughness, for example, in Ciavarella’s most cited

paper [16]. The main reason why I find it to be a poor

choice is that it does not look so much like a real sur-

face.

In order to put readers in the position to judge to

what extent various computer-generated surfaces re-

semble reality, Figure 2 shows various cross-sections.

They include: (i) a deterministic Weierstrass function,

(ii) a randomly rough surface satisfying the RPA, (iii)

a sandblasted glass surface, and (iv) a concrete surface

consisting of sand particles with binder, which is made

smooth at the top during production. Curves (iii) and

(iv) are courtesy of Bo Persson. Their measurement is

described in Ref. [17]. Since linear elasticity is a scale-

free theory, units do not do anything for a qualitative

assessment. This is why different profiles were rescaled

so that similar features appeared at similar positions in

the graph. Readers are invited to look up the literature

or take their own line scan with their preferred method

to double check what other typical surface scans look

like. Ref. [18] summarizes spectra of a wide variety of

surfaces, which all look qualitatively similar to the one

set up for the Contact-Mechanics Challenge.

0 0.2 0.4 0.6 0.8 1
lateral coordinate  (arbit. units)

-2

-1

0

1

2

he
ig

ht
   

(a
rb

it.
 u

ni
ts

)

deterministic Weierstrass

random-phase approximation

concrete

sandblasted glass

Fig. 2 Line scans of different surface realizations.

There are three main reasons why RPA surfaces look

more like real surfaces than Weierstrass does. (i) The

phases of h̃(q) – the complex Fourier transform of a

height profile – are uniformally distributed for any sur-

face that is statistically homogeneous (but not neces-

sarily unworn or isotropic). This is why the RPA as-

sumes a uniform distribution as well. In the Weier-

strass function, all phases are exactly equal to zero,

which turns the profile into a pure cosine transform,

i.e., it breaks the translational invariance to the largest

possible degree while still showing the usual self-affine

scaling of the height-autocorrelation function. The RPA

assumes that there is no stochastically relevant correla-

tion between the phases of different h̃(q) at all, which,

certainly can be an approximation. (ii) Real surfaces

and the challenge surface are two dimensional, while

the Weierstrass function is only a one-dimensional re-

alization. Although two-dimensional generalizations of

Weierstrass look intriguing, they appear even more ar-

tificial than their one-dimensional versions. (iii) In real-

ity, different q-vectors have equal a-priori weight. This

was our main motivation to discretize the wave-vector

components on an equidistant grid, leading to a quasi-

continuous distribution of q vectors. The spectrum of
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the Weierstrass function is designed such that the spac-

ing between adjacent h̃(q) peaks increases exponentially

with the wave number q. Thus, the Weierstrass spec-

trum is a discontinuous rather than a quasi-continuous

function of q, while any technical surface has a contin-

uous height spectrum. For these reasons, it remains a

mystery to me why the study of a Weierstrass profile

should add more insight for real systems than that of a

profile satisfying the RPA.

While the RPA profile and the sandblasted glass ap-

pear rather similar, the concrete surface has some deep

troughs, as many other polished surfaces do, which are

ignored by any RPA profile. A naive interpretation of

Persson theory, or potentially other theories that take

the height spectrum as input, is then not meaning-

ful. However, any creative scientist would simply ad-

just the theory to a given problem and not deem a

theory useless, just because he cannot see use or gen-

eralize to use it properly. For the given polished sur-

face, two simple possibilities immediately arise. In a

first step, the height or even better the height-difference

autocorrelation function Cδh(∆r) could be deduced on,

say, only the top 50% of the surface and the spec-

trum be obtained through a Fourier or Hankel trans-

form of Cδh(∆r) in a second step [19,20]. Alternatively,

a true multi-scale method could be used. For example, a

boundary-value method solves the problem on a coarse

scale and Persson (or some other spectral) theory is ap-

plied locally. This would be a procedure similar to FE2,

or, to the strategies [21,22] pursued by the Carbone

group and the Jackson group in the Contact Mechanics

Challenge.

The role of the “thermodynamic limit”.

Ciavarella writes: Persson’s theory is a ”thermodynamic

limit”, but a tribologist may not know what this im-

plies, and [7] is never quite clear about this approxi-

mation. One could state – loosely based on Gertrude

Stein [23] – theory is a theory is a theory is a theory,

but how can a theory be a thermodynamic limit? Also,

I am quite confident that most tribologists can type the

words ”thermodynamic limit” and ”wiki” into a search

engine if they do not know that thermodynamics is a

theory for large particle numbers. The first sentence

in the Wikipedia page on the term “Thermodynamic

limit” (Nov 15, 2017) reads The thermodynamic limit

... is the limit for a large number N of particles.

In the context of contact mechanics, it should be im-

mediately clear that a large number of particles implies

a large number of asperities in contact. In other words,

making a theory for the thermodynamic limit is an at-

tempt to predict the contact mechanics of a represen-

tative surface element. The questions when a contact is

large enough to be considered representative and how to

apply Persson theory when finite-size effects come into

play are very well discussed in the literature [24] and

this work has been cited by Ciavarella. The approach to

the thermodynamic limit has also been considered nu-

merically [8,9,24] and was found to be quite rapid – as

in Persson theory or other RG approaches. It is unclear

why Ciavarella nevertheless writes ... never quite clear

about this approximation and also why he objects to

the study of representative surface elements in Persson

theory but not in his own or other GW-based work?

Final remarks. Ciavarella’s comment opens with

the assessment that ”Meeting the Contact-Mechanics

Challenge” [1] is a very useful and tremendous effort

and closes with expressing his hope that his comment is

a useful contribution to this debate. Yes, conducting the

Contact-Mechanics Challenge was a tremendous effort

and I thank Ciavarella for recognizing that. However,

because of his comment, I now know that it has not

reached the goal that I originally had in mind.

The reason why I set up the contact-mechanics chal-

lenge was to create a counter weight to the many, mean-

ingless studies, which are now published, in particular,

but not exclusively, in high-impact journals. A journal

such as Tribology Letters, in which the editorial board

consists of active and knowledgeable scientists, was –

and still is – an excellent choice for such an endeavor.

The intent was to show that most of the people making

big claims in contact mechanics are not in a position

to perform real predictions. The hope was that scien-

tists would recognize what approach is reliable and to

potentially entice some degree of self reflection.

The fact that Persson – as any other challenge par-

ticipant – had the courage to make a true prediction

on a rather complex problem and that his prediction

matched all quasi-exact methods almost flawlessly ap-

parently did not impress Ciavarella. Yet, Ciavarella,

who did not contribute to the challenge, judged from a

safe distance, the conclusions are less strong than they

seem. If true predictions and their rigorous tests no

longer matter in the sciences, where do they matter?

It seems as though it frequently suffices to write

something negative about an undesired theory to get

endorsed by a referee – a process, which reminds me

of Sokal’s hoax, in which he unmasked poor referee-

ing standards in the social sciences. If a comment fail-

ing desirable scientific standards were an accident, it

would not be a problem. However, it is anything but

a rare event and the Contact-Mechanics Challenge ob-

viously did not succeed in impeding the dissemination

of meaningless contributions. Instead, we may expect

that more studies will appear, in which conclusions on

non-representative surface are falsely claimed to matter

for macroscopic systems.



6 Martin H. Müser

Unfortunately, not only this comment but also other

works of Ciavarella appear to be problematic [25]. One

example having substantial overlap with the submit-

ted comment is a recent study on the load-separation

curves for the contact of self-affine surfaces [26]. Even

when reviewers clearly point out obvious deficiancies,

editors decide to accept such submissions. In the case of

Ciavarella’s comment, the editors’ motivation may have

been to avoid the impression of censorship. Otherwise,

the scientific competence and/or integrity revealed in

the reviewing and editorial process might have to be

asked into question.
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