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Contact mechanics of laser-textured surfaces
Correlating contact area and friction
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Abstract We study numerically the contact mechanics of apresent at the sliding interface [1-3]. One would certainly
flat and a curved solid. Each solid bears laser-induced, p&xpect related trends at mesoscopic scales, i.e., betiter in
riodic grooves on its rubbing surface. Our surface topogralocking of two solids in contact and thus highstatic fric-
phies produce a similar load- and resolution dependence ¢6ibn between them if their surface corrugation matched on
the true contact area as nominally flat, but randomly-roughmicrometer scales. It is nevertheless not obvious kioetic
self-affine surfaces. However, the contact area of lasgwted friction K, would change, because (geometric) interlocking
solids depends on their relative orientation. The estithatedoes not necessarily induce (mechanical) instabilitiesner
true contact areas correlate with kinetic friction measurehanced dissipation during sliding [4].
ments. Laser surface texturing (LST) [5] allows one to inves-
tigate how kinetic friction is affected by roughness on mi-
crometer scales. LST exploits the interference patterns of
nanosecond laser pulses producing texture perledd a
PACS 81.40.Pq Friction, lubrication, and wea#6.55.+d  few microns. In detail, a temperature gradient between po-
Tribology and mechanical contacts sitions of maximum and minimum laser intensity induces a

surface tension gradient, which leads to a transfer of molte

material away from the hot spots. A sinusoidal surface to-
1 Introduction pography remains after resolidification.

The tribological properties of laser-textured surfaces of

The tribological properties of solids with structured swdés  ten turn out to be improved, which is commonly attributed
differ from those of untreated solids. Gears could be seeto their sealing ability and the presence of lubricationkpoc
as an extreme example, where the surfaces of cylinders aegs [5,7,8]. However, friction also turns out reduced for un
modified such that they interlock macroscopically. Howeverlubricated, textured solids as demonstrated by Sitialg [6],
two gear wheels lose their grip when brought out of ori-who studied the friction between a “smooth” sphere placed
entation. Similar behaviour occurs at the atomic scale: then top of a lithographically strucutred substrate.
friction between two identical crystals can be vanishingly A possible explanation of reduced dry — perhaps even
small when they are misaligned, and no contaminants aneduced wet — friction between textured surfaces is that the
laser-induced corrugation reduces the true contactfyraa
compared to untreated solids. Assuming a local constéutiv

Keywords Contact mechanicdriction - material treatment
effects

Nikolay Prodanov: Andreas RosenkranzCarsten Gachot Leander
Reinert- Frank Muicklich

Department of Materials Science and Engineering relation between shear stresand normal pressungof the

Saarland University, Campus form

66123 Saarbriicken, Germany 0
T=To+

Nikolay Prodanov Martin H. Muser 0+ Hob,

Julich Supercomputing Centre where 1o and g are system-dependent constants, smaller

Institute for Advanced Simulation contact area implies smaller friction. The reason is thetin

Fz Julich, Julich, Germany
E-mail:  m.mueser@fz-juelich.de E-mail:  c.gachot@mx.uni

saarland.de F« = T0Ac+ HoL, ()

grating Eq. (1) over the contact area yields
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wherelL is the normal load. studied a system with one lateral and one normal direction.
Although Eg. (1) has been argued to hold from the macrdrhe gap of their undeformed surfaces can be written as

scopic scale [9] all the way down to the atomic scale [10, X2

11], its use is not unproblematic. This is because contact ig(X) = 2R +h{1-cogax)}, (3)

not well defined. In continuum mechanics, the true contact

. ) yhich corresponds to the set-up of the experiments men-
area depends on the resolution of the spatial features [12, : .
: . . . .. tioned above if the two surfaces are perfectly aligned and
13]. Even when including the smallest, that is, the atomisti :
textured with the same wavelengtp € 277/A). The pres-

features, the precise definition of true contact remains am- re profile had spik «ceeding the val deduced from
biguous, because there is no more clear separation of Slﬁ’;—'l € profiie had spikes exceeding the values deduced ro

face and body forces. As a consequerngeand i, can- ertzian contact mechanics (for= 0), while pressure was

not be uniquely determined. If it were possible to recon2&m within most of the contact area, see Fig. 13 in Ref. [19].

cile brave but otherwise disparate attempts of defining Conljowever, they did not provide simple guidelines for how

tact at the atomic scale [14-17], one would still be faceoti0 r(?s';\l/lmz:te \t/h? ttr# N arealgfncotnta?]t ?dr t:\?Wpressrl;re dls\;c\:iltt;u
with the discontinuity of the shear stress in the constituti on. VIoreover, they could not consider wo surtaces

: : L . non-aligned textures, because they only used one lateral di
equation (1). In contrast to continuum descriptions, real i . . ; ;
. . . . mension. In this section, we describe how to overcome these
teratomic forces are continuous functions of atomic coor- .
shortcomings.

dinates. For this latter reason, we will remain in the realm In our theoretical roach. we first our the idea for
of continuum mechanics and treaf and Ly as scale- or . our theoretical approach, e_ stpursue the idea 9'
malised by Persson [13, 20] of solving the contact mechanics

resolution-dependent. . .
. at the coarse scale and of refining the calculations, as spa-

Even after restricting ourselves to a scale-dependent in:
. . . tial features on smaller and smaller wavelengthsare re-
terpretation of Eq. (1), one could argue that materials with

. . solved. However, it would be naive to use the original Pers-
different A; have different values forg and pp. However, . . . .
. : . son formalism, which necessitates the height spectra to be
for fixed A¢, these two numbers should be well defined in the . . ] .
. . ontinuous so that the perceived changes in relative cbntac
case of dry friction, which allows us to change the contac

. . . . r n ntin |
area at fixed load by changing the orientation. area depend cont uously dres . . .
. g . The macroscopic geometry is Hertzian. To keep the dis-
In this work, we investigate how the contact area of two

| textured surf Il as th tact ire di cussion of the local geometry simple and brief, we first re-
aser-textured surfaces as wetl as the contact pressure dis ;. ¢ attention to an orthogonal orientation of thedemn

bution depend on load and resolution. For this purpose, Wfaormed) laser texture lines. Their gap geometry is that of tw

present some simple analytical considerations as well-as nu . : . . .
. o ) . crossed cylinders, which can again be described as Hertzian
merical contact mechanics simulations, which are based op

. ) . contacts. Moreover, we assume that there is no phase shift
experimentally measured height profiles. Lastly, we amﬁlysbetween the roughness at the coarse and the fine scales, i.e.

if there is a correlation between (magnification-depen):lenRNe generalise Eq. (3) to
contact area and dry friction of laser-textured surfaces. '

x2+y2
9(xy) = —p— +h{2—codax) — cogay)}. (4)
2 Theory Thus, we have a macroscopic surface curvaturB.ofnd

one at the laser-structuring scaleRyf~ g?/2h. The central

Most technical surfaces have roughness on wavelengths spaimp on a bump” lies at = (x,y) = 0, while the “near-
ning many decades. Archard recognised that this proper§st bumps” lie atx,y) = (£A,0) and(x,y) = (0,+A), and
makes it difficult to define contact area rigorously [12]. Thethe “next-nearest bumps” &,y) = (£A,+A), whereA =
simplest picture of multi-scale roughness is to have “bumpgn/CI-
on a bump,” that is, a clear separation of wavelengths on In the macroscopic description of a Hertzian contact,
which roughness lives. Recent tribometer experiments [18fontact radius and the local pressurg(r) with r = [r| sat-
of a ball on a nominally flat substrate, where both surfacetty
were laser textured, mimic that situation. The ball in these ; 3LR
experiments (see also section 3.1 for more details) had a? = AE*’ (®)
macroscopic radius of curvaturel&f = 0.75 mm, while pe- p(r) = po\/rz/az ©6)
riod and amplitude of the laser texturing wage= &'(10 um) < ’
Rc andh; = &(1 um), leading to a characteristic curvature whereL is the normal load angy = 3L/2rma? is the maxi-
of (2m/A)?hy = 0(L um=1) > 1/R.. mum interfacial pressure.

A contact mechanics problem with similar geometry as  Using Eg. (5) one can estimate the load at which the con-
that of the just-described experiments was analysed by Yatact radius is as large as the laser texturing waveleaAgth
Schlesinger and Drake with finite-element methods [19]yThthat is,L, = 4E*A3/3R. The numerical result fdr, differs
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substantially between macroscopic and microscopic curvazause of line contacts. Once the grooves are brought out of
tures. Usinge* = ¢/(100 GPa and the other values as intro- alignment, for instance when oriented at right angles, we ar
duced above, one obtaihg, = 0.1 N andL;, = 100 N, re- left with a few individual contact patches which have two
spectively. Thus, from a macroscopic perspective, we wouldmall spatial dimensions rather than a large one and a small
need a load of 0.1 N to have not only the central but alsmne. We will resort to regular Persson theory to show that
the nearest bump in contact. Moreover, within linear elasthis intuition might be misleading.

ticity, we can estimate the load where the central contact InPerssontheory[13,20],the pressure distribution broad
patch coalesces with the nearest patches to be 100 N. Tleas approximately by an amoufp(q), which is propor-
corresponding values for the interfacial peak pressures ational to the height spectrum at the wavevector that is just
Peo= ¢(1 GP3 andpy = 0(10° GP3. Given thatthe hard- being resolved, i.e., for discrete height spectra

ness of the softer material in our reference experimenfs [18 o 2

is close to 2 GPa, one can conclude that merging contagpz(q) = (E) |F1(q)|2. @)
patches associated with the central and the nearest bump re- 2

quires pressures exceeding the hardness by two to three @&mn increase in the width of the pressure distribution then
ders of magnitude. One is therefore safe to assume that thisads to a reduction in the contact area.

can only happen under major plastic deformation. One can now estimate the broadening of the pressure
One might even conclude that plastic deformation is likelistribution for two different orientations of ridges,
to occur in the central bump before the nearest bumps forrH %.v) = h{cogax
. . : : YY) = +Apx) +cogay+A ; 8
contact, see also Fig. 2 in Ref. [18]. This, however, is not 1(6Y) h{ sa #x) say ¢y>} ®)
the case, because the central bump gets shifted upward mol?é(x’ y) = h{codax+A¢y) +cosax+A42)}, ©)

strongly than predicted in the continuum treatment. Thefdepyhere the various phase shiffsp should be almost uni-
of indentatiord = a? /Rrelated with the small-scale bump is formly distributed during sliding. The subscripts and ||
roughly 1pum. However, the gap of the undeformed surfacesdentify perpendicular and parallel orientation, resjyedy.

atr = A is only 1 nm. Thus, the nearest bump must come inThe corresponding non-zero Fourier coefficients read
contact much earlier than one would assume from contin-

uum mechanics. Using the same equations and parametd?‘r§(j:q,0) = geii"’x, (10)
as above, one obtains a required load-of ¢(0.3 uN), h

where the small-scale indentation of the central bump remchh, (0,+q) = Eei"”y, (11)
an indentation o/ (1 nm). Therefore, miniscule forces are _ h o .

sufficient to bring the nearest bumps into contact as well. N (+9.0) = 3 (e*191 4 e12) . (12)

When trying to bring next-nearestbumps locatedlat 1, i]S})quaring the individual contributions and taking theiresp

into contact, higher forces are needed: now one needs twigg,. | .\ - oo by sampling all phasag with equal proba-

the _pre\g;)zuts_ dlsp!{icelme;tt,hlmplloyTg th?; the cent;ﬁl bfum%ility then yields that both orientations of the grooveslea
carries Imes he load than betore. Vioreover, the Ourﬁo the same pressure distribution broadening of

nearest bumps (assuming they have identical height), wi
already carry half the load as the central bump, i.e., bniggi > (QghE” 2
the “third shell” into contact requires almost 10 times f@gh Py = 2

loads orl. = &(3 uN) than bringing the second shell into independent of the relative orientation. This result i@gli

n . On [ il ntin h Iculation for the.. . .
contact. One could easily continue the calculation for t &imilar contact areas in both cases.

?hextrfe\iv sherITI]s,tEut :‘htlrsm worl;Id”not t|>e mear:;ggfuil, Z?f(f::ruse As mentioned above, Persson theory cannot be expected
€ real geometry of the smafl-scale asperiies 1s o give quantitative answers when height spectra have pro-

from the smooth profiles considered in this toy model, Onenounced peaks. However, the current calculation reveats th

may yet conclude that (a) miniscule loads suffice to formthe effect of orientation might be small. A more reliable
contact not only in the central bump but also on adjacen uantitative assessment is made in section 4

bumps, i.e., contact is formed outside the nominal Hertzian
contact area, while inside of it, the real relative contaieta
is small. (b) The normal load must increase quite dramatiz n1athods
cally to induce contact in additional shells when the number
of shells in contact is small. 3.1 Experimental details
In the remainder of this section, we address the question
how the contact area changes as a function of the orientatidn this section, we sketch the relevant details of the exper-
anglea of the grooves. Intuitively, one might expect muchiments providing us with the surface roughness measure-
larger contacts when the grooves are perfectly aligned, benents and the mechanical properties of the two solids in

(13)



4 Nikolay Prodanov et al.

contact. For a more complete list of details, we refer to the N
original publication [18]. e §oR FE &

In the experiments, a commercially available austenitic = % {3 ]
stainless steel (1.4301) was used as substrate mateticd wit = 055, poorsons rerrrres ‘
typical yield strength ranging between 360 MPaand 680 MPa. 2 g 4% s ”

. . . . . Q e
Its hardness, as determined by nanoindentation, is approxi i Gasanass .
X i ! 0.3~ | =— worn substrate
mately 2.2 GPa and the effective elastic modulusis 167 GHa[2 X :g:;m
The lateral dimensions of the nominally flat specimens are = 0.2 0 =4um ]
20 mmx 20 mm. The samples were delivered with a highly 0.1- Qﬁo;iiﬁr_" 7
polished mirror-like surface finish having a root-meanzsgu QoL oS
15 20 25 30 35 40

roughness of about 30 nm. The counter body consists of a
100Cr6 steel bearing ball with a diameter of 1.5 mm. Ef-
fective elastic modulus and yield strength are 140 GPa andg. 1 Surface height of a substrate along a selected scan line. The
1.4 GPa, respectively [21]. experimental data of a worn laser-textured surface is stioylack)

A pulsed Nd:YAG laser (Spectra Physics, Quanta Rayircles. Gaussian filter with (blue) triangles represantiasolutions

L . ' o =1 um (triangle up), 2um (triangle right), and 4um (triangle

PRO 290) W'_th a pulse duration of 10 ns was used for theqyn) "and Fourier smoothing with resolutidn= 2 um (red trian-
laser patterning. The laser fluence was set to 400 nfJ/cryle left). The (green) diamonds indicate a simple cosindilprof a
for all specimens. The periodicity (line-spacing) anatyse 9.7 um W_a_velength (open diamonds) and a cosine profile which is cut
in this work are 9 and 1&m. The topography was mea- 2t @ specified height (closed diamonds).

sured using a white light interferometer WLI (Zygo New

View 100) 6‘9“_'pped W'th,a 3-D imaging surface St,ru,Cturewherea is a measure of the spatial resolution. When smoothed
analyser. This is an established method of characterising s in Fourier space, the original height spectrum is Fourarse
faces in a fast non-contact mode. The vertical resolution iformed Al FouriercoefficientE(q) with a wavelengtth —

typically in the range of sub-nanometer and the lateral res27'r/q are set to zero and the remaining coefficients are trans-

olution up to the Rayleigh limit (usually 0.Bm) [22]. It ;e hack to real space. The effect of the two smoothing
is worth noting that surface errors such as ghost steps Yiters are shown in Fig. 1.

spikes may appear due to an identification problem of the
fringe order thus leading to so calledrfumps for textured
surfaces [22].

At locations where height profiles are repetitive and do
not suffer from erratic measurement errors, the Fourier fil-
tering reproduces more clearly that the tops of asperities a
flattened. However, in the vicinity of errors, or nearby ptee
3.2 Smoothing surface data gradients, we found the local Gaussian filters to be advan-
tageous. It is also worth noting that the worn surfaces can
To a very good approximation, the true contact area of regse described very accurately as sinusoidal with cut-ofscap
ular solids with self-affine surface topography is inveysel We therefore believe that the highest point of the hard coun-
proportional to the root-mean-square gradient of the gap beerface (at a given scan line) determines the resultingraspe
tween the undeformed surfaces. Since roughness tends ity height of the substrate.
live predominantly at the smallest scales, short-range fluc
tuations of the height, which are most susceptible to exper-
imental errors, determine what contact area is predicted fg .
a measured height topography. In most cases, it will there3-'3 Computational method

fore be necessary to post-process and to smooth experimelg- . , .
) : . or our calculations, we use the Green'’s function molecular
tally determined surface heights. Moreover, smoothingsel

one to rationalise results in terms of Persson theory, whic ynamics method (GFMD) [23] as described in Ref. [24].

. : : “ e pecifically, we use the small-slope approximation, which
is based on analysing contacts at different “magnifications . .

o . . allows one to map elasticity and roughness to one side of
Specifically, smoothing over a large domain corresponds t% _ .

. e the interface and to reduce the deformation to a scalar. The
small resolution or small magnification. .
) . . elastic energy then reads
In this work, we analyse how various smoothing oper-

ations on surface topographies affect our data of interest. g*

SO [2
Two common techniques are investigated, namely Gaussidh= 7 > dl(a)l, (15)
filtering and Fourier smoothing. In Gaussian filtering, the a

smoothed hight profile is given by where the in-plane wave vectqiis always chosen such that

hGausér )=

1 (r—r"? —1/Z < Qo < /2, whereZ is the linear dimension of
d?r'h(r') expd ———— (14) : . e _
271102 P 202 [’ the contact. Dynamics are integrated in reciprocal spaee, i
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we solve the equation of motion for the Fourier transforms s0um oohm 50um Tograred cos
. ~ <> - > » Fourier

of the displacements(§): . s 0=1um

mii(q, t) + myti( t)+qE*a( t)=—pd (16) ™ -

d, yu(q, 2 a,1) = —Pog; a.e 9 : .

. . . . . . ee®e . o 00 BB

wheremis an inertia ang reflects an inverse damping time. oo . el e s s

The externally imposed pressupds supposed to only live

on a zero wavelength as indicated with the Kronecdker @) (b)

symbol. When the interaction between the two surfaces is
expressed as a .Commuous force, it is possible to chtm;e Fig. 2 Elastic contact for a worA; = 9 um surface at 100 times the ex-
andy as a function ofj. However we use non-holonomic perimental load for different smoothing operatiotes. Gaussian filter

boundary conditions of the form (applied to both surfaces) witht = 4 um (light grey), 2um (brown),
and 1um (black). (b) Surfaces in which the substrate topography is
u(r)4+g(r) >0, a7 a truncated cosine (light grey), simple cosine (brown), arfeburier

_ o filter with A = 2 um. The counterface consists of a hard 100Cr6 bear-
whereg(r) is the gap between the original surfaces beforeng steel ball, smoothed with a Gaussian filteroot 2 um. The grey

they touch, in which case andy may not depend oq. circles are drawn to guide the eye.

The smallest wavenumber in the system is associated
with the mode having the largest wavelength. Since the stiff
ness of the displacement is proportionalgtoa reduction area for the larger resolution, or smat| is more spread
of the smallest frequency scaling witff 71/ seems un- outthan for the smaller resolution. This confirms the pietur
avoidable. In order to reach fast convergence, the damgaid outin Sec. 2: The = 4 um surfaces produce a single,
ing should be chosen such that the slowest mode, i.e., th®nnected domain, almost reminiscent of a circular Hemtzia
center of mass motion, is close to being critically dampedgontact. Conversely, the highest resolution, ice= 1 um,
which can be recognized particularly well when the centerhas contact at larger radii although its total contact asea i
of-mass mode is slightly underdamped. Since the stiffnestelatively small. The reason is that the normal displacemen
of the contact grows roughly proportional with the normalis accommodated by the small-scale asperities at high reso-
pressure [25,26], the optimum choice for damping satisfietution.

y U v/p/Z. In this case, the number of GFMD time steps  \when smoothing surfaces with Fourier filters, the con-
required to reach convergence only growths witl’ inde-  tactlooks more erratic than in the other cases, which is show
pendent of pressure. Refinement of this procedure are onl) the right part of Fig. 2. We attribute this observationtte t
needed when the relative contact area is much less or cloggt that the Fourier smoothing is less forgiving to experi-
toone, e.g.A <1073 or 1-A <10°%. mental uncertainties than the Gaussian smoothing. However

For the integration of motion, we employ the standardsyrprisingly small differences in the contacts are found fo
Verlet algorithm. The boundary conditions are imposedaftethe truncated cosine and the original cosine data. The fea-
new positions are determined. Specifically, we s@9) =  tures observed in both cases are similar to those revealed in
—g(r) if u(r) was predicted to be smaller thag(r). the Gaussian smoothing.

While we have focused so far on the orthogonal ori-
entation of the texture lines, our interest lies in coriatat
friction and contact area, which both depend on the relative

Before the computing contact area as a function of load, relignment of the two surfaces. In this context, it is worth
olution, and orientation, it is instructive to analyse tffeet ~ POiNting out that parallel grooves have larger fluctuations
of the smoothing operations on the contact patch geoméhan orthogonal grooves. This is demonstrated in Fig. 3.
try first. In Fig. 2, contacts are shown in real space for the The results shown in Fig. 3 can be easily rationalised.
various smoothing procedures presented before in Fig. 1. lAt mesoscopic scales, where spatial features are resolved
these calculations, we have increased the load by a factor & roughly the laser texturing wavelengths but not much be-
100 with respect to the reference experiments, because thogond, all configurations with an alignment of%ére equiva-
loads are much too small to allow for a meaningful visual-lentif sliding occurs parallel to the grooves of one of the tw
isation. Moreover, the trends do not depend sensitively osurfaces. One would therefore expect small variations with
the precise value of the load. slid distance. Conversely, when the grooves are alignatl, an
When smoothing surfaces with Gaussian filters (showithe surfaces are slid in a right angle to the texturing, the
in the left part of Fig. 2), one can recognise that the contaotxtreme configurations would be that peaks on one surface
area increases with decreasing resolution, which is propoface the peaks on the other surface or that peaks are opposite
tional to 1/o. However, it is also noticeable that the contactto valleys.

4 Results
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Fig. 4 Estimated real contact arégq as a function of load for two
different orientations oA; = 9 um surfaceso = 0° (closed red circles)
anda = 90° (open blue squares). Broken lines reflect fits vtk O

w
o
L

£ | ==L=34mNa= of || A= 9pm- L%, The prefactor forr = 0° is 4/3 times larger than that for = 90°.
NE [ I | = ] The height topography are smoothed with a Gaussian filtey ef
S | 1 2 um.

=520 .

<._ \ ]

which is half way between the standatg O L and Ar-
chard'sArea [ L4/5 prediction for a system similar to ours [12].
In the regime where error bars are small, we find that the
contact area in an interface with parallel grooves is 4/@8m
larger than that with orthogonal grooves. However, it is re-
Fig. ?a _ (%)e?ebal ngéicggrﬁﬁig:igf(tjhzylgt]grgssol‘l#ﬁggwsir;fiéz)s markable that at the smaller scales, we would predict a mean
Q;Zalsrr:\gothed )\/Nith Gaussian filters having resolutios 4-um (blue pressure of 1 my 2 “mz - 0.5 GPa, which is already one .
circles) ando = 2 um (red diamonds). Closed and open symbols in-fourth of the macroscopic hardness of the substrate. This
dicate parallel and orthogonal grooves, respectively. @leulations ~means that the tail of the pressure distribution easily edse

are conducted for (@) an unwota= 18 umand (b) aworke =9 um  the hardness of the substrate. Consequently, one should ex-
surface. pect some plastic deformation of the surfaces, in particula
when they are in relative sliding motion.

100

If more features at smaller scales are resolved, the sensi- Lastly, we wish to note that the pressure probability dis-
tivity of the relative contact area with orientation de@es.  tribution inside our contacts does not change significantly
This is because local contact can be interpreted as the coaver a broad range in normal forces, i.e., from 4 mN to
tact between two rough surfaces. In the extreme case, i.812 mN, except that a small load implies large stochastic
when resolving roughness down to the atomic scale, truecatter, see Fig. 5. Likewise, the relative orientationhef t
contact area will, as usual, be miniscule. The questioesiris surfaces does not appear to matter much either for the pres-
if roughness on wavelengths close Xpstill matters. As  sure distribution. However, once the resolution chandpes, t
discussed above, contact area (for unstructured surfeces)pressure distribution changes in a quite remarkable wag. Th
roughly inversely proportional to the root-mean squarpelo is precisely the behaviour, which one would expect from
The contribution of each wave vector is proportional to thePersson theory for randomly rough surfaces [13, 20].

mean square gradient, which g8 = q?(|h(q)[?). For the Previous atomistic simulations of amorphous, single-dspe
simple sinusoidal surface profiles shown in Fig. 1 with atips had already revealed that the pressure-distribitiah e
height variation ofAh(A;) ~ 1.2 um atA; ~ 18 um, one  yated at the smallest scales may deviate strongly from that
obtains a value fog = (21r-Ah/A)?/2= £/(0.1). This con-  optained for a Hertzian tip in the continuum limit [14, 15].
stitutes a non-negligible contribution to the overall rbug |n this sense, our results are not surprising. Yet, what migh
ness. Thus, one will probably have to go to very high resobe unexpected is that the pressure distribution has some re-
lution before height fluctuations at much smaller scales thamaining weight at values near the estimated substrate hard-
A start to be relevant. ness of nanoindentation of 2.2 GPa. This weight would raise

In Fig. 4, we show the estimated contact area as a funcubstantially if we increased our resolution. Unexpegted|
tion of load for theA; = 9 um surfaces with parallel and or- large contact pressures have also been identified in a re-
thogonal alignment after smoothing wittoa= 2 um Gaus-  cent discrete-dislocation simulation of a rigid platengsre
sian filter. One can see that the area scales well Wity  ing against a sinusoidal aluminum surface [27].
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Fig. 5 Pressure probability distribution function (py for differ-
ent loads, orientations, and smoothing. Default values lagsl L =
32 mN,a =0°, ando = 2 um as reflected by the (green) right tri-

angles. Loads of 4 mN and 512 mN are indicated by (red) down an

(blue) up triangles, respectively. One calculation is Hasean orthog-

ful comparison for similarly aligned surfaces with diffete
laser-texturing period. However, in this context, a resblt
tained by Suret al. [27] is worth mentioning: In their study

of plastic deformation of solids (aluminum) with an initial
sinusoidal surface pressed against a flat, rigid platery, the
found that longer periods lead to a larger contact area.,Thus
we expect the wori; = 18 um surfaces to have larger con-
tact area than the ones willa = 9 um, which would again
correlate, at least qualitatively, with friction measugats.

An interesting side aspect of our analysis is the real-
isation that increasing the resolution of the surfaces does
not simply lead to the disappearancelodal contact area.
Instead, sometimes new, small contact patches can be ob-
served at locations that had been completely out of comtact i
éhe calculation on the coarser scale. This observatiorghwhi
we rationalised in a rather simple “two-scale Hertzian bump

onal orientation ofr = 90°, see the (green) open right triangles and oneon-a-bump” approach, might be partly responsible for the

calculation is based on a different smoothing with- 4 um, which is
indicated with (green) open circles. The function valuetheflast data

slight underestimation of contact area in Persson the@y [2
30]. This insight might motivate attempts to introduce free

set has been divided by three.

trance correction” into the theory.

5 Discussion and Conclusions
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lenging to determine good estimates for the contact area, be,
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where experimental uncertainties are largest, are most rel4.
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