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We use a generic Lennard Jones (LJ) model (with σ and ε the characteris-

tic length-scale and energy respectively). Unless explicitly stated differently in

the main text, our system consists of a symmetric contact between two curved

surfaces (radius R = 100σ) both bearing 3828 polymer chains (degree of poly-

merization N = 30) with a grafting density αg = 0.16σ−2. The polymers are

solvated using dimers. Their rotational degrees of freedom will reduce artificial

effects due to layering at the walls compared to single monomers1. The walls are

crystalline surfaces (fcc [111]) with a lattice constant of 1.2σ. The wall atoms

are connected to their lattice sites with harmonic springs (k = 32ε/σ2) and

to each other using an anharmonic spring (k = 30ε/σ2) ensuring a maximum
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displacement of 0.4 σ. To translate the surfaces with respect to each other, we

move the lattice sites of both surfaces symmetrically in opposite directions with

a constant velocity. Periodic boundary conditions are applied in x and y.

The monomers of the grafted polymers interact via the Kremer-Grest (KG)

model2, where the LJ interaction between consecutive monomers is purely re-

pulsive (ε = 1, σ = 1 and rcut = 21/6σ) and the connection is assured via

the FENE potential using a stiffness k = 30ε/σ2 and a maximum extension

Ro = 1.5σ. For the dimers we use the same potential with a maximum exten-

sion of Ro = 1.3σ to create a size mismatch that will further reduce layering.

The LJ parameters are adjusted to ε = 0.8, σ = 0.8 such that the potential for

both the dimers and the polymers is equally shaped. The polymers are con-

nected to the walls with a similar shape-matched KG model (ε = 0.8, σ = 1.5,

k = 30ε/σ2 and Ro = 2.1σ). Non-consecutive monomers of the polymers in-

teract via the LJ potential using the same ε and σ as consecutive monomers,

but with a cut-off of 1.6 σ, making the polymers slightly attractive. Between

non-connected dimer-monomers we chose our parameters to be ε = 0.5, σ = 1

and rcut = 2.5σ, which keeps the dimers in the liquid phase over the entire range

of pressures used in the simulations (P = 0 − 25ε/σ3). The LJ parameters for

the interaction between dimer and polymer are ε = 1.2, σ = 1 and rcut = 2.5σ.

Due to our choice for the LJ parameters we have good solvent conditions3. Our

brushes are undersaturated with solvent (we used half the amount of solvent

needed to saturate the brushes) and therefore in a more collapsed state than

saturated brushes. For the interactions of the brush and of the solvent with
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the walls we chose a larger σ to keep all the liquid-particles between the walls

(ε = 0.6, σ = 1.3 and rcut = 1.6σ).

The equations of motions for all mobile particles are solved using the ve-

locity Verlet algorithm as implemented in LAMMPS4 using a time-step of

∆t = 0.005σ (m/ε)
0.5

(a time step of 0.001 σ (m/ε)
0.5

does not change our re-

sults). The temperature in the simulation box is kept constant at T = 0.6ε/kB

using a Langevin thermostat applied perpendicular to the direction of motion

on the wall-atoms alone, to guarantee no interference of the thermostat with the

(hydro-)dynamics of the system. For the thermostat we chose a time-constant

of τ = 1σ (m/ε)
0.5

.

We averaged the forces in y over 2-3 periodic images for each velocity. The

forces in x were averaged over at least 1 periodic images. For the lowest velocity

(v = 4 · 10−5σ/τ , which translates to < 1 cm/s in real time) we required 3 · 108

timesteps, corresponding to 500,000 core-hours using 2048 cores. In total, we

needed 10 million core-hours on a Blue Gene P system (Jugene, FZ Jülich) for

the non-equilibrium simulations and 50,000 core-hours on an Intel Xeon X5570

(Nehalem-EP) based supercomputer (Juropa, FZ Jülich) for the equilibrium

simulations.
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Figure 1: The friction force Ff versus velocity for different normal pressures
between -30 and 400 MPa. The effective exponent was found to be κ = 0.67 ±
0.02.

In the main text we claim that for motion in x at low velocities the effec-

tive shear-thinning exponent is independent of the applied normal load (or the

distance between the cylinders). This is supported by ESI Fig. 1, which shows

the friction force for motion in x for different distances d between the cylinders

apex (blue circles d = 8σ, green squares d = 10σ, ... , yellow downward triangles

d = 18σ). Despite the fact that the data was fitted using only two datapoint

per normal load, we find a constant effective exponent of κ = 0.67 ± 0.02.
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Figure 2: Identification and fitting of the two peaks in the force traces upon
asperity collision.

In the main text we discuss that for the force-traces for motion in y we

fitted the first peak and the shoulder (which turns into a second peak after

subtraction of the first peak) using a Gaussian function. This is shown in ESI

Fig. 2. The black line denotes the mean-field force, which was determined by

equilibrating the system at different position for y/L. The dashed lines denote

the meanfield force + the fitted Gaussian peaks. The first peak is symmetric

around symmetry-point y/L = 0.5, this peak is purely dissipative. The second

peak is not symmetric around y/L = 0.5 and can thus be decomposed into a

symmetric (= dissipative) part and an antisymmetric (= non-dissipative) part.
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Figure 3: The force traces for complete immersion in solvent (no capillary due
to the surface tension of the solvent).

In the main text we claim that the force-traces for motion in y become

qualitatively different when the contact is completely immersed in solvent. This

is shown in ESI Fig. 3. Upon complete immersion in solvent the capillary due

to the surface tension of the solvent disappears and the second peak is no longer

visible in the force-traces. This implies that a capillary due to surface tension

strongly enhances transient effects5.
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Figure 4: The powerspectra of our default system compared to the spectra of a
fully saturated system (dashed lines).

In the main text we discuss that increasing the amount of solvent to full

saturation only slightly affects the spectral response at high frequencies and

does not affect the spectral response for low frequencies. This claim is supported

by ESI Fig. 4 that shows the spectral response for our default system compared

to a fully saturated system (dashed lines).
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Figure 5: The powerspectra of our default system compared to the spectra of a
compressed system (dashed lines).

In the main text we discuss the effect of the normal load on the spectral

repsonse of the system. This is shown in more detail in ESI Fig. 5. Upon

increasing the normal load the exponent µ at low frequencies alters differently

for the different direction x, y and z.
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