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Contact mechanics of laser-textured surfaces
Correlating contact area and friction
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Received: date / Accepted: date

Abstract We study numerically the contact mechanics of a
flat and a curved solid. Each solid bears laser-induced, pe-
riodic grooves on its rubbing surface. Our surface topogra-
phies produce a similar load- and resolution dependence of
the true contact area as nominally flat, but randomly-rough,
self-affine surfaces. However, the contact area of laser-textured
solids depends on their relative orientation. The estimated
true contact areas correlate with kinetic friction measure-
ments.

Keywords Contact mechanics· friction ·material treatment
effects

PACS 81.40.Pq Friction, lubrication, and wear· 46.55.+d
Tribology and mechanical contacts

1 Introduction

The tribological properties of solids with structured surfaces
differ from those of untreated solids. Gears could be seen
as an extreme example, where the surfaces of cylinders are
modified such that they interlock macroscopically. However,
two gear wheels lose their grip when brought out of ori-
entation. Similar behaviour occurs at the atomic scale: the
friction between two identical crystals can be vanishingly
small when they are misaligned, and no contaminants are
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present at the sliding interface [1–3]. One would certainly
expect related trends at mesoscopic scales, i.e., better inter-
locking of two solids in contact and thus higherstatic fric-
tion between them if their surface corrugation matched on
micrometer scales. It is nevertheless not obvious howkinetic
friction Fk would change, because (geometric) interlocking
does not necessarily induce (mechanical) instabilities oren-
hanced dissipation during sliding [4].

Laser surface texturing (LST) [5] allows one to inves-
tigate how kinetic friction is affected by roughness on mi-
crometer scales. LST exploits the interference patterns of
nanosecond laser pulses producing texture periodsλt of a
few microns. In detail, a temperature gradient between po-
sitions of maximum and minimum laser intensity induces a
surface tension gradient, which leads to a transfer of molten
material away from the hot spots. A sinusoidal surface to-
pography remains after resolidification.

The tribological properties of laser-textured surfaces of-
ten turn out to be improved, which is commonly attributed
to their sealing ability and the presence of lubrication pock-
ets [5,7,8]. However, friction also turns out reduced for un-
lubricated, textured solids as demonstrated by Sunget al. [6],
who studied the friction between a “smooth” sphere placed
on top of a lithographically strucutred substrate.

A possible explanation of reduced dry – perhaps even
reduced wet – friction between textured surfaces is that the
laser-induced corrugation reduces the true contact areaAc as
compared to untreated solids. Assuming a local constitutive
relation between shear stressτ and normal pressurep of the
form

τ = τ0+ µ0 p, (1)

whereτ0 and µ0 are system-dependent constants, smaller
contact area implies smaller friction. The reason is that inte-
grating Eq. (1) over the contact area yields

Fk = τ0Ac+ µ0L, (2)
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whereL is the normal load.
Although Eq. (1) has been argued to hold from the macro-

scopic scale [9] all the way down to the atomic scale [10,
11], its use is not unproblematic. This is because contact is
not well defined. In continuum mechanics, the true contact
area depends on the resolution of the spatial features [12,
13]. Even when including the smallest, that is, the atomistic
features, the precise definition of true contact remains am-
biguous, because there is no more clear separation of sur-
face and body forces. As a consequence,τ0 and µ0 can-
not be uniquely determined. If it were possible to recon-
cile brave but otherwise disparate attempts of defining con-
tact at the atomic scale [14–17], one would still be faced
with the discontinuity of the shear stress in the constitutive
equation (1). In contrast to continuum descriptions, real in-
teratomic forces are continuous functions of atomic coor-
dinates. For this latter reason, we will remain in the realm
of continuum mechanics and treatτ0 and µ0 as scale- or
resolution-dependent.

Even after restricting ourselves to a scale-dependent in-
terpretation of Eq. (1), one could argue that materials with
different λt have different values forτ0 and µ0. However,
for fixedλt, these two numbers should be well defined in the
case of dry friction, which allows us to change the contact
area at fixed load by changing the orientation.

In this work, we investigate how the contact area of two
laser-textured surfaces as well as the contact pressure distri-
bution depend on load and resolution. For this purpose, we
present some simple analytical considerations as well as nu-
merical contact mechanics simulations, which are based on
experimentally measured height profiles. Lastly, we analyse
if there is a correlation between (magnification-dependent)
contact area and dry friction of laser-textured surfaces.

2 Theory

Most technical surfaces have roughness on wavelengths span-
ning many decades. Archard recognised that this property
makes it difficult to define contact area rigorously [12]. The
simplest picture of multi-scale roughness is to have “bumps
on a bump,” that is, a clear separation of wavelengths on
which roughness lives. Recent tribometer experiments [18]
of a ball on a nominally flat substrate, where both surfaces
were laser textured, mimic that situation. The ball in these
experiments (see also section 3.1 for more details) had a
macroscopic radius of curvature ofRc = 0.75 mm, while pe-
riod and amplitude of the laser texturing wereλt =O(10µm)≪
Rc andht = O(1 µm), leading to a characteristic curvature
of (2π/λt)

2ht = O(1 µm−1)≫ 1/Rc.
A contact mechanics problem with similar geometry as

that of the just-described experiments was analysed by Yao,
Schlesinger and Drake with finite-element methods [19]. They

studied a system with one lateral and one normal direction.
The gap of their undeformed surfaces can be written as

g(x) =
x2

2Rc
+ h{1− cos(qx)}, (3)

which corresponds to the set-up of the experiments men-
tioned above if the two surfaces are perfectly aligned and
textured with the same wavelength (q = 2π/λ ). The pres-
sure profile had spikes exceeding the values deduced from
Hertzian contact mechanics (forh = 0), while pressure was
zero within most of the contact area, see Fig. 13 in Ref. [19].
However, they did not provide simple guidelines for how
to estimate the true area of contact or the pressure distribu-
tion. Moreover, they could not consider two surfaces with
non-aligned textures, because they only used one lateral di-
mension. In this section, we describe how to overcome these
shortcomings.

In our theoretical approach, we first pursue the idea for-
malised by Persson [13,20] of solving the contact mechanics
at the coarse scale and of refining the calculations, as spa-
tial features on smaller and smaller wavelengthsλres are re-
solved. However, it would be naı̈ve to use the original Pers-
son formalism, which necessitates the height spectra to be
continuous so that the perceived changes in relative contact
area depend continuously onλres.

The macroscopic geometry is Hertzian. To keep the dis-
cussion of the local geometry simple and brief, we first re-
strict our attention to an orthogonal orientation of the (unde-
formed) laser texture lines. Their gap geometry is that of two
crossed cylinders, which can again be described as Hertzian
contacts. Moreover, we assume that there is no phase shift
between the roughness at the coarse and the fine scales, i.e.,
we generalise Eq. (3) to

g(x,y) =
x2+ y2

2Rc
+ h{2− cos(qx)− cos(qy)}. (4)

Thus, we have a macroscopic surface curvature ofRc and
one at the laser-structuring scale ofRt ≈ q2/2h. The central
“bump on a bump” lies atr = (x,y) = 0, while the “near-
est bumps” lie at(x,y) = (±λ ,0) and(x,y) = (0,±λ ), and
the “next-nearest bumps” at(x,y) = (±λ ,±λ ), whereλ =

2π/q.
In the macroscopic description of a Hertzian contact,

contact radiusa and the local pressurep(r) with r = |r | sat-
isfy

a3 =
3LR
4E∗ , (5)

p(r) = p0

√

1− r2/a2, (6)

whereL is the normal load andp0 = 3L/2πa2 is the maxi-
mum interfacial pressure.

Using Eq. (5) one can estimate the load at which the con-
tact radius is as large as the laser texturing wavelengthλ ,
that is,Lλ = 4E∗λ 3/3R. The numerical result forLλ differs
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substantially between macroscopic and microscopic curva-
tures. UsingE∗ =O(100 GPa) and the other values as intro-
duced above, one obtainsLcλ = 0.1 N andLtλ = 100 N, re-
spectively. Thus, from a macroscopic perspective, we would
need a load of 0.1 N to have not only the central but also
the nearest bump in contact. Moreover, within linear elas-
ticity, we can estimate the load where the central contact
patch coalesces with the nearest patches to be 100 N. The
corresponding values for the interfacial peak pressures are
pc0=O(1 GPa) andpt0 =O(103 GPa). Given that the hard-
ness of the softer material in our reference experiments [18]
is close to 2 GPa, one can conclude that merging contact
patches associated with the central and the nearest bump re-
quires pressures exceeding the hardness by two to three or-
ders of magnitude. One is therefore safe to assume that this
can only happen under major plastic deformation.

One might even conclude that plastic deformation is likely
to occur in the central bump before the nearest bumps form
contact, see also Fig. 2 in Ref. [18]. This, however, is not
the case, because the central bump gets shifted upward more
strongly than predicted in the continuum treatment. The depth
of indentationd = a2/R related with the small-scale bump is
roughly 1µm. However, the gap of the undeformed surfaces
at r = λ is only 1 nm. Thus, the nearest bump must come in
contact much earlier than one would assume from contin-
uum mechanics. Using the same equations and parameters
as above, one obtains a required load ofL = O(0.3 µN),
where the small-scale indentation of the central bump reaches
an indentation ofO(1 nm). Therefore, miniscule forces are
sufficient to bring the nearest bumps into contact as well.

When trying to bring next-nearest bumps located atλ (±1,±1)
into contact, higher forces are needed: now one needs twice
the previous displacement, implying that the central bump
carries 23/2 times the load than before. Moreover, the four
nearest bumps (assuming they have identical height), will
already carry half the load as the central bump, i.e., bringing
the “third shell” into contact requires almost 10 times higher
loads orL = O(3 µN) than bringing the second shell into
contact. One could easily continue the calculation for the
next few shells, but this would not be meaningful, because
the real geometry of the small-scale asperities is different
from the smooth profiles considered in this toy model. One
may yet conclude that (a) miniscule loads suffice to form
contact not only in the central bump but also on adjacent
bumps, i.e., contact is formed outside the nominal Hertzian
contact area, while inside of it, the real relative contact area
is small. (b) The normal load must increase quite dramati-
cally to induce contact in additional shells when the number
of shells in contact is small.

In the remainder of this section, we address the question
how the contact area changes as a function of the orientation
angleα of the grooves. Intuitively, one might expect much
larger contacts when the grooves are perfectly aligned, be-

cause of line contacts. Once the grooves are brought out of
alignment, for instance when oriented at right angles, we are
left with a few individual contact patches which have two
small spatial dimensions rather than a large one and a small
one. We will resort to regular Persson theory to show that
this intuition might be misleading.

In Persson theory [13,20], the pressure distribution broad-
ens approximately by an amount∆ p(q), which is propor-
tional to the height spectrum at the wavevector that is just
being resolved, i.e., for discrete height spectra

∆ p2(q) =
(

qE∗

2

)2

|h̃(q)|2. (7)

An increase in the width of the pressure distribution then
leads to a reduction in the contact area.

One can now estimate the broadening of the pressure
distribution for two different orientations of ridges,

h⊥(x,y) = h
{

cos(qx+∆ϕx)+ cos(qy+∆ϕy)
}

, (8)

h||(x,y) = h{cos(qx+∆ϕ1)+ cos(qx+∆ϕ2)} , (9)

where the various phase shifts∆ϕ should be almost uni-
formly distributed during sliding. The subscripts⊥ and ||
identify perpendicular and parallel orientation, respectively.
The corresponding non-zero Fourier coefficients read

h̃⊥(±q,0) =
h
2

e±iϕx , (10)

h̃⊥(0,±q) =
h
2

e±iϕy , (11)

h̃||(±q,0) =
h
2

(

e±iϕ1 + e±iϕ2
)

. (12)

Squaring the individual contributions and taking their expec-
tation values by sampling all phases∆ϕ with equal proba-
bility then yields that both orientations of the grooves lead
to the same pressure distribution broadening of

∆ p2
⊥,|| =

(

qhE∗

2

)2

(13)

independent of the relative orientation. This result implies
similar contact areas in both cases.

As mentioned above, Persson theory cannot be expected
to give quantitative answers when height spectra have pro-
nounced peaks. However, the current calculation reveals that
the effect of orientation might be small. A more reliable
quantitative assessment is made in section 4.

3 Methods

3.1 Experimental details

In this section, we sketch the relevant details of the exper-
iments providing us with the surface roughness measure-
ments and the mechanical properties of the two solids in
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contact. For a more complete list of details, we refer to the
original publication [18].

In the experiments, a commercially available austenitic
stainless steel (1.4301) was used as substrate material with a
typical yield strength ranging between 360 MPa and 680 MPa.
Its hardness, as determined by nanoindentation, is approxi-
mately 2.2 GPa and the effective elastic modulus is 167 GPa [21].
The lateral dimensions of the nominally flat specimens are
20 mm×20 mm. The samples were delivered with a highly
polished mirror-like surface finish having a root-mean-square
roughness of about 30 nm. The counter body consists of a
100Cr6 steel bearing ball with a diameter of 1.5 mm. Ef-
fective elastic modulus and yield strength are 140 GPa and
1.4 GPa, respectively [21].

A pulsed Nd:YAG laser (Spectra Physics, Quanta Ray
PRO 290) with a pulse duration of 10 ns was used for the
laser patterning. The laser fluence was set to 400 mJ/cm2

for all specimens. The periodicity (line-spacing) analysed
in this work are 9 and 18µm. The topography was mea-
sured using a white light interferometer WLI (Zygo New
View 100) equipped with a 3-D imaging surface structure
analyser. This is an established method of characterising sur-
faces in a fast non-contact mode. The vertical resolution is
typically in the range of sub-nanometer and the lateral res-
olution up to the Rayleigh limit (usually 0.5µm) [22]. It
is worth noting that surface errors such as ghost steps or
spikes may appear due to an identification problem of the
fringe order thus leading to so called 2π-jumps for textured
surfaces [22].

3.2 Smoothing surface data

To a very good approximation, the true contact area of reg-
ular solids with self-affine surface topography is inversely
proportional to the root-mean-square gradient of the gap be-
tween the undeformed surfaces. Since roughness tends to
live predominantly at the smallest scales, short-range fluc-
tuations of the height, which are most susceptible to exper-
imental errors, determine what contact area is predicted for
a measured height topography. In most cases, it will there-
fore be necessary to post-process and to smooth experimen-
tally determined surface heights. Moreover, smoothing helps
one to rationalise results in terms of Persson theory, which
is based on analysing contacts at different “magnifications.”
Specifically, smoothing over a large domain corresponds to
small resolution or small magnification.

In this work, we analyse how various smoothing oper-
ations on surface topographies affect our data of interest.
Two common techniques are investigated, namely Gaussian
filtering and Fourier smoothing. In Gaussian filtering, the
smoothed hight profile is given by

hGauss(r) =
1

2πσ2

∫

d2r′ h(r ′) exp

{

− (r − r ′)2

2σ2

}

, (14)
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Fig. 1 Surface height of a substrate along a selected scan line. The
experimental data of a worn laser-textured surface is shownin (black)
circles. Gaussian filter with (blue) triangles representing resolutions
σ = 1 µm (triangle up), 2µm (triangle right), and 4µm (triangle
down), and Fourier smoothing with resolutionλ = 2 µm (red trian-
gle left). The (green) diamonds indicate a simple cosine profile of a
9.7 µm wavelength (open diamonds) and a cosine profile which is cut
at a specified height (closed diamonds).

whereσ is a measure of the spatial resolution. When smoothed
in Fourier space, the original height spectrum is Fourier trans-
formed. All Fourier coefficients̃h(q) with a wavelengthλ =

2π/q are set to zero and the remaining coefficients are trans-
formed back to real space. The effect of the two smoothing
filters are shown in Fig. 1.

At locations where height profiles are repetitive and do
not suffer from erratic measurement errors, the Fourier fil-
tering reproduces more clearly that the tops of asperities are
flattened. However, in the vicinity of errors, or nearby steep
gradients, we found the local Gaussian filters to be advan-
tageous. It is also worth noting that the worn surfaces can
be described very accurately as sinusoidal with cut-off caps.
We therefore believe that the highest point of the hard coun-
terface (at a given scan line) determines the resulting asper-
ity height of the substrate.

3.3 Computational method

For our calculations, we use the Green’s function molecular
dynamics method (GFMD) [23] as described in Ref. [24].
Specifically, we use the small-slope approximation, which
allows one to map elasticity and roughness to one side of
the interface and to reduce the deformation to a scalar. The
elastic energy then reads

E =
E∗

4 ∑
q

q|ũ(q)|2, (15)

where the in-plane wave vectorq is always chosen such that
−π/L ≤ qα < π/L , whereL is the linear dimension of
the contact. Dynamics are integrated in reciprocal space, i.e.,
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we solve the equation of motion for the Fourier transforms
of the displacements ˜u(q):

m ¨̃u(q, t)+mγ ˙̃u(q, t)+
qE∗

2
ũ(q, t) =−pδ0q, (16)

wherem is an inertia andγ reflects an inverse damping time.
The externally imposed pressurep is supposed to only live
on a zero wavelength as indicated with the Kroneckerδ
symbol. When the interaction between the two surfaces is
expressed as a continuous force, it is possible to choosem
andγ as a function ofq. However we use non-holonomic
boundary conditions of the form

u(r)+ g(r)≥ 0, (17)

whereg(r) is the gap between the original surfaces before
they touch, in which casem andγ may not depend onq.

The smallest wavenumber in the system is associated
with the mode having the largest wavelength. Since the stiff-
ness of the displacement is proportional toq, a reduction
of the smallest frequency scaling with

√

π/L seems un-
avoidable. In order to reach fast convergence, the damp-
ing should be chosen such that the slowest mode, i.e., the
center of mass motion, is close to being critically damped,
which can be recognized particularly well when the center-
of-mass mode is slightly underdamped. Since the stiffness
of the contact grows roughly proportional with the normal
pressure [25,26], the optimum choice for damping satisfies
γ ∝

√

p/L . In this case, the number of GFMD time steps
required to reach convergence only growths with

√
L inde-

pendent of pressure. Refinement of this procedure are only
needed when the relative contact area is much less or close
to one, e.g.,Ar < 10−3, or 1−Ar < 10−3.

For the integration of motion, we employ the standard
Verlet algorithm. The boundary conditions are imposed after
new positions are determined. Specifically, we setu(r) =
−g(r) if u(r) was predicted to be smaller than−g(r).

4 Results

Before the computing contact area as a function of load, res-
olution, and orientation, it is instructive to analyse the effect
of the smoothing operations on the contact patch geome-
try first. In Fig. 2, contacts are shown in real space for the
various smoothing procedures presented before in Fig. 1. In
these calculations, we have increased the load by a factor of
100 with respect to the reference experiments, because those
loads are much too small to allow for a meaningful visual-
isation. Moreover, the trends do not depend sensitively on
the precise value of the load.

When smoothing surfaces with Gaussian filters (shown
in the left part of Fig. 2), one can recognise that the contact
area increases with decreasing resolution, which is propor-
tional to 1/σ . However, it is also noticeable that the contact

50µm

(a)

σ = 4 µm
σ = 2 µm
σ = 1 µm

50µm

(b)

truncated cos
cosine
Fourier

Fig. 2 Elastic contact for a wornλt = 9 µm surface at 100 times the ex-
perimental load for different smoothing operations.(a) Gaussian filter
(applied to both surfaces) withσ = 4 µm (light grey), 2µm (brown),
and 1µm (black). (b) Surfaces in which the substrate topography is
a truncated cosine (light grey), simple cosine (brown), anda Fourier
filter with λ = 2 µm. The counterface consists of a hard 100Cr6 bear-
ing steel ball, smoothed with a Gaussian filter ofσ = 2 µm. The grey
circles are drawn to guide the eye.

area for the larger resolution, or smallσ , is more spread
out than for the smaller resolution. This confirms the picture
laid out in Sec. 2: Theσ = 4 µm surfaces produce a single,
connected domain, almost reminiscent of a circular Hertzian
contact. Conversely, the highest resolution, i.e.,σ = 1 µm,
has contact at larger radii although its total contact area is
relatively small. The reason is that the normal displacement
is accommodated by the small-scale asperities at high reso-
lution.

When smoothing surfaces with Fourier filters, the con-
tact looks more erratic than in the other cases, which is shown
in the right part of Fig. 2. We attribute this observation to the
fact that the Fourier smoothing is less forgiving to experi-
mental uncertainties than the Gaussian smoothing. However,
surprisingly small differences in the contacts are found for
the truncated cosine and the original cosine data. The fea-
tures observed in both cases are similar to those revealed in
the Gaussian smoothing.

While we have focused so far on the orthogonal ori-
entation of the texture lines, our interest lies in correlating
friction and contact area, which both depend on the relative
alignment of the two surfaces. In this context, it is worth
pointing out that parallel grooves have larger fluctuations
than orthogonal grooves. This is demonstrated in Fig. 3.

The results shown in Fig. 3 can be easily rationalised.
At mesoscopic scales, where spatial features are resolved
to roughly the laser texturing wavelengths but not much be-
yond, all configurations with an alignment of 90◦ are equiva-
lent if sliding occurs parallel to the grooves of one of the two
surfaces. One would therefore expect small variations with
slid distance. Conversely, when the grooves are aligned, and
the surfaces are slid in a right angle to the texturing, the
extreme configurations would be that peaks on one surface
face the peaks on the other surface or that peaks are opposite
to valleys.
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Fig. 3 (a) Real contact areaAreal divided by the resolutionσ and (b)
Areal divided by loadL as function of the lateral shift∆x. Surfaces
are smoothed with Gaussian filters having resolutionσ = 4 µm (blue
circles) andσ = 2 µm (red diamonds). Closed and open symbols in-
dicate parallel and orthogonal grooves, respectively. Thecalculations
are conducted for (a) an unwornλt = 18 µm and (b) a wornλt = 9 µm
surface.

If more features at smaller scales are resolved, the sensi-
tivity of the relative contact area with orientation decreases.
This is because local contact can be interpreted as the con-
tact between two rough surfaces. In the extreme case, i.e.,
when resolving roughness down to the atomic scale, true
contact area will, as usual, be miniscule. The question arises
if roughness on wavelengths close toλt still matters. As
discussed above, contact area (for unstructured surfaces)is
roughly inversely proportional to the root-mean square slope.
The contribution of each wave vector is proportional to the
mean square gradient, which isg2 = q2〈|h̃(q)|2〉. For the
simple sinusoidal surface profiles shown in Fig. 1 with a
height variation of∆h(λt) ≈ 1.2 µm at λt ≈ 18 µm, one
obtains a value forg = (2π ·∆h/λ )2/2= O(0.1). This con-
stitutes a non-negligible contribution to the overall rough-
ness. Thus, one will probably have to go to very high reso-
lution before height fluctuations at much smaller scales than
λt start to be relevant.

In Fig. 4, we show the estimated contact area as a func-
tion of load for theλt = 9 µm surfaces with parallel and or-
thogonal alignment after smoothing with aσ = 2 µm Gaus-
sian filter. One can see that the area scales well withL0.9,

10
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Fig. 4 Estimated real contact areaAreal as a function of load for two
different orientations ofλt = 9 µm surfaces:α = 0◦ (closed red circles)
andα = 90◦ (open blue squares). Broken lines reflect fits withAreal ∝
L0.9. The prefactor forα = 0◦ is 4/3 times larger than that forα = 90◦.
The height topography are smoothed with a Gaussian filter ofσ =
2 µm.

which is half way between the standardAreal ∝ L and Ar-
chard’sAreal∝ L4/5 prediction for a system similar to ours [12].
In the regime where error bars are small, we find that the
contact area in an interface with parallel grooves is 4/3 times
larger than that with orthogonal grooves. However, it is re-
markable that at the smaller scales, we would predict a mean
pressure of 1 mN/ 2 µm2 = 0.5 GPa, which is already one
fourth of the macroscopic hardness of the substrate. This
means that the tail of the pressure distribution easily exceeds
the hardness of the substrate. Consequently, one should ex-
pect some plastic deformation of the surfaces, in particular
when they are in relative sliding motion.

Lastly, we wish to note that the pressure probability dis-
tribution inside our contacts does not change significantly
over a broad range in normal forces, i.e., from 4 mN to
512 mN, except that a small load implies large stochastic
scatter, see Fig. 5. Likewise, the relative orientation of the
surfaces does not appear to matter much either for the pres-
sure distribution. However, once the resolution changes, the
pressure distribution changes in a quite remarkable way. This
is precisely the behaviour, which one would expect from
Persson theory for randomly rough surfaces [13,20].

Previous atomistic simulations of amorphous, single-asperity
tips had already revealed that the pressure-distribition eval-
uated at the smallest scales may deviate strongly from that
obtained for a Hertzian tip in the continuum limit [14,15].
In this sense, our results are not surprising. Yet, what might
be unexpected is that the pressure distribution has some re-
maining weight at values near the estimated substrate hard-
ness of nanoindentation of 2.2 GPa. This weight would raise
substantially if we increased our resolution. Unexpectedly
large contact pressures have also been identified in a re-
cent discrete-dislocation simulation of a rigid platen press-
ing against a sinusoidal aluminum surface [27].
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Fig. 5 Pressure probability distribution function Pr(p) for differ-
ent loads, orientations, and smoothing. Default values are: load L =
32 mN, α = 0◦, andσ = 2 µm as reflected by the (green) right tri-
angles. Loads of 4 mN and 512 mN are indicated by (red) down and
(blue) up triangles, respectively. One calculation is based on an orthog-
onal orientation ofα = 90◦, see the (green) open right triangles and one
calculation is based on a different smoothing withσ = 4 µm, which is
indicated with (green) open circles. The function values ofthe last data
set has been divided by three.

5 Discussion and Conclusions

In this study, experimentally-determined height profiles of
laser-textured steel surfaces are used in a computer simula-
tion addressing the question how the real contact areaAreal

depends on the relative orientationα of the laser-induced
grooves. For the given surfaces, it turns out to be very chal-
lenging to determine good estimates for the contact area, be-
cause it is sensitive to the spatial resolution with which the
surfaces are represented. Unfortunately, the smallest scales,
where experimental uncertainties are largest, are most rel-
evant for the calculation of contact area. However, it turns
out that the ratioAreal(α = 90◦)/Areal(α = 0◦)≈ 3/4 is rela-
tively insensitive to the precise choice of load and the smooth-
ing operation.

The experimental differences observed for the kinetic
friction Fk are slightly larger, but similar in magnitude, as
those for the relative contact area, i.e., 1/3 & {Fk(90◦)−
Fk(0◦)}/Fk(0◦) & 1/4. The interpretation of this result in
terms of Eq. (1) is that the “offset term”τ0 dominates, that is,
dissipation in these systems is essentially proportional to the
contact area. A possible explanation is that the dissipation
mechanism is predominantly plastic deformation, the more
so as the deduced shear stress (τ =Fk/A≈0.025mN/2µm2)
is already roughly a quarter of the yield of the substrate, al-
though we are not yet at the full resolution.

For the remaining values ofλt, the experimental ratios
for the friction were similar as those for 18µm. However,
due to the lack of surface topographies after rubbing, we
have not been in a position to post-analyse the data in the
same fashion as we did for theλt = 9 µm surface. Unfor-
tunately, this also prevented us from conducting a meaning-

ful comparison for similarly aligned surfaces with different
laser-texturing period. However, in this context, a resultob-
tained by Sunet al. [27] is worth mentioning: In their study
of plastic deformation of solids (aluminum) with an initially
sinusoidal surface pressed against a flat, rigid platen, they
found that longer periods lead to a larger contact area. Thus,
we expect the wornλt = 18 µm surfaces to have larger con-
tact area than the ones withλt = 9 µm, which would again
correlate, at least qualitatively, with friction measurements.

An interesting side aspect of our analysis is the real-
isation that increasing the resolution of the surfaces does
not simply lead to the disappearance oflocal contact area.
Instead, sometimes new, small contact patches can be ob-
served at locations that had been completely out of contact in
the calculation on the coarser scale. This observation, which
we rationalised in a rather simple “two-scale Hertzian bump-
on-a-bump” approach, might be partly responsible for the
slight underestimation of contact area in Persson theory [28–
30]. This insight might motivate attempts to introduce “reen-
trance correction” into the theory.
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F. Mücklich. (submitted)
19. Y. Yao, M. Schlesinger, G.W.F. Drake, Can. J. Phys.82, 679

(2005)
20. B.N.J. Persson, Surf. Sci. Rep.61, 201 (2006)
21. J. Carvill,Mechanical Engineers Data Handbook I (Butterworth-

Heinemann, Oxford, 1993)
22. F. Gao, R. Leach, J. Petzing, J. Coupland, Meas. Sci. Technol. 19,

015303 (2008)



8 Nikolay Prodanov et al.
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