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Abstract This paper summarizes the submissions to

a recently announced contact-mechanics modeling chal-

lenge. The task was to solve a typical, albeit mathemati-

cally fully defined, contact-mechanics problem. The sur-

face topography of the rough, rigid substrate, the elastic

properties of the indenter, as well as the short-range ad-

hesion between indenter and substrate were specified so

that diverse quantities of interest, e.g., the distribution

of interfacial stresses at a given load or the mean gap as

a function of load, could be computed and compared to

a reference solution. Many different solution strategies

were pursued, ranging from traditional asperity-based
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models via Persson theory and brute-force computa-

tional approaches, to real-laboratory experiments and

all-atom molecular dynamics simulations of a model,

in which the original assignment was scaled down to

the atomistic scale. While each submission contained

satisfying answers for at least a subset of the posed

questions, efficiency, versatility, and accuracy differed

between methods, the more precise methods being, in

general, computationally more complex. The aim of this

paper is to provide both theorists and experimentalists

with benchmarks to decide which method is the most

appropriate for a particular application and to gauge

the errors associated with each one.

Keywords Contact mechanics, Surface Roughness

Analysis and Models

PACS 46.55.+d Tribology and mechanical contacts ·
68.35.-p Solid surfaces and solid-solid interfaces:

structure and energetics · 68.35.Gy Mechanical

properties; surface strains

1 Introduction

2016 marked the 50th anniversary of the pioneering

work by Greenwood and Williamson (GW) on the con-

tact mechanics of nominally flat, but microscopically

rough surfaces [1]. The goal was to explain the widely

believed linear variation of contact area with normal

load [2] by defining the problem and providing an ana-

lytical solution to it.

The debate is not yet closed. The field of contact me-

chanics still thrives, in part due to theoretical advances

in reducing a highly complex problem to one that can be

handled on small-scale computers. The arguably most

prominent publications on contact mechanics since the

GW paper are the proposition by Whitehouse and Ar-

chard [3] to describe the surface topography as random

and fractal, the GW-inspired work of Bush, Gibson,

and Thomas [4] as well as the scaling theory proposed

by Persson [5]. There has also been much progress in

brute-force solutions to the contact problem. It is now

possible to simulate systems that are sufficiently large

to mimic the multi-scale nature of surfaces, while reach-

ing the continuum limit through an adequately fine dis-

cretization [6,7].

Comparisons between theoretical predictions and rig-

orous simulations — making no uncontrolled approxi-

mations beyond the model assumptions — are usually

limited to the question of whether a model reproduces

the linearity between load and contact area [6,8–11].

Such comparisons are weak tests, since theories merely

need to reproduce a single proportionality coefficient

while they usually depend on more than one adjustable

parameter, which may not even be well defined from

experiment or the model definition. The adjustable pa-

rameter thereby becomes effectively a fitting parame-

ter. An important example of such a term is the scale-

dependent radius of curvature of an asperity [12], which

plays a critical role in asperity-based models.

Comparisons of theories and rigorous simulations

beyond the proportionality coefficient of load and true

contact area have been scarce. Notable examples are the

analysis of the following quantities: the gap-distribution

function [13], the dependence of mean gap or contact

stiffness on load [14,15], or the interfacial stress spec-

trum [16,17].

To date, the few in-depth comparisons between the-

ory and rigorous simulations have mainly focused on

adhesionless contacts. Rigorous comparison for adhe-

sive interfaces have been even more scarce. The rea-

son for this may be that modeling short-range adhesion

in continuum models places large demands on simu-

lations, while longer-range adhesion in multi-asperity

contacts is usually arduous to describe theoretically. In

fact, handling short-range adhesion in simulations of

single-asperity contacts and reproducing (closely) the

famous analytical results by Johnson, Kendall, and Roberts

(JKR) [18] is not an easy task. A fine discretization is

required close to the contact line [19], which is some-

times also called a contact edge. Thus, a rigorous, nu-

merical approach to short-range adhesion in mechanical

contacts remains a demanding exercise.

Due to the lack of rigorous tests, it is difficult for

theorists to choose the most appropriate contact-mechanics
method. For experimentalists it is hard to know whose

results and whose interpretations to trust. For this rea-

son, it was decided to pose a contact-mechanics chal-

lenge [20] – very much in the spirit of the Sandia frac-

ture challenge [21] – allowing theorists and modelers

alike to test the reliability of their preferred method.

The challenge was made public in early December 2015

on arXiv.org [20] and further announced to the tribo-

logical community in a Cutting Edge article [22]. The

final deadline for the submission of results was June 30,

2016. The reference results, which had been produced

by the authors of the challenge, remained undisclosed

until all results were received.

In the following, we describe the posed challenge in

Section 2. The various solution strategies are sketched

in Section 3. The results are presented in Section 4 while

the final Section 5 compares and contrasts the various

approaches and their complexity, and provides an esti-

mate of the precision of each method.
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2 Definition of the Challenge

This section contains the original description [20] of the

model on which the contact-mechanics challenge was

based. We avoid reiterating quantities to be computed,

as this will become evident in the results section. How-

ever, a note was added on how to rescale parameters (in

particular the surface topography and its root-mean-

square gradient), so that the mathematical equations

to be solved remained unchanged. This was done to ad-

dress a criticism that the problem definition violates

the small-slope approximation or exclusively pertains

to soft-matter contacts.

Our surface topography was produced by drawing

random numbers for the Fourier transform of the height

profiles h̃(q) having a mean of zero and, on average, a

second moment defined by the height spectrum

C(q) ≡
〈
|h̃(q)|2

〉
(1)

= C(qr)×


1 for λr < 2π/q ≤ L
(q/qr)

−2(1+H) for λs ≤ 2π/q < λr
0 else.

Here, L = 0.1 mm is the linear dimension in x and y of

the periodically repeated simulation cell, λr = 20µm is

the roll-off wavelength, qr = 2π/λr, and λs = 0.1µm is

the short-wavelength cutoff, below which no roughness

is considered. H = 0.8 is the Hurst roughness expo-

nent [23]. A graph showing the spectrum is presented

in Fig. 1. The features of the spectrum are similar to

those found experimentally for a wide variety of sur-

faces [24,25].

Fig. 1 Height spectrum C(q) from which the height distri-
bution is drawn. It is normalized to its value at the roll-off
wavenumber qr.

It might be argued that introducing a small-wavelength

cutoff is artificial. However, it was found to be necessary

in order to be able to compare simulations to contin-

uum theories. For similar reasons, a hard-wall interac-

tion was preferred over finite-range repulsion. Even if

the latter might be more realistic and, in some ways,

easier to handle numerically (e.g., when relaxing the

displacement field with a conjugate-gradient method),

a hard-wall repulsion allows the interfacial separation

u to be unambiguously determined. Contact can then

be defined to occur where u = 0.

The resulting surface topology arising from the spec-

trum is depicted in Fig. 2. The height spectra were nor-

malized such that the root-mean-square gradient of the

height is ḡ = 1. Furthermore, the heights were shifted

such that their minimum value is zero. Further char-

acteristics of the surface topography are: mean height

〈h〉 = 2.633µm, maximum height hmax = 5.642µm,

with a root-mean-square height fluctuation of
√
〈δh2〉 =

0.762µm and where 〈δh2〉 ≡ 〈h2〉 − 〈h〉2. The inverse

root-mean-square curvature, which one may interpret

as a typical local radius of curvature, is Rc = 60 nm.

x (µm) 

y 
(µ
m
) 

z (
µm
) 

Fig. 2 Height profile of the random surface that was pro-
duced from the spectrum shown in Figure 1.

The surface is pressed down against an originally

flat, elastic manifold. Thus, the first points of contact

occur at small height, i.e., at the dark areas of Fig. 2.

2.1 Elasticity, external load, and adhesion

The small-slope approximation is assumed, which forms

the basis for essentially any contact mechanics theory.

All roughness is mapped to the indenter, while all com-

pliance is assigned to the substrate with a contact mod-

ulus of E∗ = 25 MPa, which is characteristic of rubber.
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Here, E∗ ≡ E/(1−ν2), where E is the Young’s modulus

and ν is Poisson’s ratio. We leave the individual terms

E and ν unspecified, because we focus exclusively on

normal displacements.

The external default pressure acts homogeneously

across the system. It is set to 0.01 E∗ḡ=250 kPa. In

other words, the total load on the simulated area of

0.01 mm2 is 0.0025 N. The elastically deformable solid

is assumed to be semi-infinite. Like the rigid substrate,

it is periodically repeated in the plane.

Short-range repulsion is realized with a hard-wall

interaction; the indenter is not allowed to penetrate the

rigid substrate. In addition, the two surfaces interact

with a finite-range adhesion according to

v[g] = −γ0
∫
d2r exp{−g(r)/ρ}, (2)

where γ0 = 50 mJ/m2 is the surface energy at per-

fect contact, g(r) is the local gap or interfacial sepa-

ration (in geology also aperture) as a function of the

in-plane coordinate r, and ρ = 2.071 nm. We note that

the exponential cohesive-zone model used here gives es-

sentially identical results to the analytical solutions of

Maugis [26], who used Dugdale’s model for adhesion,

see Figs. 9 and 10 in Ref. [19].

Defining a local Tabor coefficient according to µT ≡
R

1/3
c (γ0/E

∗)2/3/ρ, we obtain µT = 3. This value can

certainly be classified as short-range adhesion. See also

Figs. 9 and 10 in Ref. [19], where it is also evident that

µT = 3 is close to the JKR limit of infinitely short-range

adhesion, at least as far as contact radius and normal

displacement are concerned.

The parameters were chosen to mimic the contact

between rubber and a highly polished surface, although

the contact modulus may be somewhat at the upper

range of practical applications. However, the model was

constructed such that there is no significant adhesive

hysteresis up to moderate contact pressures, otherwise,

functional relations such as ū(L) or ar(L) would become

history dependent, thereby impeding comparisons be-

tween theoretical predictions and our simulations.

Pastewka and Robbins [27] found that surfaces only

became hysteretic or “sticky” when the ratio of “repul-

sive” contact area and load no longer increases linearly

with pressure at small contact area. We found similar

results [28] and thus chose an adhesion such that the to-

tal contact area is increased by roughly 50% compared

to the adhesionless case — at relative contact areas of

a few percent.

2.2 Summary and discussion of default parameters

Two important dimensionless quantities of our default

problem are the Tabor parameter µT = 3 and the sur-

face root-mean square gradient ḡ = 1. Additional quan-

tities in SI units are: E∗ = 25 MPa, γ0 = 50 mJ/m2,

ρ = 2.071 nm, system size L = 0.1 mm, externally ap-

plied pressure p0 = 250 kPa.

It might be beneficial to use a problem-adapted unit

system, which is what was done by MHM and WBD

in the reference simulations. In this unit system one

has: E∗ḡ as the unit for pressure and L as the unit for

length. One can then use E∗ = 1, L = 1, p0 = 0.01,

γ0 = 2× 10−5, and ρ = 2.071× 10−5.

Also note that the (linearized) force balance equa-

tions to be solved remain unchanged, for example, by

the following substitutions reducing the rms gradient

to half of its original value: h̃(q) → h̃(q)/2, ρ → ρ/2,

γ → γ/2, and E∗ → E∗/2. Thus, while it might ap-

pear risky to use the small-slope approximation for the

default surface having an rms-gradient of one, it is a

straightforward procedure to redefine the problem such

that ḡ is indeed negligible compared to unity, e.g., by

repeatedly executing the above-mentioned rescaling.

Owing to the possibility of rescaling the mathemati-

cal problem to smaller scales, one can redimensionalize

it such that it becomes a contact problem at smaller

scales and harder materials.

3 Solution strategies

The different strategies adopted to tackle the contact

challenge – all numerical or theoretical except for one

experimental – are summarized in this section. They are

described in the order of the date of submission. The

first described method, using Green’s function molecu-

lar dynamics, is referred to as the reference solution,

primarily because it was pursued by the author posing

the challenge (MHM), but also because it is based on

the finest discretization of all submissions while avoid-

ing any uncontrolled approximations. Since the number

of submissions was large, each method is only sketched

briefly to keep the paper at a reasonable length. How-

ever, all participants of this challenge either cite pub-

lished work, in which their method is described, or, plan

on writing a detailed follow-up paper.

Before presenting the approaches, we wish to clar-

ify that the nomenclature of each method was assigned

with some degree of arbitrariness. In most cases, it sim-

ply reflects what technical terms contributors empha-

sized the most in the description of their work. Many

methods could be classified as Green’s functions or boundary-
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value or biconjugate-gradient stabilized methods. How-

ever, we tried to avoid multiple uses of similar terms.

3.1 Green’s Function Molecular Dynamics

One numerical strategy is the Green’s function molecu-

lar dynamics (GFMD) [29] method, which two of us

(MHM and WBD) used here, as described in refer-

ence [7]. The short-range adhesion places large demands

on the discretization. Reaching convergence necessitates

fine discretization, in particular for adhesive necks form-

ing near contact lines. We found that a discretization

scale of a = λs/64 was sufficient for most purposes and

consequently produced reference data on systems with

64k×64k ≈ 4×109 discretization points on the surface.

In some cases, we used a = O(λs/128) or ≈ 16×109 grid

points to ensure that the results were close to the con-

tinuum limit. Setting the damping such that the slowest

mode of the system, i.e., the center-of-mass mode, to be

slightly underdamped, the system can be typically re-

laxed within a few thousand time steps, although equi-

libration at the smallest investigated loads, resulting

in 0.3% relative contact area, necessitates roughly ten

times more simulation steps.

3.2 FFT based boundary-value method

A fast-Fourier-transform (FFT) based boundary-value

method (BVM) was adopted by four co-authors (RB,

PS, NL, and AAL) and denoted as FFT-BVM. The

usual way of treating a normal contact without adhe-

sion as a classical boundary-value problem would be

to minimize the total potential energy with respect to

the stress field through a conjugate gradient-iteration

scheme obeying two constraints: the stress in the non-

contact zone must be zero and there may be no pene-

tration of the two solids [30]. The constraints are real-

ized by removing points with negative pressure from the

contact at each iteration step while adding overlapping

points to it. The interdependence between stress and

strain fields is best computed in Fourier space, while

transforming between real and Fourier space represen-

tations with an FFT method [31].

In the current approach, the displacements in the

non-contact regions were taken as unknown variables

rather than the stress in the contact. This procedure

proves to be more robust in the presence of adhesion

than the traditional scheme, which appears advanta-

geous for non-adhesive contacts. Simulations were run

on a single CPU with a 16384 × 16384 grid for most

cases, and on a 32768 × 32768 grid for the reference

point.

3.3 Persson theory

One of the contributors to this paper, BNJP, used his

own theory [5] to tackle the problem. Its fundamen-

tal concept is to solve the problem first at a coarse

scale by neglecting all random roughness and to include

the effects that random roughness has on mean values

or distribution functions (e.g., for contact stress and

mean interfacial separation) by successively including

ever finer details of the height profiles into the calcula-

tion. The approach, simply named “Persson” hereafter,

has been described in various contributions [5,32]. Due

to time constraints, adhesion was neglected in this ap-

proach for the calculation of distribution functions, al-

though it can, in principle, be included [33,34]. Average

quantities such as contact area or mean gap include the

effect of adhesion. In a complementary work, more de-

tails as well as additional results are presented [35].

3.4 Experiment

Six of the contributors (KH, AB, KS, SR, PI and WGS)

set up real-laboratory experiments mimicking the as-

signed challenge. The pertinent data are denoted as

“experiment”.

The surface was scaled globally by a factor of 1000

to produce a model 10 cm×10 cm in plane and approxi-

mately 10 mm out-of-plane. The corrugated surface was

3D printed as solid object with an opaque polymethyl-

methacrylate (PMMA) print material and a resolution

of 16µm in all directions. The countersample was molded

with polydimethylsiloxane (PDMS). It was produced

with the appropriate base/agent ratio to match the di-

mensionless surface energies as well as possible. The

contact was imaged using a D800 camera with 36.3

megapixels CMOS sensor looking through the bottom

of the counter-sample and focused on its free surface.

A frustrated total-internal-reflection method was used

to image the contact area. A manuscript containing de-

tails of the method has already been submitted. (add

reference in proof)

3.5 Winkler foundation approach

Two contributors (TA and WGS) tackled the contact

mechanics challenge with a Winkler model, which uses

independent elastic elements. Elements touching the

counter-surface are compressed in order to avoid mu-

tual overlap thereby leading to a force that is linear

in the displacement of the elements from the center

of mass of the Winkler foundation. The elements sur-

rounding each contact patch are extended to touch the
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counter-surface. This was done by dilating each con-

tact patch until it was twice its original area (keeping

the inner part compressed and extending the outer el-

ements). The method was chosen because it conserves

volume when indenting a sphere into a flat surface. As

such the simulations were meant to reflect an elastic

system with a Poisson number close to 0.5, roughly re-

flecting PDMS used in the experiments, see section 3.4.

The spring stiffness was adjusted empirically to match

the relative contact area for the reference system. This

led to a spring stiffness of k = E∗ḡλ with an effective

thickness of λ = 1µm for the assigned problem.

3.6 Spatially resolved Greenwood-Williamson

Three contributors (HAE, MK, and SA) submitted the

first modification of a Greenwood-Williamson inspired

approach. However, rather than first taking statistics

of asperity heights and curvatures, summit heights were

determined individually and the JKR equations are solved

individually for each summit. The method is therefore

called spatially resolved Greenwood-Williamson (SRGW).

The tips of asperities were identified as those points

whose eight neighboring grid points are more distant

from the flat counterface than the considered central

point. Radii of curvature were determined through spline

fitting. The contribution to the total load was added up

for each individual asperity.

3.7 Biconjugate-gradient stabilized method

One contributor (JJW) used a “biconjugate-gradient

stabilized method” [36], which is denoted as BICG-

STAB hereafter. As with many other methods pursued

in the contact challenge, BICGSTAB used (inverse) fast

Fourier transforms to relate displacements and strains.

The repulsion was recast as a high-order power law,

to avoid problems due to hard-wall interactions. This

was done, because not only first but also second-order

derivatives of the energy function should be defined for

a conventional biconjugate gradient method to work

properly. Also the adhesive part was modeled with a

power law rather than with an exponential function.

Specifically, the following cohesive zone model was em-

ployed

γ(g) =
8γ0
3ρ

[(
ρ

g

)9

−
(
ρ

g

)3
]
, (3)

where γ(g) describes the surface energy gained per unit

area at a given interfacial separation g. Note that the

hard-wall limit can be approached in principle, by using

a larger and larger exponent for the repulsion, however,

small exponents are beneficial, from a numerical point

of view. The surface was discretized into 512×512, or,

in some cases, 1024×1024 grid points.

3.8 Boundary-element method with B-spline

interpolation

Two contributors (GV and AV) numerically solved the

Boussinesq equation combined with the specified adhe-

sive potential numerically by using an improved ver-

sion of their in-house implementation of the boundary-

element method (BEM) [37–39] to minimize the total

energy of the system. Within their numerical scheme,

the total (elastic plus adhesive) energy was minimized

by varying the displacement field. An augmented La-

grangian formalism was applied to satisfy the hard-wall

constraint.

The bandwidth was limited to wavelengths λ >

L/256. The displacement field was interpolated using

periodic cubic B-splines with 1024 × 1024 degrees of

freedom. This allowed the contributors of this method

— called BEM+B hereafter — to run all calculations on

a standard desktop PC with a typical computation time

of two hours per configuration. As in other methods, the

problem was solved in Fourier rather than in real space.

A detailed description of this method is planned to be

published by GV and AV in a forthcoming paper.

3.9 All-atom MD

Two contributors (SS and AIV) tackled the problem us-
ing all-atom simulations. This approach is denoted all-

atom MD. To render the solution of the problem com-

putationally feasible, the system was scaled to atomic

dimensions, such that the atomic bond lengths were

slightly greater than the scaled-down cutoff at short

wavelengths. At the same time, dimensionless numbers

describing the contact-mechanics problem were retained

as far as possible.

The most important aspects of the approach can be

summarized as follows: The all-atom MD approach con-

sists of a rough, rigid indenter with the scaled profile

of the defined surface and an originally flat, deformable

body made up of individual atoms. The simulation cell

had a length of L = 97.8 nm in x and y directions, cor-

responding to 175 times the lattice constant of calcium,

a0 = 5.5884 Å. Moreover, the z-axis of the deformable

body was assigned to the [100] direction, which had a

depth of Lz = 14 nm. At the end of the solid, an addi-

tional fixed rigid flat body provided the needed support

for the deformable part. Interactions between atoms in



Meeting the contact-mechanics challenge 7

the deformable body were described by an embedded

atom method (EAM) potential [40] with the database

provided by Sheng et al. [41] leading to an indentation

modulus of E∗ = 28.57 GPa. Moreover, the short-range

repulsion was governed via a (12-6) Lennard-Jones (LJ)

potential, V (r) = 4ε{(σ/r)12 − (σ/r)6} [42], produc-

ing a reasonable lattice constant and bulk modulus for

calcium with ε = 0.2145 eV and σ = 3.5927 Å [43].

The Lennard-Jones potential was cut off at its mini-

mum and a constant added to constrain force and en-

ergy to go smoothly to zero at the cutoff. Adhesion

was modeled with the assigned exponential interaction

potential, which was adjusted to maintain the dimen-

sionless surface energy and range of interaction at the

described values. Atoms were taken to be in contact

whith the counter body when their distance was less

than dc = 4.0354 Å. More information on the method

of defining the contact distance in non-adhesive atom-

istic contacts is available in a recent paper by SS and

AIV [44].

Simulations were performed by the GPU package

of LAMMPS [45–47]. Post processing was done using

OVITO [48], imageJ [49], and a number of in-house

codes.

3.10 Two Archard-based models

Four contributors (RLJ, YX, JS, and AR) used an ap-

proach inspired by Archard’s multiscale stacked (MS)

asperity concept [50]. The approach is referred to as

MS-Archard in the following. In this method, small as-

perities are placed on top of larger asperities, which

are then placed on top of even larger asperities, and so

on. The net load carried by the asperities at each hier-

archy level – or magnification – does not change with

magnification. Details of the method for adhesionless

contacts are described in the literature [50]. Adhesion

was included in the current treatment by using the aver-

age gap between the surfaces, which is estimated with

a method proposed for surfaces with sinusoidal wavi-

ness [51].

RLJ, YX, JS, and AR also submitted results that

were obtained with a modification of the original MS

Archard concept [50]. The basic idea is to apply a low-

pass filter to the true surface topography, which only

keeps the smallest wave numbers. The low-pass sur-

face is then represented by an equivalent set of one-

dimensional Fourier coefficients using a spectral method

proposed by Rostami and Streator [52]. Finally, the sur-

face is subjected to a discretized simulation. The effect

of small-scale roughness is incorporated by a roughness

layer (RL), which resides on top of the low-pass sur-

face. The RL is constructed such that the summit area

density and the rms curvature of the entire surface is

correctly reproduced.

For the computation of the contact area, the Jackson-

Streator multiscale model [50] is applied. The fractional

contact area of the roughness layer is multiplied with

that of the low-pass surface. For the estimation of the

mean gap, it is assumed that only the low-pass surface

amplitudes are important. The approach is denoted RL-

Archard.

3.11 Fast-Fourier-transform integrated adhesion

The two contributors DD and SM also use a FFT based

method [53], in which adhesive and contact pressures

are stored and relaxed independently within each full

iteration loop. The algorithm uses a common conju-

gate gradient method to solve for the positive contact

pressures, whilst the adhesive pressures are relaxed to-

wards a value that corresponds to the proposed surface

separation. The contributors made changes to the orig-

inal work [53] to accommodate the specified exponen-

tial adhesive potential. The periodicity of the surfaces

favored a transition from a real-space multi-level inte-

gration scheme for the elastic deformation to one that

is Fourier based.

One of the objectives of this model is to permit a

coarse representation of a surface (for computational

speed) whilst still being able to capture the key adhe-

sive effects in a local and deterministic manner. The

approach taken in the given implementation was to in-

tegrate the adhesive pressures between adjacent nodes

rather than relying on surface interactions at individ-

ual nodes. This procedure should capture part of the

adhesive force that can be missed at a steep surface

gradient without a fine mesh. The adhesive potential

of this challenge also permitted an accurate surface in-

tegral over each internode element rather than previ-

ous approximations [53]. Since the treatment of adhe-

sion received particular attention, the method is called

FFT-IA, where IA stands for integrated adhesion.

A surface mesh of 16384 × 16384 nodes was used

for the reference case and otherwise a relatively coarse

mesh size of 4096× 4096. The latter was chosen to test

the ability of the integration method to capture the

near-contact adhesion, whilst enabling a fast solution

time of approximately than 1 hour on a single CPU at

4096x4096.

3.12 Slightly corrected Greenwood-Williamson

Due to the lack of a contribution based on the original,

statistical approach of Greenwood and Williamson, one
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contributor (GC) – who teamed up with another (FB)

– was personally invited (after the submission deadline)

to apply his GW approach [54] to the specified contact

challenge. Their data therefore do not reflect the best

attempt of these contributors at the challenge, which

they would have based on their own boundary-value

method [55–57], but rather an analysis of the specified

problem in terms of a slightly corrected Greenwood-

Williamson approach (SCGW) [54]. The main modifi-

cation of SCGW with respect to the original GW pa-

per [1] consists of allowing the curvature of the GW

asperity tips to depend on the height of the maxima.

It is important to note that the SCGW approach

did not include adhesion due to time constraints. As

one can see in the result section, neglecting adhesion

predominantly affects contact area and local stress or

its distribution function but only slightly influences the

mean gap. As such, this contribution serves predom-

inantly as a benchmark calculation of how well the

SCGW predicts the interfacial separation.

3.13 Interacting and coalescing Hertzian asperities

One of the contributors (GC) to the SCGW approach

was given the opportunity to consider another asperity-

based model together with an additional contributor

(LA). They used an approach in which contact patches

that start to overlap are merged together into a sin-

gle, larger-scale coalesced asperity [58]. The underlying

approach is denoted as the interacting and coalescing

Hertzian asperities (ICHA) approach.

3.14 GFMD-II

Another group (JM, LP, and MOR) was invited after

the deadline to contribute to the challenge and to clarify

some original discrepancies between two solutions that

agreed in all but one single quantity. Their approach is

also based on GFMD, although the code was developed

completely independently of that by MHM and WBD,

see section 3.1.

3.15 Brief comparison of pursued approaches

Before analyzing the results in detail, it is worth com-

paring and categorizing the approaches pursued in this

study. One class of strategy, ”brute-force computing”,

makes no uncontrolled approximations to the assigned

mathematical models, namely, GFMD, FFT-BVM, BIC-

GSTAB, BEM+B, and FFT-IA methods. The results of

these methods should approach the exact values when

the employed mesh sizes are sufficiently small given that

the code effectively minimized the total energy with re-

spect to the displacement or stress fields. Brute-force

methods may very well differ in how closely they ap-

proach an exact result at a given discretization or how

many iterations or floating point operations are needed

to identify a solution at a required accuracy. A brute-

force method is termed efficient if it closely approaches

the exact solution even using a coarse mesh and if it

requires only a few iterations to find the solution for a

given mesh.

All additional (numerical) methods in this study

(Persson, Winkler, SRGW, all-atom MD, MS/RL-Archard,

SC-GW, and ICHA) do not solve the assigned partial

differential equations subjected to the given boundary

conditions. Instead all these methods except the all-

atom MD simulations make use of physical or math-

ematical arguments leading to equations that require

either much less computing time and/or less coding

time than the brute-force approaches. There is thus

a trade-off between accuracy and cost, which is why

the methods cannot be unambiguously ranked unless

one predicts all observables more accurately than an-

other with a lower computational cost. To facilitate the

discussion, we refer to models using local constitutive

stress-strain equations as bearing-area models (Win-

kler, SRGW, MS/RL-Archard, SCGW, ICHA), all of

which except Winkler are also referred to as asperity-

based models, since Winkler only uses local springs, but

no input from Hertz or JKR.

Two contributions to the challenge stand out in that

they violate – by design – some, if not all, of the as-

sumptions and approximations postulated as (virtual)
reality. These are the real-laboratory experiment on

PDMS surfaces and the all-atom simulations. Neither

contribution truly uses the small-slope approximation

but realizes surfaces with the assigned rms-gradient of

one. Other potentially severe “limitations” are the long-

time visco-elastic-like responses that can occur in the

experiments while the all-atom simulations may (and

do) show a substantial amount of plastic deformation

in the form of dislocation activity. Including these con-

tributions to the challenge despite their restrictions is

nevertheless valuable as their results shed light on the

question as to what extent the challenge is merely a

mathematical exercise, or if it relates to real (experi-

ments) or realistic (all-atom MD based on realistic in-

teratomic potentials) cases. The appeal of these two

contributions is also that the linear system size was in

one case scaled up by a factor of 1000 from the assigned

0.1 mm scale to 10 cm (experiment) and, in another,

it was scaled down by a factor of 100 to 100 nm (all-

atom MD). The apparent contact areas in these two
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approaches thus differs by ten orders of magnitude in

absolute units.

4 Results

This section compares and contrasts the results of the

various approaches. It is divided into three parts: In the

first, the predictions of spatially resolved observables

are compared, for example, the stress at a given ref-

erence load across a selected path. Only the methods

keeping the surface topography in the computer mem-

ory – along with displacement and stress fields – can

provide this information. The second part compares

predictions of distribution functions, e.g., probability

densities of interfacial separation or interfacial stress,

again at the default load. Observables of this type can

be predicted, in principle, by any stochastic approach

to contact mechanics. In the third part, the focus is on

questions of how global averages (such as real contact

area or mean gap) depend on load or the range of adhe-

sion. These are the properties that are usually measured

experimentally. However, reproducing a few of those

numbers, e.g., the proportionality coefficient between

real contact area and load at small loads, does not mean

that the correct answer was produced for the right rea-

son. It might also have been fortuitous or achieved by

varying adjustable parameters. In contrast, the correct

reproduction of the complex, multi-scale displacement

or stress field cannot happen fortuitously.

4.1 Spatially resolved observables

To set the stage for quantitative comparisons and to

demonstrate that the assigned challenge relates to large

and small scales alike, we compare the contact topogra-

phy of our reference solution (GFMD) in Fig. 3 with the

two submissions, having taken the liberty of changing

the 100 micron scale of the problem to 10 cm (exper-

iment) and to 1 micron (all-atom MD). One can cer-

tainly recognize an excellent agreement of the overall

features, which can be seen as surprising in light of

the following reasons: (a) the experiment and all-atom

MD use the assigned root-mean-square gradient of one,

while GFMD employs the small-slope approximation by

design, (b) there are significant deviations from linear

elasticity including strong dislocation activity in the all-

atom MD and long-time-relaxation processes of PDMS

in the experiments, (c) the surface energies supposedly

do not match very well, (d) no periodic boundary con-

ditions are employed experimentally, and (e) all-atom

MD includes thermal vibrations but violates the con-

Fig. 3 Comparison of contact geometries. The upper left
panel shows the experimentally deduced contact lines, the
center top panel the gap topography obtained with GFMD
(white is contact, gaps from small in black through blue and
yellow to large in red), and the upper right panel shows atoms
in contact (black point) as obtained by all-atom MD. The
lower row shows the superpositions of GFMD with experi-
ment (left) and with all-atom simulations (right).

tinuum approximation at the smallest scales – both in

contradiction to the problem definition.

Usually, one would want to model any of the above-

mentioned effects, which were purposefully neglected in

the assignment of the challenge to pose a well-defined

mathematical problem. Given the close resemblance of

the contact topography, one may now argue that only

the desire to predict special observables, such as the

amount of plastic deformation, would warrant the tremen-

dous effort needed to go beyond the usual assumptions

of small slope and linear elasticity.

To ascertain how different methods predict the over-

all gap topography, we compare the profile of the gap

(the interfacial separation between substrate and inden-

ter) along the path 0 ≤ y < 100 µm at x = 50 µm in

Fig. 4. All brute-force methods, shown in the top panel

of Fig. 4, predict almost identical results, at this scale of

representation. The approximative methods, presented

in the bottom panel of Fig. 4, show a much larger spread

in the estimates for the gap topography.

The good agreement between the various predic-

tions for the gap by the “exact methods” can be ex-

plained as follows: Differences between the methods

predominantly pertain to the resolution, i.e., to small-

scale features that are too fine to be noticed at the used

scale of representation. Only the BICGSTAB method

occasionally shows visible deviations from the other

exact methods in some parts of the gap profile, e.g.,



10 Martin H. Müser et al.

0 20 40 60 80 100
y  (µm)

0.0

0.5

1.0

1.5

2.0

g 
  (

µm
)

GFMD
FFT-BVM
BICGSTAB
BEM+B
FFT-IA

0 20 40 60 80 100
y  (µm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g 
  (

µm
)

reference gap
exact methods
Experiment
Winkler
SRGW
all-atom MD

Fig. 4 Gap along the cross section at x = 50 µm as a func-
tion of the y coordinate. The top graph shows results from
methods containing no uncontrolled approximations, while
the bottom graph summarizes remaining data sets. Experi-
mental and all-atom results are transformed back to the scale
of the assigned challenge.

near y = 12µm and y = 72µm. This deviation might

have resulted from the redefinition of the infinitesimally

short-range repulsion to one that is short-ranged but

(controllably) finite.

Conversely, the approximate methods show relatively

large scatter in their prediction of the gap cross sec-

tion. The discrepancy between these data and that of

exact methods can also be rationalized. Bearing mod-

els, such as SRGW and Winkler foundation, systemat-

ically overestimate the gap outside of the contacts, be-

cause elastic deformation is neglected in these regions.

In particular, outside the contact points, bearing mod-

els predict gaps that are essentially parallel to the refer-

ence gap, which is the gap of the undeformed surfaces,

shifted by a constant distance. It is interesting to note

that SRGW and Winkler predict similar gaps outside
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Fig. 5 Interfacial stress along a selected part of the cross
section at x = 50 µm. GFMD and FFT-BVM agree so closely
that no differences can be seen at this resolution.

the contacts, although they are based on rather dif-

ferent micro-mechanical models – unlike SRGW, Win-

kler would not reproduce the Hertzian contact profile

for an ideal parabolic indenter. In contrast, experiment

and all-atom simulations either correlate rather well

with the reference solution or tend to underestimate

the gap. The way in which they do this is highly cor-

related, despite their quite distinct scales (10 decades

discrepancy in the apparent contact area) and distinct

physical properties (polymers versus metals). The only

obvious common deviation of these approaches from the

problem definition is that both experiment and all-atom

simulations violated the requested small-slope approx-

imation, because the in-plane coordinates were scaled

with the same factor as the normal coordinates in both

cases. This kept the rms surface gradient at unity.

Even if the gaps or displacements predicted by the

different methods look quite similar at coarse scales,

non-negligible differences may occur at small scales.

Differences in the solutions become particularly visible

in the stress. This is because stress (in the bulk) is a

second-order derivative of the displacement field, which

in turn makes predictions of the stress much more sensi-

tive to smoothing, finite discretization, or other approx-

imations, than those of displacements. Figure 5 shows

how the interfacial stress is expected to vary along a

fraction of the cross section at x = 50µm, which was

selected to be the largest meso-scale asperity in con-

tact. The interfacial stress is the sum of the adhesive

and the constraint force per unit area. In mechanical

equilibrium, it is balanced by the internal elastic stress.

GFMD and FFT-BVM agree so closely in their pre-

diction for the stress trace, shown in Fig. 5, such that
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differences cannot be spatially resolved. FFT-IA also

coincides with the two former methods inside the con-

tact, but it slightly underestimates the adhesive stress

close to the contact lines. (At a contact line, i.e., where

the gap is positive but still negligible compared to ρ, the

range of adhesive interaction, the interfacial stress takes

its maximum value of γ0/ρ, which is approximately one

in the chosen unit system. Any deviation from σ = γ0/ρ

at the contact line does not have to indicate an error

in the method or the code but can also arise from inte-

grating the adhesive pressure over the finite area corre-

sponding to a single node, only part of which exhibits

the maximum adhesive pressure.)

The BEM+B method can be interpreted as a smeared-

out version of the exact solution. BICGSTAB follows

the correct trend but shows non-negligible deviations,

which are probably due to the redefinition of the hard-

wall constraint with short but finite-range repulsion.

While SRGW shows the largest discrepancy with re-

spect to the GFMD reference solution, it appears to

have the stress peaks at the right positions and, al-

though it generally overestimates the compressive stress,

the results reflect the correct order of magnitude.

4.2 Distribution functions

Not every approach to contact mechanics can or should

deliver full spatially resolved information on the contact

topography or the interfacial stress. In many cases, it

is sufficient to know distribution functions, which then

allow one to deduce quantities of tribological interest.

The three distribution functions considered here are

those of contact-patch size, interfacial separation, and

interfacial stress. These quantities can be relevant for

the following reasons: one may argue that each contact

patch contributes to the electrical contact conductiv-

ity proportional to the square-root of the contact patch

area [59,60]. Thus, knowing the contact-patch-size dis-

tribution might enable the electrical contact resistance

to be estimated. The gap distribution allows one to esti-

mate quite accurately the resistance to the flow of a liq-

uid through the thin gap between the two solids in con-

tact, in the framework of a (modified) effective-medium

theory [61]. Finally, the stress distribution function can

shed light on questions such as what fraction of the

predicted contact area bears a stress greater than the

(macroscopic) hardness of the solids assuming linear

elasticity. Its answer would allow one to roughly esti-

mate the relevance of plastic deformation.

In the present context, we are predominantly inter-

ested in the various distribution function to ascertain

the strengths and weaknesses of different approaches.
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Fig. 6 Contact-patch-size distribution function Pr(a). The
full line indicates the power law Pr(a) ∝ a−1.45.

We start our analysis with the contact-patch distribu-

tion function, which is not only (implicitly) contained in

the “exact”, brute-force approaches but also in bearing-

area models such as GW or Winkler.

Greenwood-Williamson-inspired approaches assume

a certain distribution of asperity heights and loads that

each asperity has to carry. GW-based models therefore

implicitly contain statistics about the size of contact

patches. To give modelers the opportunity to check

these statistics, the probability of a randomly picked

cluster to have size a was computed. Results are pre-

sented in Fig. 6. GFMD and FFT-BVM find virtu-

ally identical results with small differences only at very

small and very large cluster sizes. The largest proba-

bility density occurs at a ≈ 100 nm2, i.e, the proba-

bility that a randomly picked patch (each patch given

the same a-priori weight) is largest around that value

of a. BEM+B finds excellent agreement with the ref-

erence GFMD solution and FFT-BVM. However, the

probability of the existence of small contact patches

is slightly overestimated. This is probably due to the

relatively coarse representation of the surfaces, which

is known to lead to an overestimation of the number

of small-scale patches from non-adhesive contacts [62].

While the other exact methods and also ICHA (which

is still based on a coarse-scale BEM solution) appear to

show a similar Pr(a) powerlaw as those resembling the

reference solution, nuances matter, which are discussed

further below.

A maximum in Pr(a), as revealed in Fig. 6 for adhe-

sive contacts by GFMD and FFT-BVM, was not identi-

fied in purely repulsive contact in a study by Campaña [62].

Instead, he found an almost constant value of Pr(a) for
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small-scale patches. Apparently, short-range adhesion

suppresses the possibility of forming such small-scale

contacts, which is in agreement with single-asperity JKR

contact mechanics.

To avoid erroneous conclusions from Fig. 6, we also

show the cumulative, weighted distribution function in

Fig. 7. It is defined as

CPr(a) ≡ 1

N

∫ a

0

da′ Pr(a′) a′, (4)

where N is a normalization ensuring that CPr(a →
∞) = 1. In the given context, N simply is the real con-

tact area. The function CPr(a) describes the fraction

of points belonging to a cluster of size less than a, e.g.,

GFMD and FFT-BVM find that roughly 50% of ran-

domly picked contact points belong to a cluster of a size

less than 3 µm2, while the remaining points belong to

larger clusters. This means that while most clusters are

small, most points exist in relatively large clusters: 80%

of the contact belongs to patches greater than 1 µm2,

although the largest number density of clusters is found

around a = 0.001µm2.

Given that πλ2s is approximately only 0.03µm2, one

may conclude that most points belong to contact patches

whose linear dimensions are much larger than λs. The

smallest scale, however, predominantly determines lo-

cal quantities such as rms gradient or curvature. In

other words, most contact points belong to meso-scale

patches whose linear dimensions are so large that one

simply may not treat the asperity with the radius of

curvature as measured on top of the asperity at the

finest scale.

While the contact-patch distributions of the meth-

ods reporting Pr(a) appeared similar, their cumulative,

weighted distributions, CPr(a) show noticeable differ-

ences. The only two methods yielding essentially iden-

tical results over several decades are those that found

the correct values in the stress at the contact lines, i.e.,

GFMD and FFT-BVM. Their predictions are also sup-

ported by BEM+B, for which statistics were only re-

ported for islands up to 1µm2 size.

Three other methods (BICGSTAB, FFT-IA, and

ICHA) fall on another curve in the range 0.1 < a/µm2 <

1. The likely reason for the differences in the scaling is

that BICGSTAB, FFT-IA, and ICHA defined contact

to occur in the points of compressive, interfacial stress,

while the other methods defined it as points of zero gap.

If we denote a typical contact-patch size at to satisfy

CPr(at) = 1/2, BICGSTAB, FFT-IA, and SCGW find

at to be a third of the reference solution, which also

counted points of tensile stress towards the real con-

tact. In contrast, Winkler and a generic bearing-area

model overestimate the typical contact-patch size by a
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Fig. 7 Cumulative, weighted distribution function CPr(a),
which describes the ratio of contact points belonging to a
patch of size less than a. In the generic bearing-area model,
the lowest 3% of the surface topogarphy are said to be in
contact.

factor of ten. This result is significant given that self-

affine roughness extended only over a little more than

two decades of wavelength but not unexpected, because

bearing-area models predict contact patches to be too

localized and therefore too large compared to full so-

lutions that include long-range elasticity [16]. In fact,

for the asperity-based model SCGW, which only uses

statistical properties of asperity heights, errors turned

out to be so large that the results were not included on

the graphs.

The gap-distribution function Pr(u) is discussed next.

As mentioned above, it allows one to predict the Reynolds

flow through an interface quite accurately. Only solu-

tions that used brute-force methods included adhesion

in the calculations of Pr(u), whereas Persson and ICHA

reported results without adhesion. In the latter case

Pr(u) is acquired only for the summit heights. To com-

pare the merits of these two methods and the effect of

adhesion on gaps in general, GFMD simulations with-

out adhesion were conducted in order to also provide

a reference solution for that case. Results are shown in

Fig. 8.

As expected from the spatially resolved gaps in Fig-

ure 4, all brute-force methods yield almost identical

statistics for gaps exceeding 0.1µm. However, distribu-

tion functions differ at very small separations. GFMD

and FFT-BVM reveal behavior that is typical for short-

range adhesion, namely a strongly reduced probabil-

ity for small gaps due to the formation of adhesive

necks near the contact line. (As one moves away from

a JKR contact line, the gap quickly increases, while it
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Fig. 8 Gap distribution function for the reference system
and for the adhesion-free case. The arrow marks the value of
the mean gap yielded by the GFMD reference solution.

increases only slowly – in fact, initially with zero slope

– near a Hertzian contact line.) Interestingly, the valid-

ity of the BEM+B solution extends all the way down to

2× 10−2 µm, even though the bandwidth of the height

spectrum was severely limited.

Persson provides good results for the adhesionless

case. In particular, the distribution for large gaps is

well reproduced, as is the scaling of Pr(u) for small u.

It would be interesting to assess if the theory could

also predict the diminution of Pr(u) for u → 0, which

is induced by short-range adhesion.

The last distribution function to be analyzed is the

stress-distribution function Pr(σ). While its shape can

be approximated in the absence of adhesion as a sum of

two Gaussians that only depend on p∗, Pr(σ) contains

much more difficult-to-reproduce features once short-

range adhesion is included, see Fig. 9.

The shape of the Pr(σ) can be best rationalized

by decomposing it into contact and non-contact con-

tributions. Interfacial stresses averaged only over con-

tact points can be described by a slightly skewed Gaus-

sian, which extends significantly to tensile (negative)

stresses. The non-contact stresses lead to a pronounced

integrable peak at small negative pressures. This contri-

bution is directly related to the gap-distribution func-

tion. The pronounced peak at σ → 0− simply reflects

that most non-contact points have an interfacial sep-

aration that greatly exceeds the range of the adhesive

interaction.

As in all other cases, FFT-BVM reproduces the ref-

erence solution quite accurately. There is a first in-

stance of an O(10%) deviation, which can be rational-

ized by the fact that FFT-BVM uses linear system sizes
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Fig. 9 Interfacial stress distribution function Pr(σ). The
peak at slightly negative stresses is due to all points having
large local separation, i.e., large compared to the screening
length ρ. It contains roughly 97% of the integral below Pr(σ).
The contribution to Pr(σ) originating from the true contact
area is shown separately for the GFMD method.

of “only” 32,000 instead of 128,000 in GFMD. Despite

their much less fine discretization, FFT-IA and BICG-

STAB also produce quite accurate stress distributions,

in particular for the points in contact. An interesting

observation can be made on BEM+B: Due to its lim-

ited bandwidth, the stress distribution is not yet quite

as broad as it would be if all features were spatially

resolved down to the finest scale.

The only two bearing models providing stress dis-

tributions, SCGW and ICHA, address the adhesionless

case. They must therefore be compared to the GFMD

reference data without adhesion. In contrast to SCGW,

ICHA model predicts the large-stress tail of the refer-

ence solution quite well, although it clearly overesti-

mates Pr(σ) at small σ. A fortuitous side-effect of this

error is that the area below the ICHA-Pr(σ) curve,

which is equal to the predicted relative contact area,

correlates nicely with the contact area of the GFMD ref-

erence solution (the area below the grey line in Fig. 9),

although the latter includes adhesion. In addition, Fig. 9

reveals that the stress distributions of the adhesive and

the non-adhesive cases are quite similar at large stresses.

Differences at small stresses must therefore stem pre-

dominantly from the zones near contact lines.

4.3 Average quantities

A frequently reported dependence is the relation be-

tween relative contact area ar and load or reduced pres-

sure p∗ ≡ p/E∗ḡ. Many tribologists consider ar to be
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Fig. 10 Relative contact area ar as a function of pressure p.

one of the most central properties of their field, while

others argue that true contact area is hard to define

rigorously outside of continuum mechanics, so that re-

porting it is a purely academic exercise. In continuum

mechanics, true contact can correspond to either zones

of compressive, interfacial stress or areas that lie within

the lines formed by local stress maxima [?]. Since the

challenge is formulated as a continuum mechanics prob-

lem and contact mechanics has traditionally focused

on predicting ar as a function of load, a discussion

of the ar(p
∗) dependence should be included here. For

non-adhering, randomly rough surfaces ar(p
∗) ≈ 2p∗ is

an excellent approximation as long as ar is less than

20% [6–9,56]. An appropriate generalization of the lin-

ear ar(p
∗) relationship to large loads is ar ≈ erf(

√
πp∗) [5],

which even describes quite accurately how complete

contact at large p is reached asymptotically [7,63].

Figure 10 compares the various predictions of ac(p
∗)

with weak adhesion. For the most part, they reveal

rather similar behavior in a double-logarithmic repre-

sentation. The difference between most methods and

the GFMD reference solution is within the symbol size,

i.e., within ±20%.

Some – not all – bearing-area models show signifi-

cant discrepancies with the reference solutions for parts

of the ac(p
∗) relationship. The SCGW model, which is

based on the statistical analysis of asperity heights, un-

derestimates the quasi-proportionality between ac and

p∗ by almost a factor of two. When the actual asperity

distributions are considered, as in SRGW and ICHA,

much better agreement is found. In the latter model,

ac falls slightly below the reference data, which is not

surprising as ICHA was exempted from having to in-

clude adhesion. Winkler predicts improper scaling of

ac with p∗ at small p∗, i.e., the dependence is much

more sublinear than that of the reference solution.

MS-Archard slightly overestimates ar, although the

behavior only becomes qualitatively incorrect at a jump-

into-contact instability, occurring slightly above 30%

contact. This is, of course, a range that has certainly

not been targeted by asperity-based models. Like MS-

Archard, other asperity-based models, such as Winkler,

find full contact at relatively moderate pressures. In

contrast, Persson’s data are consistent with a smoother

disappearance of non-contact area. This issue becomes

clear when analyzing the mean gap ū as a function of

p∗.

Differences between the various contact-area predic-

tions are better resolved in Fig. 11, in which the mean

contact pressure p̄c ≡ p/ar is shown as a function of

the external pressure rather than the relative contact

area ar. Small discrepancies now even appear between

the otherwhise almost identical results of the reference

solution and FFT-BVM. They could arise to some de-

gree from multi-stability related to (hysteretic) contact

formation or destruction of individual contact patches,

saddle points, or dimples. In fact, a given method can

produce slightly different results for p̄c at a given value

of p during compression and decompression. However,

the trends of all brute-force approaches and to some

degree also RL-Archard (which, however, contains a

boundary-value method at coarse scales) is such that

pc changes by less than 50% while the external load

increases by three decades. It is tempting to speculate

that this range would become larger if the ratio of roll-

off and short-wavelength cutoff were increased. Pers-

son theory somewhat overestimates the mean pressure

at very small values of p. However, as reported in an

accompanying paper [35], the slight negative slope of

Persson’s prediction of a(p∗) at small p∗ is not inherent

to the theory but the consequence of an insufficiently

fine discretization of the stress histogram. As before, the

difference between FFT-IA and the other exact meth-

ods is probably due to FFT-IA only having counted

points of compressive, interfacial stress towards the real

contact area. Lastly, ICHA, which neglected adhesion,

identified the correct asymptotic value of the mean con-

tact pressure at small loads, i.e., pc . p/2E∗ḡ [6,8,9,7]

for adhesionless contacts.

Another interesting contact property is the mean

interfacial separation, or the mean gap, ū, between the

two surfaces. The reciprocal of its change with pres-

sure, i.e., dp/dū, also called the interfacial stiffness, is

often assumed to be proportional to the electrical con-

tact conductance, so that knowledge of ū(p∗) allows one

to estimate that property [59,60].
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Fig. 11 Mean contact pressure p̄c as a function of pressure
p. The two GFMD symbols at p = 0.001E∗ḡ represent a com-
pression (lower circle) and a decompression run (upper circle)
coming from zero and large external pressure, respectively.
The SCGW data are not shown in this graph as all points
satisfy p̄c > 0.8 E∗ḡ.

Figure 12 summarizes the predictions of the pressure

dependence of the mean gap. As expected from the fully

resolved spatial representation of the gap in Figure 4,

all brute-force methods agree quite nicely for the mean

gap. In a large fraction of the shown pressure range, ū

roughly changes logarithmically with pressure. Persson

theory also conveys the correct trend, in particular at

p∗ > 5× 10−3. (Details are shown in an accompanying

paper [35]. The starting discrepancies at p∗ < 5× 10−3

might be attributed to finite-size effects.)

Bearing-area models do not convey the trend very

accurately, although three independent approaches (Win-

kler, SRGW, and SCGW) make almost identical predic-

tions. For most of the shown pressure range, ū is over-

estimated by these bearing models, but then a mean

zero gap is approached linearly according to ū ∝ (p∗ −
p∗fc), for p∗ exceeding the pressure p∗fc ≈ 0.8, where full

contact is reached. Both Archard solutions show com-

plete gap closure at an even lower pressure than the

other asperity-based models. At small pressures, the

RL-Archard method, which solves the low-pass surface

topography with a spectral approach, is quite accurate.

ICHA is the only bearing-area model that appears

to make the correct predictions at large pressures, how-

ever the averages are only taken over peak heights –

a full average would have yielded greater mean gaps.

In fact, any asperity-based model that provides good

– or too small – estimates for the contact area should

overestimate the mean gap, because the elastic defor-
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Fig. 12 Mean gap as a function of pressure. The arrow marks
the mean gap for the case where a rigid indenter touches the
undeformed elastic manifold in a single point.

mation in the non-contact area is neglected. In the spe-

cific case of the ICHA model, it is possible, in principle,

to include the effect of long-range elastic deformation

by considering only the second term of equation (5)

in reference [58]. An additional analysis that the con-

tributors of the ICHA model offered to conduct along

these lines could not be accepted for time reasons. How-

ever, it appears plausible that averaging the gap over

all non-contact points while including the effect of elas-

tic deformation outside the contact patches would yield

good estimates of the gap for the right reason and not

because of fortuitous error cancellation.

In contrast to the bearing models, the brute-force

solutions and Persson theory show a more continuous

closing of the gap, which, in the range 10−4 ≤ ū/µm <

10−1, can be described by a ū ≈ 0.3 · exp(−8p∗)µm

dependence. Also the all-atom simulations predict the

gap to close with pressure in a similar fashion as the

continuum-mechanics based calculations. Visible devi-

ations occur at reduced pressures of p∗ ≈ 0.04 yielding

relative contact areas slightly exceeding 10%. These de-

viations correlate with the onset of massive plastic de-

formation in the simulated metals.

5 Conclusions

The contact challenge attracted participation by many

groups world-wide (Austria, England, France, Germany,

Italy, Iran, The Netherlands, Taiwan, USA) with 12

competing groups pursuing a total of 13 different ap-

proaches. These included traditional Greenwood-William-

son inspired asperity models, the more recent Persson
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theory, brute-force computations and even experiments

or down-scaling of the problem to all-atom simulations.

Each approach was able to reproduce at least some of

the reference solutions, which exist because the contact

challenge was in fact nothing but a well-defined mathe-

matical problem in continuum mechanics. In this sense,

all groups were successful, though some deserve partic-

ular mentioning.

The Lubrecht group at INSA Lyon managed to iden-

tify the essentially exact reference solution using a Fourier-

based approach on a single core with a memory of 150

Gigabyte of random access memory (RAM). This re-

sult is also remarkable in that the number of simulated

points into which the surface was discretized, 32,000

by 32,000, distinctly exceeds that of most experimental

surface topography measurements, which are typically

1,000 by 1,000 and rarely – if ever – more than 4,000

by 4,000. The reported three weeks and 3,000 iterations

needed by the Lubrecht group to relax the 32k×32k sur-

face reduces to one hour and 700 iterations for a 4k×4k

system on a standard laptop with standard RAM and

to one minute and 200 iterations for a 1k×1k discretiza-

tion on a laptop. This means that highly accurate con-

tact mechanics calculations using experimentally pro-

vided height profiles can, in principle, be done in rea-

sonable times with computers available to everybody

without having to add extra RAM.

Another remarkable contribution is the experimen-

tal work by the Sawyer group at University Florida.

The problem was scaled up by a factor of 1,000 and

then reproduced thanks to 3D printing technology as

a real-laboratory experiment. The optically deduced

contact topography at the reference load correlates re-

markably well with that obtained by accurate simula-

tions. The experimental contribution thus reveals quite

clearly that the challenge has an analogue in the labo-

ratory, and that modelers might have to apologize con-

siderably less for commonly made approximations (e.g.,

small slopes, linear elasticity) than they frequently do.

Last but not least, the all-atom simulations by the

Vakis group in Groningen deserve particular mention-

ing. They revealed that the posed challenge also relates

to metallic systems, albeit at smaller scales. It turned

out again that adding features to the problem, which

were purposefully neglected in the formulation of the

challenge but ubiquitous in most systems (plastic de-

formation), did not induce large changes in the overall

displacement fields or pressure distributions, at least

not for the relatively moderate loads used in this chal-

lenge.

Overall, there was excellent overall between all rig-

orous methods, which all described stress-strain rela-

tions in Fourier space. Those implementations that min-

imized the total energy with respect to displacement

rather than to stresses appeared to have higher resolu-

tion. At this point, it is hard to judge if this is generally

true, or, if the time commitment by the contributors or

the technical details of the respective implementations

are responsible for why one code found an almost fully

converged answer on single nodes, while others “only”

were able to predict the elastic displacement fields cor-

rectly at a slightly coarsened scale.

Bearing-area models reproduced the dependence of

the contact area on load reasonably well even for rela-

tive contact areas clearly exceeding 50%. This is some-

what surprising, since bearing-area models assume pos-

itive surface curvature everywhere, while close to full

contact, the measure of positive and negative curva-

ture becomes almost identical. In addition, predictions

on the interfacial separation – whether the first moment

or its distribution – were generally not reliable. This is

because bearing-models neglect elastic deformation be-

tween the contacting peaks, whereby the gap is overes-

timated. Surprisingly, the quite simple Winkler model

gave almost identical results to the much more sophisti-

cated asperity-based models, except at very small loads,

where the Winkler model overestimated the relative

contact area. Yet, for both Winkler and bearing-area

models, predictions of the mean gap or gap-distribution

functions are expected to become even less reliable when

the roughness extends to more than 2.5 decades [64].

Also the contact-patch size distribution was rather flawed

in asperity-based approaches neglecting the effect of

long-range elastic deformation. Since there now exist

simple analytical formulae relating contact area and

load, one may wonder what the added benefit of con-

ducting such simulations may be, more so as coding

a bearing model – with the exception of Winkler – is

not necessarily simpler than putting in place a rigorous

boundary-value method.

In contrast to other methods with uncontrolled ap-

proximations, Persson theory reproduced both the de-

pendence of mean gap and contact area on pressure.

Like bearing-area models, Persson theory does not ne-

cessitate much computing time, however it is also rather

complicated to code. Unfortunately, no predictions were

made for the gap or stress distribution in the presence

of adhesion, so that we cannot judge (based on the data

submitted to the contact-mechanics challenge) how well

Persson theory performs for the considered short-range

adhesion or whether it would have predicted that Pr(u)

becomes small at small u for short-range adhesion, rather

than large, as is the case for no or long-range adhesion.

It might be appropriate to comment on two meth-

ods that did not enter the challenge. First, one may

notice that no participant used a finite-element method
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(FE), although FE should, in principle, be in a position

to deliver exact results. It appears, however, that FE

is not sufficiently efficient to tackle the assigned prob-

lem within reasonable simulation times. Its strength in-

stead lies in its flexibility with respect to geometry and

the possibility to go beyond linear elasticity. Second,

no work based on Sneddon’s method [65] was entered

for the competition. It allegedly allows one to distinctly

reduce the complexity of a contact problem such that

it can be solved in a few minutes on a standard desktop

PC. One of the reasons for its absence from this compe-

tition may have been that the common formulation of

Sneddon’s method is only valid for non-adhesive, singly

connected domains of spherical symmetry and it rapidly

fails once one or two of these assumptions no longer

hold. The fact that the considered contact is adhesive,

non-spherical, and non-connected, may have kept pro-

ponents of the method from comparing their solution

to one that they did not know ahead of time [66].

In conclusion, a rather complex contact mechanics

problem was successfully solved with a variety of meth-

ods. Rigorous, numerical approaches to the posed chal-

lenge, which was nothing but a well-defined mathemat-

ical problem, found almost identical results on all prop-

erties. Small deviations only occurred for those quanti-

ties whose computation necessitate a fine grid or arose

from different definitions of true contact. Persson the-

ory, experiments, and all-atom simulations all contained

uncontrolled approximations to the challenge, but iden-

tified the correct trends – and in some cases almost

exact numbers for properties beyond the a(p) relation-

ship. Bearing models also predicted the dependence of

relative contact area on pressure rather well and addi-

tionally offered an alternative interpretation for other

properties. Overall, we feel that this challenge has not

only assessed the merit of various contact-mechanics

approaches but enhanced our understanding of contact

mechanics. As such, it could provide a model for future

challenges to the tribology community.
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