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Abstract In this work, we propose three amendments

to Persson’s contact mechanics theory, the most impor-

tant one being a modification of the way in which the

stress distribution broadens with increasing resolution

of random-roughness features. The three adjustable co-

efficients of our treatment are gauged on existing ref-

erence data and tested against results of the contact-

mechanics challenge and a new set of data for adhesive

slabs of finite width. Although the coefficients turn out

to be of order unity, their problem-specific tuning is re-

quired to achieve highly accurate results, such as an es-

sentially perfect dependence of contact area on load for

non-adhesive, self-affine solids. Despite an overall con-

vincing agreement between theory and full simulations,

we find it to be intrinsically impossible to make the

theory reflect the exact asymptotics of the stress distri-
bution at small and large stresses. In addition, we find

that the transition from small to large contact happens

too abruptly with decreasing thickness of the elastic

slab.

1 Introduction

Persson’s approach to contact mechanics of nominally

flat surfaces has proven to be a theory with predictive

power [1,2]. As described in more detail in the theory

section of this paper, it is based on the ideas of renomar-

lization group theory. As such, it is not an exact theory.
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However, it is sufficiently accurate to correctly predict

or reproduce the functional form of quite a few depen-

dences. The relation between real contact area and load

across all tested regimes and geometries: (i) the linear

relation between relative contact area ar (defined as the

ratio of true and apparent contact area) and the nomi-

nal pressure p at small p [3–11], (ii) the ar ∝ p1/(1+H)

relation at pressures that are so small that only one

meso-scale asperity remains in contact [12,13], where

H is the Hurst roughness exponent, (iii) the approach

of full contact at large p in a nominally flat contact [14,

11,15] or that to the continuum solution in a Hertzian

contact geometry [15,16].

Furthermore, Persson theory (iv) correctly identi-

fies the logarithmic dependence of the mean interfacial
separation (or, in brief, the mean gap, ū) on load for

intermediate p [17–19] and the crossover to different

scaling at large loads [20]. It correctly reproduces (v)

the way in which ū depends on the ratio of λs/λr at

a given reduced pressure p∗ [11] — λs and λr being

the short wavelength cutoff and the roll-off wavelength,

respectively while p∗ ≡ p/E∗ḡ, where E∗ is the con-

tact modulus and ḡ is the rms-gradient of the surface

height. Also numerically accurate (vi) stress distribu-

tion function [7] and (vii) gap distribution function [17,

19] have appeared to be reproduced almost exactly, al-

though, we are going to somewhat challenge claim (vi)

in this paper. Moreover, (vii) spatial correlations of the

stress in contacts are correctly identified to decay as

1/∆r1+H [21,22], while bearing models, which ignore

long-range elastic deformation, are confined to follow

a 1/∆r2(1+H) scaling, irrespective of their specific de-

tails [22]. The list could be continued with comments

on how readily (viii) finite thickness of slabs [23], (ix)

adhesion [24,25], (x) anisotropic roughness [26], or (xi)



2 Anle Wang, Martin H. Müser

plasticity is included [27], although rigorous, numerical

tests of the last claim have not yet been disseminated.

Despite all its advantages, the theory may still have

some room for improvement. One potential problem is

that the calculation of the elastic energy and the broad-

ening of the interfacial stress distribution Pr(σ) has so

far been handled in a slightly inconsistent fashion. Fur-

thermore, the modifications to the elastic energy calcu-

lations were gauged empirically on data that is certainly

less reliable than that from accurate, brute-force simu-

lations, for which surface topographies, elastic proper-

ties, etc., are known, in principle, to arbitrary precision.

In addition, numerically rigorous tests of the predicted

Pr(σ) have so far been impeded by the extremely slow

convergence of Pr(σ) [24], or were restricted to small

dimensions [28] or to adhesion that is long-ranged at

the smallest scale [25].

In this work, we set the corrections to the elastic en-

ergy on a common footing with corrections to the way

in which Pr(σ) broadens as roughness features are re-

solved at smaller and smaller scales. In addition, we pa-

rameterize the corrections on the most accurate, avail-

able data for adhesionless contacts and some data of the

Tribology Letters contact-mechanics challenge dissem-

inated in this issue of Tribology Letters [29]. We also

fine-tune a prefactor used to estimate the propagation

of cracks in the treatment of adhesive contacts. Finally,

we test the quality of our parameterization of Persson

theory against data from the contact-mechanics chal-

lenge and against new, numerical data for adhesive sys-

tems. We have abstained from including the – as we

believe – improved parameterization of Persson theory

into the contact mechanics challenge, as our data would

have had to be labeled as “post-dictions” rather than

as predictions, whereby they would have violated the

conditions for entering the competition, in addition to

having been produced nine months after the submission

deadline for entering the competition.

The remainder of this paper is organized as follows:

In section 2, Persson theory and our amendments to it

are presented as well as our numerical approach. Sec-

tion 3 contains a comparison of the theoretical predic-

tions to brute-force simulations. Conclusions are drawn

in section 4.

2 Theory and Methods

2.1 Comment on notation and variables

Throughout this work, the same notation is used as that

in the contact-mechanics challenge [29]. This includes

the assumption of the small-slope approximation.

In addition, reduced units are indicated with a star.

For example, p∗ is the dimensionless pressure defined as

p∗ ≡ p/E∗ḡ, where ḡ is the root-mean-square gradient

of the surface, while σ∗ ≡ σ/E∗ḡ. Anybody interested

in real numbers can multiply quantities of dimension

pressure with their own preferred numbers, e.g., with

25 MPa when being interested in soft-matter systems.

We also note that we make a minor shift in ter-

minology in respect to Persson theory, which, however,

leaves equations unaffected. Persson uses the concept of

magnification, i.e., when stating that a problem is con-

sidered at a magnification of ζ, he assumes that only

those random roughness features are resolved that have

a wavelength equal or greater than L/ζ. We use the

concept of resolution: when the resolution is said to be

q, we imply that only those random roughness features

with wave vectors |q′| ≤ q are considered.

2.2 Persson theory for adhesive contacts

Persson theory is a renormalization-group approach to

contact mechanics. It starts from the solution of a con-

tact mechanics problem at a coarse scale that ignores all

random roughness features of wave vectors larger than

a given wave number q0. The simplest case is that of a

nominally flat surface of linear dimension L = 2π/q0,

which is treated as if it were repeated periodically in

the plane. In that case, the interfacial distribution is a

simple delta-function

Pr(σ, q0) = δ(σ − p0), (1)

where p0 is the nominal contact pressure. If a flat-
punch, a Hertzian, or, any other deterministic contact

geometry were the starting point, the initial stress dis-

tribution function would have to be modified accord-

ingly, i.e., Pr(σ, q0) and p0 would need to be spatially

resolved.

When small-scale roughness at an (arbitrary) wave

vector q is added, the stress distribution broadens due

to the additional undulations within the contact zone.

For a system that is isotropic and homogeneous in the

plane, the standard deviation of the stress (assuming

full contact, see also appendix A) is given by

∆p(q) =
qE∗f(q)

2
|h̃(q)|, (2)

where E∗ is the contact modulus, q the magnitude of q,

and h̃(q) the Fourier transform of the real-space height

profile h(r) given by

h̃(q) =
1

A

∫
A

d2r e−iq·rh(r). (3)
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The factor f(q) in equation (2) depends on the system

under consideration. For a slab of finite width with a

constant-stress boundary condition on the surface op-

posite to the interface, it reads [23]

f(q) =
cosh(2tq)− 2(qt)2 − 1

sinh(2qt) + 2qt
, (4)

where t is the thickness of the slab. For a semi-infinite

solid, t → ∞, f(q) = 1, while for a thin beam, t → 0,

f(q) = (qt)3/6.

The broadening of the pressure distribution is real-

ized with a kernel function K(σ, σ′, ∆p) (details on it

further below and in appendix B) according to

Pr(σ, q+) =

∫ σp

σ+
a

dσ′K(σ, σ′, ∆p)Pr(σ′, q−). (5)

Here, Pr(σ, q) reflects the interfacial stress distribution

when all (random) undulations with wave vector q′ < q

are resolved. q− is the wave number just below q, while

q+ is marginally larger. The upper limit of the inte-

gral on the right-hand side of equation (5), σp, is the

potentially scale-dependent indentation hardness [27],

while σa denotes the maximum adhesive stress at the

given resolution q [30], i.e., any local interfacial stress

at the new resolution q may not exceed the given hard-

ness while local tensile stresses must be less than that

needed for the propagation of a center crack. Since we

ignore plasticity in the present work, we replace σp with

infinity in the following.

At a given resolution q, an integral over Pr(σ) yields

the scale-dependent relative contact area

ar(q) =

∫ ∞
−σ+

a

dσPr(σ, q). (6)

An important assumption in the theory now is that

the way in which the stress distribution broadens at a

given contact point is not very sensitive to the stress

at a given location. This is certainly meaningful for

contact points far way from a contact line, but poten-

tially problematic otherwise [31,32]. However, making

this approximation, the kernel function only needs to

represent the first two moments of the stress broaden-

ing, which is why it can be approximated as a Gaussian.

However, when broadening encompasses the simultane-

ous resolution of several q vectors, care needs to be

taken to satisfy the boundary condition, e.g., points

that reach a stress of σa are taken to be no longer part

of the contact. To reflect this boundary condition, a

mirror Gaussian is added so that the kernel function

K(σ, σ′, ∆p) =
e−(σ−σ′)2/2∆p2 − e−(σ+σ′−2σa)2/2∆p2√

2π∆p2
(7)

keeps the first moment of the stress distribution un-

changed while satisfying the boundary condition. The

mathematical justification for the mirror Gaussian can

be derived by mapping the integral formulation of Pers-

son theory onto a diffusion equation with an absorbing

boundary condition at the smallest allowed stress [1,2].

Persson relates the adhesive pull-off stress to the

scale-dependent surface energy γ(q) through the Grif-

fith criterion

σa(q) =
√
qE∗f(q)γ(q), (8)

thereby deferring the calculation of σa(q) to that of

γ(q).

Ignoring that roughness can increase the true con-

tact area, one can gain surface energy where surfaces

touch microscopically, but the elastic energy needed to

comply to the counter face has to be subtracted at each

resolution. Therefore, γ(q) satisfies the equation

as(q)γ(q) = as(qs)γs −
∑
|q′|>q

a(q′)u
(f)
ela(q) (9)

where γs is the surface energy at the smallest scale and

uela(q) the elastic energy of mode q in full contact

u
(f)
ela(q) =

qE∗f(q′)

4
|h̃(q′)|2. (10)

A negative value of γ(q) in equation (9) is set to zero.

To conclude the summary of Persson theory used

in this work, we state that the work done on the sys-

tem,
∫
dūp0(ū) must be equal to the change of the net

potential energy per unit area, i.e.,

U = −a(qs)γs +
∑
q

a(q)u
(f)
ela(q). (11)

Since one cannot preset ū in Persson theory but only

p0, the relation dU = p0dū is transformed into dū =

dp(dU/dp)/p so that the pressure-dependent mean gap

can be calculated via

ū(p0) = −
∫ ∞
p0

dp
U ′(p)

p
, (12)

given that ū(p→∞) = 0.

2.3 Amendments to Persson theory

Two important approximations in Persson theory are

that (a) higher modes in displacement and thus stress

are excited when non-contact is created and that (b)

non-contact is nucleated with a larger probability in

the valleys than in the flanks or on the peaks. These

two effects cause opposite corrections to the broaden-

ing of the stress distribution: (a) leads to an increased
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and (b) to a decreased stress broadening, whereby the

contact area increases with respect to the original for-

mulation of the theory. Without being in a position to

rationalize why a previous study [32] found effect (b)

to dominate (a), we analyze next, how effect (b) should

be incorporated into a modification of the theory.

Assume that the true Fourier coefficient of the dis-

placement field ũt(q) is a little less in magnitude than

that considered in Persson theory, ũP(q), i.e.,

|ũt(q)| = (1− ε)|ũP(q)|. (13)

Both, the kinetic energy and the pressure variance ∆p2

associated with the broadening due to mode q are then

only (1 − ε)2 times the originally anticipated value.

Therefore, if the potential energy of mode q is corrected

with a weighting factor W{ar(q)} according to

uela(q) = ar(q)
qE∗f(q′)W{ar(q)}

4
|h̃(q)|2, (14)

then the standard deviation of the stress needs to be

modified with the same factor from equation (2). Thus,

∆p(q) =
√
W{ar(q)}

qE∗f(q)

2
|h̃(q)|. (15)

Persson has so far applied the correction factorW (ar)

only to the elastic energy but not to the stress broad-

ening. He finds the relation

WP(ar) = 1− c1(1− a2
r ) (16)

with c1 = 0.55 to be useful [24]. We augment it with an

additional term and use

W (ar) = 1− c1(1− a2
r )− c2(1− a4

r ) (17)

instead. Our coefficients c1 = −2/9 and c2 = 2/3 are

gauged on an analytical formula [32] for the relative

contact area, which provides an excellent description

of numerically rigorous results [11], in which finite-size,

self-affine, and continuum corrections were included, see

Figure 1. The correction factor W (ar) remains larger

than one half for any value of 0 ≤ ar ≤ 1, which means

that it is of order unity. It could be further adjusted to

reproduce the target ar(p
∗) relation even more closely.

However, we do not see that this would benefit the de-

scription of any property other than ar(p
∗). Likewise,

we do not consider an independent treatment of the

weight functions for stress broadening and elastic en-

ergy for small adhesion, which one could motivate from

the existence of large-q modes.

A quasi-exact reproduction of numerical reference

data on the ar(p
∗) relationship — at least for H taking

the values H = 0.3, 0.5, and 0.8 — is

ar(p
∗) = erf(1.9p∗){1− a2

0(p∗)}+ a3
0(p∗) (18)

with

a0(p∗) = erf(1.45p∗). (19)

This last function, a0(p∗), reflects the asymptotic be-

havior for adhesionless, semi-infinite solids at large p∗.

It is almost identical to that in the original Persson

theory [1], a0(p∗) = erf(
√

2p∗), based on W (ar) ≡ 1.

Equation (18) is used for our fine tuning of the coeffi-

cients c1 and c2.
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Fig. 1 Ratio of relative contact area and reduced pressure,
ar(p∗)/p∗ as a function of reduced pressure. The solid line
represents quasi-exact numerical data on self-affine surfaces
with different Hurst roughness exponents, see Equation( 18).
Model 1 uses no corrections to the stress broadening, i.e.,
c1 = c2 = 0 in equation (17). Model 2 takes parameters that
were obtained by Persson for the fine-tuning of the elastic
energy c1 = 0.55, c2 = 0, while the parameters in model 3,
c1 = −2/9, c2 = 2/3, were adjusted to closely match ar(p∗)/p∗

from Equation( 18).

Note that neither the weight-function W (ar) nor the

thickness or potential gradient corrections expressed in

f(q) alter the functional form of the stress distribution

in the adhesionless case. Irrespective of their parame-

terization, the broadening of the stress distribution is

determined by an effective mean-square surface-height

gradient

ḡ2
eff ≡

∑
q

W{ar(q)}f(q)|h̃(q)|2 (20)

so that

∆p = E∗ḡeff , (21)

replaces the “usual” ∆p = E∗ḡ relation. The stress dis-

tribution at the small wavelength cutoff (adhesionless

but potentially finite width) remains to satisfy

Pr(σ) = K(σ, p0, ∆p). (22)
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The contact-area load relationship can now be written

as in equation (18), when replacing p∗ with p∗ḡ/ḡeff .

Finally, we also take the liberty to slightly modify

the Griffith criterion. First, we allow for a constant pref-

actor on the r.h.s. of equation (8) different than one,

that is, we take σa to be twice the given value. The

reasons for this correction could be that the detached

shapes usually differ from circles. Also the presence of

curvature from modes other than the one associated

with wavevector q might matter. Second, whenever σa

exceeds the local theoretical adhesive stress (that is, the

ratio of surface energy and decay length, γ/ρ), we only

allow for a maximum tensile stress of γ/ρ.

2.4 Numerical methods

We use the Green’s function molecular dynamics (GFMD)

method [33] to model linearly elastic contacts between

solids with self-affine surface roughness. The method

has been described numerous times in the literature.

Comparisons of our theoretical data are made to a

large degree of published data, including that dissem-

inated in the contact-mechanics challenge in this issue

of Tribology Letters. However, we augment this data

with additional simulations on adhesive, elastic slabs

with finite thickness t. The specification of our system

is similar to that used in the contact-mechanics chal-

lenge. However, the new system is smaller and adhesion

a little less short ranged than that of the challenge so

that our additional simulations do not necessitate an

excessive amount of computational resources. Specifi-

cally, the ratio of system size and roll-off wavelength

was reduced to L/λr = 2, the ratio of roll-off to short

wavelength cutoff to λr/λs = 128, and the Tabor pa-

rameter to µt = 1. The root-mean-square gradient of

the height topography remained at ḡ = 1.

Although our current treatment is just at the boarder

between short- and long-range adhesion at the finest

scale, we compare our simulation data to a theory as-

suming short-range adhesion. This is still meaningful,

as adhesion effectively becomes quickly short ranged

when the length scale of observation exceeds λs.

3 Results

3.1 Comparison to contact-mechanics challenge data

In this section, we compare our three variants of Persson

theory to the data of the contact-mechanics challenge.

Since our amendments to Persson theory were fitted to

reference data on ar(p
∗), it is natural to first investi-

gate the extent with which this procedure benefits the

prediction of the stress distribution. Figure 2 compares

the performance of the three discussed parameteriza-

tions (or models) to the (adhesionless) GFMD refer-

ence data from the contact-mechanics challenge. For the

largest part of the diagram, the data is original data of

the 216 × 216 simulation. However, for reduced stresses

σ∗ ≡ σ/E∗ḡ less than 0.04, we performed continuum

corrections as described in references [7,11] by incorpo-

rating information from smaller simulations. The most

refined approach, model 3, does not only produce the

most accurate relative contact area — ar = 0.0214 ver-

sus ar(GFMD) = 0.0202 — but it appears to match

the whole stress distribution better than both model 1

(ar = 0.0237) and model 2 (ar = 0.0159).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
σ*

0.00

0.01

0.02

0.03

0.04
Pr

(σ
*)

GFMD
model 1
model 2
model 3 

Fig. 2 Stress-distribution function Pr(σ∗) for the non-
adhesive case. The models are defined in the caption of fig-
ure 1.

A refined analysis of the numerical distribution func-

tion Pr(σ∗), presented in Figure 3, reveals two features

that are not possible to incorporate at the present level

of the theory, no matter how the weight function W (ar)

is designed: First, the asymptotic behavior of Pr(σ∗) at

small stresses is clearly sub linear. This observation is

confirmed with similar exponents in preliminary simu-

lations employing H = 0.3 and H = 0.5 in addition to

H = 0.8. The theory predicts linearity by design, no

matter how the weight function W (ar) is defined, i.e.,

at the current level of the theory, Pr(σ∗) for linearly

elastic, adhesionless contacts is restricted to take the

shape of the kernel function in equation (7) σ′ = p0 and

∆p = E∗ḡ/2. The second issue is that the asymptotic

behavior at large σ∗ is proportional to exp(−2σ∗2),

which is similar to that of the original Persson theory

with W (ar) ≡ 1, albeit with a smaller prefactor, see also

Figure 2. Again, no modification of the weight function

W (ar) will succeed in exactly reproducing the prefac-
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tor and the argument in the exponent of the asymptotic

Gaussian at the same time.

10-2 10-1 100

σ*

10-5

10-4

10-3

10-2

Pr
(σ

*)

GFMD

~σ*
~σ*0.7

~exp(-2σ*2)

Fig. 3 Same GFMD data as in figure (2), however, in a
double logarithmic representation. The asymptotic behavior
for large and small stresses is included.

The crux thus is that the given double Gaussian

kernel does not allow one to reproduce simultaneously

the mean and the variance of the contact stress. The re-

fined model 3 predicts the best mean, while the original

model 1 estimates the second moment the most accu-

rately. However, model 3 twice outperforms model 2.

These claims are quantified in table 1. We note that

properties besides the second moment of the stress dis-

tributions may also somewhat deteriorate when apply-

ing the weight functions not only to the elastic stress

calculations but also to the contact-area calculations.

This concerns in particular the dependence of the mean

gap on load.

GFMD model 1 model 2 model 3
σ̄c 0.4963 0.6264 0.4215 0.4670

〈δσ2
c 〉 0.0908 0.1071 0.0484 0.0595

Table 1 First and second moment of the contact stress as ob-
tained in the adhesionless version of the set-up in the contact-
mechanics challenge [29] at an external pressure of p∗ = 0.01.
The models are defined in the caption of figure 1.

So far, only adhesionless contacts have been consid-

ered. We now include adhesion and analyze in Figure 4

to what extent the various variants of the theory reflect

the adhesion-mediated changes in the stress distribu-

tion function. The trend is identical to the previous

one: The most refined variant, namely model 3, repro-

duces Pr(σ∗) best, in particular near the maximum of

the distribution function. However, the original model

gives the best asymptotic behavior at large σ∗.

-0.5 0.0 0.5 1.0 1.5
σ*

0.00

0.01

0.02

0.03

0.04

0.05

Pr
(σ

*)

GFMD
model 1
model 2
model 3 

Fig. 4 Interfacial stress distribution function Pr(σ∗) inside
the contact. The models are defined in the caption of figure 1.

In Figure 5 we turn our attention back to mean

quantities and address the question of how well the var-

ious parameterizations predict the (reduced) mean con-

tact stress σ̄∗c as a function of p∗. This time, model 2

gives a slightly better value than model 3, however, only

in the asymptotic small-pressure limit. In the cross-over

region, model 3 outperforms model 2.

10-3 10-2 10-1 100

p*

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

σ*

GFMD
model 1
model 2
model 3 

c_

Fig. 5 Reduced, mean contact stress σ̄∗c as a function of the
nominal pressure p∗. The models are defined in the caption
of figure 1.

It may be interesting to note that Persson found a

slight increase of σ̄∗c with decreasing p∗ in his submis-

sion to the contact challenge, see Figure 11 in refer-

ence [29]. We observe a similar trend if the number of
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bins used in the generation of the stress histogram is

small. Once the discretization of the stress histogram

is sufficiently refined, the derivative of σ∗c (p∗) turns out

non-negative.

Our final comparison to the contact-mechanics-challenge

data pertains to the prediction of the mean gap as

a function of pressure. Figure (6) contains results for

the high-pressure regime. One can recognize an essen-

tially perfect agreement between Persson theory and

the GFMD reference data, in particular that based on

model 3 in the limit of large pressures. Persson’s own

submission is almost indistinguishable from model 2. At

small pressure, Persson theory overestimates the mean

gap, which is more clearly revealed in the representation

chosen for Fig. 12 in reference [29]. We argue that this

is because it is implicitly based on the assumption of a

thermodynamic limit, for which no strict upper bound

of ū exists.

0 0.1 0.2 0.3 0.4 0.6 0.7
p*

10-2

10-1

100

u 
 (µ

m
)

GFMD
model 1
model 2
model 3 

_

Fig. 6 Mean gap ũ as a function of p∗. The models are
defined in the caption of figure 1.

3.2 Comparison to data of finite-slab geometries

The adhesion used in the contact-mechanics challenge

was relatively weak so that it only lead to a 50% in-

crease of the true contact area at small loads compared

to the non-adhesive analogue. In addition, the geom-

etry was confined to be that of a semi-infinite elastic

solid. To explore how well stress distributions and other

properties are predicted by the theory when adhesion

becomes more significant or elastic slabs rather thin, we

run additional simulations towards this end.

Before presenting results, we contrast two dimen-

sionless measures of adhesion for the two studied sys-

tems, namely that of the relatively large-scale contact-

mechanics challenge (system I) and the smaller-scale

surface (system II) described in section 2.4. The first

measure is a local one and is defined as

γ̃loc =
γ

E∗Rcḡ3
. (23)

Numerical numbers are γ̃loc(I) ≈ 1 and γ̃loc(II) ≈ 0.1.

The second measure is a global parameter and taken

to be the ratio of surface energy and the areal elastic-

energy density needed to make full contact, u
(f)
ela, i.e.,

γ̃glo =
γ

u
(f)
ela

. (24)

This time, numbers are γ̃glo(I) ≈ 0.025 and γ̃glo(II) ≈
0.1. When the thickness of the slab is reduced (with a

constant-stress boundary condition at the opposite side

of the interface), the global measure decreases, while

the local one remains unchanged. To give an example,

γ̃glo(II) increases to 0.3 when the thickness t of the elas-

tic manifold is reduced from semi-infinite to 1/4qr and

then quickly grows more upon a further reduction of t,

while the local measure γ̃loc remains unchanged.

Our simulations reveal that the relative contact area

at the reduced pressure of p∗ = 0.01 is significantly

larger for system II than for system I and that the pa-

rameterization of Persson theory presented in section

2.3 and tested in section 3.2 underestimates the large

adhesion-induced increase of ar for thick slabs. Rather

minor modifications of the parameterization, which are

realized in model 4, dramatically reduce that problem,

as shown in figure 7. The weight function in model 4 is

taken to be W (ar) = 0.35 +0.65(1−a2
r ) and the broad-

ening of ∆p is now multiplied with W 1/4(ar) rather

than with W 1/2(ar). The fine-tuning of the parameters

for the new, highly-adhesive, thin-slab geometry only

means redefining parameters by O(10%), the most dra-

matic change being W (ar → 0) which is equal to 0.35

in model 4 versus 5/9 in model 3.

It is interesting to note that the true contact area

in system II at p∗ = 0.005 would only slightly exceed

1% for the semi-infinite, adhesionless solid and finite-

thickness corrections for it would only become relevant

for extremely thin slabs. The adhesion-induced increase

of contact (in the semi-infinite case) thus is a factor of

three, compared to a mere 50% increase of system I,

although system II has the larger value of γ̃loc. We

can therefore no longer claim that γ̃loc is a strong in-

dicator [34] for the increase of true contact. The more

meaningful parameter appears to be the global mea-

sure for adhesion. In the calculation of the elastic en-

ergy, it places more emphasis on long than on short

wavelengths for H > 0.5 [30]. At this point, we can-

not speculate if γ̃glo might also indicate how sticky sur-

faces are. Recently, Pastweka and Robbins proposed a
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Fig. 7 Relative contact area of system II at a reduced pres-
sure of p∗ = 0.005 from GFMD simulations and Persson the-
ory with two different parameterizations (models 3 and 4). A
reference curve is shown for comparison, in which adhesion
in system II is not considered.

local criterion [35], which seemed reliable at least up to

medium-scale system sizes.

Since ar is only a scalar property, we also investigate

to what extent the the theory using the parameteriza-

tion of model 4 reflects the full simulations. To better

reveal the trends, we compare Pr(σ) between GFMD

and theory at similar contact areas in figure 8.

As is the case for other quantities, Persson theory re-

produces the results on stress-distributions from brute-

force simulations quite closely if one allows the param-

eters in the theory to be tweaked by a few percent.

Most importantly, the functional forms of Pr(σ) are re-

produced quite accurately even if the asymptotic be-
havior for the largest allowed tensile load may not be

perfect. However, it seems as if the presence of adhesion

somewhat reduces this issue compared to the results re-

ported in Figure 3.

4 Conclusions

In this paper, we have proposed three modifications

of Persson’s contact mechanics theory. First, we modi-

fied a weight function relating the elastic energy to the

surface height spectrum depending on the resolution-

dependent relative contact. Second, and more impor-

tantly, the weight function now also affects the way in

which the pressure distribution broadens with increas-

ing resolution. Finally, we fine-tuned the Griffith cri-

terion used in the theory. These alterations lead to an

overall improvement of predictions made with this the-

ory for moderate adhesion and semi-infinite substrates.

Most quantities of interest can be predicted within a few

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
σ  /  E*g

0.0

0.5

1.0

1.5

2.0

2.5

Pr
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/E
*g

)

t = 0.004λr
t = 0.008λr
t = 0.016λr

_

arel = 0.98

arel = 0.80

_

arel = 0.45

0.004
0.008
0.016

0.003
0.0075
0.019

t/λr GFMD theory

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
σ  /  E*g

0.00

0.05

0.10

0.15

0.20

Pr
c(σ

/E
*g

)

t = 0.04λr
t = 0.08λr
t = 1.00λr

_

arel = 0.13

arel = 0.06

_

arel = 0.03

0.04
0.08
1.00

0.039
0.055
1.00

GFMD theoryt / λr

Fig. 8 Interfacial stress distributions for system II at various
thicknesses. Symbols show GFMD results, while lines repre-
sent the theory, which is based on the parameterization of
model 4. The top and bottom graph contain data on thin
and thick slabs, respectively. The values stated for the rela-
tive contact area ar area, which is obtained as the integral
over Pr(σ), pertain to the GFMD simulation.

percent uncertainty, such as the mean contact stress,

or the mean interfacial separation. As such, we support

the claim that Persson theory can predict the functional

dependence of most functions of interest correctly. For

large adhesion (leading to a distinctly increased con-

tact area compared to the adhesionless case), param-

eters had to be changed again by a few 10% to find

a true quantitative agreement between theory and full

simulations.

However, we also identified the first case of an in-

correct exponent in Persson theory: The stress distri-

bution Pr(σ) increases slightly sub-linearly with σ at

small values of σ, while the theory predicts linearity,

no matter how the weighting function are fine tuned.

We believe that these features arise in real space from

the zones near the contact lines. Persson theory implic-

itly assumes the same stress broadening in the vicinity

of contact lines as deep inside the contact and no re-

entrance of lost contact upon an increase of resolution.
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These assumptions have been shown to be approxima-

tive [32], however, any numerically feasible theory must

make such compromises. It seems, however, that this

type of shortcoming is less prominent when adhesion

is included into the treatment. This might be benefi-

cial for the modeling of adhesive systems of practical

relevance [36,37].

We are aware of previous tests of Persson theory

that are not quite as favorable as ours [38]. However,

these are based on correlated noise or even determin-

istic features. In such cases, one might want to apply

Persson theory only at scales that are sufficiently small

for the smaller-scale roughness features to be described

as randomly rough.

The current work covers an unusually broad param-

eter space. Surface energies and (linear) system size

were varied over one decade, load and thickness of the

solids over several orders of magnitude. In all tested

regimes, the theory performed quite impressively, how-

ever, only when fine tuning the value of the three ad-

justable parameters, which, however, always remained

of order unity.

It is certainly somewhat unsatisfactory that some

fine-tuning of employed parameters is needed to make

truly accurate predictions with Persson theory. The sit-

uation can be compared to that of density-functional

theory (DFT) in quantum chemistry, where different

functionals (and pseudopotentials) also show different

performance on different elements. Both theories can be

made exact in principle. In DFT, there exists a func-

tional giving the exact ground-state energy (we just do

not know the functional) [39], while the basic ideas of

Persson theory can be motivated from the leading-order

term of a rigorous cumulant expansion [40]. In both

cases, however, it seems a non-trivial exercise to find

formulations of the theories that are very precise, com-

putationally lean and, at the same time, not in need

of some fine readjustments that depend on the system

under consideration.

A Stress variance in full contact

Consider single-sinusoidal roughness in a periodically repeated
domain of an isotropic, semi-infinite half space:

h(r) = h(q)eiq·r. (25)

The stress then reads

σq(r) = i
qE∗

2
h(q)eiq·r (26)

so that its variance, averaged over the domain, becomes

∆σ2
q =

(
qE∗

2

)
|h(q)|2, (27)

If the roughness is spanned by several q vectors, their
stress variances add up due to the orthogonality of exp(iq · r)
and exp(iq′ · r) for q 6= q′. The total stress variance then
becomes

∆σ2
tot =

∑
q

(
qE∗

2

)2

|h(q)|2 (28)

→
A

(2π)2

∫
d2q

(
qE∗

2

)2

|h(q)|2. (29)

In the transition from a discrete to a continuum theory, we
have assumed that the |h(q)|2 (more precisely, their expec-
tation values or, alternatively, their running averages) are
smooth functions of q. Defining the spectrum to be C(q) =
A|h(q)|2/(2π)2, we obtain Persson’s expression for the stress
variance in full contact [1], namely

∆σ2
tot =

∫
d2q

(
qE∗

2

)2

C(q), (30)

which is proportional to the mean-square surface gradient [6].
Calculations for sheets of finite thickness t can be done in a
similar fashion by multiplying a weighting factor f(qt) to E∗.

B Derivation of the kernel function

The diffusion equation

D∂2xT (x, t) = ∂tT (x, t), (31)

subjected to the absorbing boundary condition T (x = xa, t) =
0 can be solved as a Sturm-Liouville problem with the sine
Fourier transform

T (x, t) =

√
2

π

∫ ∞
0

dq T̃ (q, t) sin{q(x− xa)}. (32)

The Fourier coefficients thus obey

−Dq2T̃ (q, t) = ∂tT̃ (q, t) (33)

so that

T̃ (q, t) = T̃ (q, 0)e−q
2Dt. (34)

The solution for a general initial condition then reads

T (x, t) =

√
2

π

∫ ∞
0

dq T̃ (q, 0) sin{q(x− xa)}e−q
2Dt. (35)

The left-hand side of this equation turns into a kernel function
if the initial condition for T (x, t = 0) is a delta-function, δ(x−
x0), in which case

K(x, x0, t) =
2

π

∫ ∞
0

dq sin{q(x0 − xa)} sin{q(x− xa)}e−q
2Dt

=
e−(x−x0)

2/2σ2 − e−(x+x0+2xa)
2/2σ2

√
2πσ2

(36)

with σ2 = 2Dt. Note that similar equations hold if the initial
time is different from zero.

The second term on the right-hand side of Eq. (36) is what
we call the mirror Gaussian in the main text. To make full
connection to the main text, please substitute, amongst other
expressions, σ2 → ∆p2, xa → −σ+

a , and T (x, t)→ Pr(σ, q).
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19. Wolf B. Dapp, Andreas Lücke, Bo N. J. Persson, and
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