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Abstract In a recent paper, Pastewka and Robbins,

[Appl. Phys. Lett. (2016)], state an analytical expres-

sion for the real contact area of a Hertzian tip with

small-scale roughness. We confirm that their formula

predicts real contact areas quite well — with less than

10% error. Nonetheless, the complementary contact area

does not show the proper scaling to the continuum re-

sults at large loads. This shortcoming is fixed in the

present work by abandoning a mean-field approxima-

tion made in the original work. Analytical results can

even be made essentially perfect with a relation giving

the accurate dependence of contract area on pressure

for contacts between solids with nominally flat surfaces.
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1 Introduction

Real contact areas are less than those perceived macro-

scopically due to the presence of small-scale roughness [3,

22]. The effect is now well described by Persson’s con-

tact mechanics theory [22,23], which merely requires

one to compute a few well-defined, one-dimensional in-

tegrals for a given system. From their solution one can

Martin H. Müser
Department of Materials Science and Engineering
Saarland University, Campus
66123 Saarbrücken, Germany
E-mail: martin.mueser@mx.uni-saarland.de

deduce not only contact areas and pressure distribu-

tions but also many other quantities such as the inter-

facial separation and its distribution [2], leakage [26,8]

as well as statistical properties of the contact geome-

try [24,6]. Despite this progress, porting the insights

gained for nominally flat surfaces to macroscopically

curved surfaces has gained much less attention [18,20]

than atomistic simulations addressing the question of

how small-scale roughness affects the tribological be-

havior of tips scratching over a surface [29,15,17,7,11].

In a recent paper, Pastewka and Robbins [20] con-

sider a non-adhesive Hertzian contact and add small-

scale roughness to it. A central aspect of their work is

the analysis of how true contact area depends on load

in the absence of adhesion. They identify three regimes:

at extremely small load, L, only one small-scale asper-

ity is in contact with the counterface, in which case

Hertzian contact mechanics holds, albeit with a small-

scale radius of curvature. Near a cross-over load, Lc, for

which Pastewka and Robbins provide accurate analyt-

ical estimates, the behavior crosses over to an interme-

diate regime, A ∝ L. At large loads, Hertzian contact

mechanics takes over again, this time with the “cor-

rect”, macroscopic radius of curvature. For the last two

regimes, Pastewka and Robbins derive accurate analyt-

ical relations despite using a mean-field approximation.

In this work, we drop the mean-field approximation

made by Pastewka and Robbins [20] and investigate

to what extent a more precise treatment improves the

original relation. This is done by comparing our analyt-

ical expression to numerical data. Theory and numeri-

cal methods are described in sections 2 and 3, respec-

tively. Results are presented in section 4. Conclusions

are drawn in section 5.
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2 Theory

According to Hertzian contact mechanics [10,13], the

pressure profile in a contact of a rigid, parabolic tip

with a flat, linearly elastic substrate is

pH(r) = p0

√
1− (r/a0)2, (1)

where r is the (in-plane) distance from the tip center,

p0 is the pressure in the tip center, and a0 is the contact

radius. The terms p0 and a0 satisfy

p0 =
3L

2πa2
0

, (2)

a3
0 =

3LR

4E∗ , (3)

L being the mechanical load, R the tip’s radius of cur-

vature, and E∗ the contact modulus.

Due to micro-scale roughness, real contact does not

have to exist at every single point within the Hertzian

contact radius. For macroscopically flat surfaces, the

relative contact can be approximated quite well with

the relation [22,27,30]

Aflat
rel (p̄) ≈ erf

(√
πκp̄

2E∗ḡ

)
(4)

≈ κp̄

E∗ḡ
for p̄� E∗ḡ. (5)

Here p̄ is the mean, macroscopic pressure, ḡ is the root-

mean-square slope of the (combined) surface roughness,

and κ is a number, which turns out close to two for

typical surface roughness [12,5,1,28,27].

In the philosophy of Persson theory [22,23,16], the

real contact area can be estimated by first solving the

problem macroscopically and then adding the effects

of small-scale roughness locally. For the nominally flat

Hertzian contact, this approach leads to the following

estimate of the real contact area by integrating over the

Hertzian contact area AH:

Areal =

∫
AH

d2r Aflat
rel {pH(r)}. (6)

≈ πa2
0Arel(p̄H), (7)

The approximation (7) was made by Pastewka and

Robbins [20]. In equation (6), they replaced the pres-

sure profile from equation (1) with its mean value, p̄H ≡
〈p(r)〉AH , averaged over the area AH,

p̄H =
L

πa2
0

. (8)

Thus, the Pastewka-Robbins mean-field model yields

APR = πa2
0erf

(
κL

2
√
πE∗ḡa2

0

)
. (9)

A supposedly better estimate can be found by abandon-

ing the mean-field approximation to pH(r) [16], which

yields a first alternative model, specifically

AI(κp̃)

πa2
0

=

(
1− 1

2κ2p̃2

)
erf(κp̃) +

exp
(
−κ2p̃2

)
√
πκp̃

(10)

with

p̃ =
3L

4
√
πE∗ḡa2

0

(11)

=

(
3L

4E∗R2

)1/3
1√
πḡ
. (12)

When expanding the right-hand side of equation (10)

for model I into powers of κp̃, the same leading-order

linear term is obtained as for the mean-field approxi-

mation APR/πa
2
0, namely the expression on the right-

hand side of equation (5). However, at large loads, the

asymptotic behaviors differ. The relative, complemen-

tary Hertzian contact area, Acomp ≡ 1 − Areal/AH,

obeys depending on the model used

Acomp(PR) ≈ 1√
π

exp
{
−(2κp̃/3)2

}
(13)

Acomp(I) ≈ 1

2κ2p̃2
(14)

for κp̃ � 1. Thus, the mean-field treatment of mi-

croscale roughness makes the contact area approach

the continuum solution much faster than the refined

approach of model I.

An improved alternative to mean field can be ob-

tained by exploiting a relation for Aflat
rel that is more

accurate than equation (4). For example, a sum of two

error functions weighted by a switching function s(p̄)

Aflat
rel (p̄) ≈ {1− s(p̄)} erf(c̃1p̄) + s(p̄)erf(c̃2p̄) (15)

produces accurate contact area for randomly rough sur-

faces for different values of H and all loads outside the

finite-size domains [9]. The ci ≡ c̃i/E
∗ḡ are constants,

c1 = 1.9054 and c2 = 1.4496, and

s(p̄) = erf2(c̃2p̄). (16)

With this new estimate for Aflat
rel , we can no longer find

a closed-form expression for the contact area of a nom-

inally flat Hertz contact. However, the integral in equa-

tion (6) can be approximated by replacing pH(r) in the

switching function with p̄H. This leads us to model II

AII(p̃) = {1− s(p̄H)}AI(κ1p̃) + s(p̄H)AI(κ2p̃) (17)

with κi = 2ci/
√
π. It shows similar asymptotic scaling

as model I, however, with slightly altered coefficients:

κ is replaced by κ1 at small and by κ2 at large loads.
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3 Numerical methods

Numerical reference data are produced with the Green’s

function molecular dynamics (GFMD) method [14,4,

21]. Details of the method have been published nu-

merous times and shall not be repeated here. Central

aspects unique to the problem of the nominally flat

Hertzian tip are nevertheless discussed in the following.

As usual, we exploit the small-slope approximation

to combine the roughness of substrate and tip in a single

height function h(r), which is defined on the xy-plane.

The height function is the sum of the “macroscopic”

Hertzian contact geometry

hH(r) =
r2

2R
(18)

and the microscopic roughness hm(r), which is set up

such that their Fourier transforms produce typical sur-

face spectra [25]. To analyze the effect of microscopic

roughness on the true contact area, we keep the load

fixed and add different amounts of microscale rough-

ness for a given random realization of hm by choosing

the combined roughness according to

h(r) = hH(r) + λhm(r). (19)

The root-mean-square slope of hm(r) is normalized to

one, while λ varies from very small to very large. By

doing so, we exploit the observation by Pastewka and

Robbins that the data produced for different systems

can be superimposed when load is rescaled appropri-

ately. This allows us to work with a single random re-

alization. Since we implement all aspects of the small-

slope approximation from the beginning, no precaution-

ary measures have to be taken when λ becomes large.
This is because we could rescale the height profile with

a number that is sufficiently small for the small-slope

approximation to be justified again. We could then also

rescale L (or E∗) in such a way that we end up with a

system for which the exact same equations would have

to be solved as before.

One reason why we vary λ rather than load is that

this course of action makes finite-size or finite-sampling

effects — those due to aH being a finite fraction of the

linear system size — independent of λ. We thus always

have the same value for the reference contact area in

the continuum limit, which is very close but not ex-

actly equal to the analytical expression. Another rea-

son is that numerical scatter is reduced. This is because

the same randomness is essentially sampled for each

value of λ, or, in other words, for each reduced load. To

make the sampling meaningful, one must ensure that

the Hertzian contact radius encompasses a substantial

amount of small-scale roughness. The way in which we

attempt to achieve this is described next.
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Fig. 1 Cross section through the height profile of unde-
formed tips at y = 0 for different amounts of micro-scale
roughness as characterized by the scaling parameter λ. Fi-
nal calculations are conducted at loads for which the smooth
Hertzian contact radius would be aH = 0.2. Points in the top-
most panel represent GFMD grid points at the lowest level
of spatial resolution.

The radius of curvature defines the unit of length,

i.e., R = 1. The load is chosen such that aH = 0.2 R,

which means that the Hertzian contact covers roughly

10% of the periodically repeated simulation area. The

microscopic (default) substrate roughness is set up as

follows: We use a Hurst roughness exponent of H = 0.8.

The roll-off wave vector is set to λr = aH, while the

short wavelength cutoff is λs = aH/200. This means

that our contact radius samples over a little more than

two decades of self-affine surface spectra. The GFMD

layer is further discretized down to λs/8 to ensure prox-

imity to the continuum limit. The discretization is re-

fined to λs/32 for small values of λ. Lastly, hm is nor-

malized such that ḡ = 1. A cross section through the

tip is shown in figure 1 for various values of λ.

From figure 1 one can see that initial contact does

not necessarily occur at the center of the macroscopic

tip center. For example, the lowest point of the λ = 3

tip lies about 0.06 R away from the macroscopic sym-

metry point. We abstain from discussing this and re-

lated extremely-small-load effects [19] further and in-

stead refer to the excellent treatise of Pastewka and

Robbins [20].

4 Results

We start our analysis with a representation of the rel-

ative, true Hertzian contact area, Ah ≡ Areal/AH, for

the default systems having a contact radius 200 times

the short-wavelength cutoff. Figure 2 reveals a quite

convincing agreement between mean field and GFMD.
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Fig. 2 Real, relative Hertzian contact area Ah = Areal/AH as
a function of reduced pressure p̃. Full circles show the results
of GFMD simulations for which aH/λs = 200. The red line
represent the mean-field theory by Pastewka and Robbins for
κ = 2.2, while the magenta line refers to model II, which
is based on the area-load relation proposed in reference [9]
without adjustment. The inset shows Ah on a linear scale.

Results do not deviate by more than 10% in the shown

regime. However, mean field slightly underestimates Ah

when full contact is approached such that the relative

errors of Acomp appear large. This trend is also revealed

in the data of Pastewka and Robbins [20].

In order to better analyze how continuum Hertzian

contact area is approached at large loads, the contact

area data is presented in another form in figure 3. This

reveals that Acomp decreases much too quickly with load

in comparison to the numerically exact GFMD data.

In fact, the analytical results discussed in the theory

section are clearly borne out: mean field predicts Acomp

to disappear exponentially with p̃2, while the GFMD

data is better described by a p̃−2 scaling. The reason

for this shortcoming of mean field can be rationalized

as follows: Using p̄H instead of the spatially resolved

pH(r) leads to the neglect of non-contact area near the

contact line. This is fixed in model I, which shows the

correct scaling.

Since model I is based on an approximation that

is not very accurate for nominally flat surfaces near

full contact, non-negligible discrepancies occur at 0.5 .
p̃ . 1, which lies near the cross-over from small to large

loads. This last flaw is removed in model II.

It may be worth discussing some more details of the

graph shown in figure 3. Finite-sampling effects, i.e.,

the cross-over to single-asperity contact mechanics, are

not yet truly relevant for our (default) system at the

smallest analyzed loads at which Ah ≈ 0.001. Sampling

effects show up earlier at the large-load limit i.e., at

Acomp of a few per cent. When sampling a more signif-
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Fig. 3 The product AhAcomp as a function of reduced pres-
sure p̃. Symbols are consistent with those used in figure 2.
Moreover, (cyan) crosses refer to additional GFMD data en-
compassing more roughness scales than the default model.
The dashed blue line shows results for model I with the same
value of κ = 2.2 as mean field.
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Fig. 4 Pressure profile for a Hertzian (thick blue line) and
a nominally flat Hertzian contact (black line) at a reduced
pressure of a p̃ ≈ 3.5 and for aH/λs = 200.

icant amount of disorder within the macroscopic Hertz

contact by increasing aH/λs, GFMD data approaches

the predictions of model II, which thus is the most ac-

curate out of the investigated models.

Given the close approach of continuum theory and

true contact area at large pressures, for example, at

p̃ ≈ 3.5, one might be tempted to believe that the

full calculation with roughness fluctuates only mildly

around pH(r) given in equation 1. Figure 4 reveals that

this is not necessarily the case. It shows the pressure

profile of a realization with aH/λs = 200 and λ = 0.03.

Its roughness is only one tenth of the red tip in figure 1,

which already appears rather smooth to the naked eye.
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5 Conclusions

In this work, we confirmed that the formula for the rel-

ative contact area in nominally flat Hertzian contact

by Pastewka and Robbins [20] is very accurate and,

in our opinion, sufficiently good for all practical pur-

poses. The expression can yet be improved by aban-

doning the mean-field approximation. The advantage of

the new formula — or an even more refined formula —

is that the amount of non-contact within the Hertzian

contact area is very precise, even at large loads. This

result is insofar interesting, as it supports the central

hypothesis underlying Persson theory, namely that the

effects of small-scale roughness can be taken into ac-

count by first solving the contact mechanics problem at

the large scale and by successively adding locally the ef-

fects of small-scale roughness into the calculation. Since

the small-scale roughness induced non-contact lives pre-

dominantly near the contact line, the last statement

also appears to hold reasonably well when pressure gra-

dients are large, despite former criticism that Persson

theory may be somewhat problematic for the (implicit)

description of contact lines [16,9]. It remains to be seen

to what extent this positive assessment of Persson the-

ory persists when adhesion is included.
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29. Wenning, L., Müser, M.H.: Friction laws for elastic
nanoscale contacts. Euro. Phys. Lett. 54, 693–699 (2001).
DOI 10.1209/epl/i2001-00371-6

30. Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From in-
finitesimal to full contact between rough surfaces: Evo-
lution of the contact area. Int. J. Solids Struct. 52, 83
(2015)


