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Mécanique des Solides, 1015 Lausanne, Switzerland
2Lehrstuhl für Materialsimulation, Universität des Saarlandes, 66111 Saarbrücken,

Germany
3Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD

21218, U.S.A.

E-mail: 3mr@jhu.edu

Abstract. Regions between contours of constant height where the height is below the

contour height are studied as a function of the Hurst exponent H. These contour cuts

correspond directly to regions of mechanical contact in the common bearing area model

for contact between self-affine surfaces. Regions below or above a given height also

correspond to lakes or islands on a fractal landscape. The autocorrelation function

C(∆r) is defined as the probability that points separated by ∆r are both within

the contour cut. The scaling of C has important implications for the stiffness and

conductance of contacts. We find that its Fourier transform C̃(q) scales as a power of

wavevector magnitude q: C̃(q) ∝ q−µ with µ = 2+H rather than the value µ = 2+2H

reported previously. An analytic argument for µ = 2 + H is presented using the

distribution of areas contained in disconnnected lakes or islands.

PACS numbers: 46.55.+d
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1. Introduction

A wide variety of natural surfaces exhibit self-affine fractal roughness. Examples range

from the earth’s surface [1] to surfaces produced by fracture [2, 3] or growth [4, 5]

to common machined surfaces [6, 7]. The geometrical properties of such surfaces

have many practical implications and have been the focus of substantial research

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In this paper we consider contour cuts through self-affine

surfaces, which are defined as the area where the height is below the contour level. The

autocorrelation function for the contour cut area has received little attention, but is

directly relevant to models of mechanical contact between surfaces [12, 13, 14].

The real area of intimate contact between surfaces plays a central role in theories

of the friction and adhesion between solids [15, 16]. This contact area increases with

applied load, but is usually confined to a miniscule fraction of the apparent area of

the two surfaces. Both the total contact area and its spatial distribution profoundly

affect interfacial properties such as the distribution of pressure, adhesion, electrical or

thermal conductivity, and the leak rate of seals [15, 16, 17]. For example, at a fixed

relative contact area, contact stiffness and interfacial heat conductivity will both be

larger when the contact is spread out (leading to correlations at small wavevectors)

than when contact occurs predominantly in the vicinity of the highest asperity [18, 19].

Calculations for the contact geometry have traditionally been based on the bearing

area model [15, 20]. For a given surface separation, contact is assumed to occur wherever

the initial, undeformed surfaces would interpenetrate. This is equivalent to the set of

points r where the separation h(r) between the initial undeformed surfaces is less than

some threshold value h0. Further approximations of the local surface profile as a sphere

or ellipsoid are used to relate h0 to the applied load in the widely used Greenwood-

Williamson approximation [7, 21].

The set of points with h < h0 corresponds directly to a contour cut at h0. In

addition to describing the bearing area model for contacts, contour cuts are relevant to

topographical models, coinciding with the lakes on a self-affine surface with constant

water level. The area under mountain peaks above some fixed height has the same

scaling properties if the interface is symmetric about its midplane, as is the case for

simple self-affine surfaces. Indeed, contact studies often assume that one surface is flat.

Then −h maps to the height of the rough surface and contact occurs at its peaks.

One measure of the geometry of contour cuts is the autocorrelation function C(∆r).

This is defined as the probability that two points separated by ∆r both are in the contour

cut (i.e. have h < h0). The Fourier transform of this quantity, C̃(q), decays algebraically

with the magnitude of the wavevector q according to C̃(q) ∝ q−µ. One can show that

the autocorrelation function for contact stresses must scale with the same exponent µ

[13] and this scaling plays an essential role in determining the elastic energy stored in

contacts and the stiffness resisting deformation of contacts [19, 18, 22].

Our simulations show that µ does not depend on h0, but does vary with the Hurst

or roughness exponent H characterizing the scaling of the self-affine surface [23]. Our
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numerical results are consistent with µ = 2+H, rather than the recently reported value

of 2 + 2H [13]. This earlier work was primarily focussed on the very large difference

between the bearing area model and full elastic calculations of the contact area where

µ = 1 + H [13, 14]. The bearing area results in Ref. [13] were not extensively tested

and we have discovered an analysis error that did not affect results reported for the full

elastic calculation. The new numerical studies for the bearing area model reported here

consider a wider range of H, system sizes, and h0, and consistent results were obtained

from two independent analysis programs. In addition, we present an analytic argument

for µ = 2 +H based on known scaling properties of the sizes of ”islands” or ”lakes” on

self-affine surfaces [8, 9, 10, 11, 24].

In the remainder of this paper, we will first provide the theoretical arguments in

section 2, then present our new numerical data in section 3, and summarize in the final

section 4.

2. Theory

The Hurst or roughness exponent H describes the scaling of the root mean squared

(rms) change in height ∆h with the lateral separation ∆r. For a self-affine surface,

∆h ∝ |∆r|H with H between zero and unity. The familiar case of a random walk

corresponds to H = 1/2 and most experimental and natural surfaces have larger H.

Contours of constant height on self-affine surfaces correspond to coastlines and

have been extensively studied. Mandelbrot showed that the entire contour, including all

disconnected loops, is a self-affine fractal with fractal dimension 2−H [1]. The fractal

dimension Df of individual connected loops is smaller. Recent analytic and numerical

arguments yield Df = (3−H)/2 [8, 9, 10].

The connected areas within disconnected contour loops correspond to the contacts

or lakes that are of interest here and we will refer to them generically as clusters. While

their boundaries are fractal, the clusters are two dimensional objects ‡[1]. While there

may be holes within a cluster where the height exceeds the threshold (see for example

Ref. [25]), the total area A scales as d2 with d the diameter of the smallest circle that

covers the cluster. The probability PA(A) that a cluster has a given area follows a power

law

PA(A) ∝ A−α (1)

with α = 2 − H/2 [8, 9, 10, 11, 26]. Note that all the above scaling properties are

independent of the contour height and thus the fractional contact area. This is in sharp

contrast to ordinary critical behavior where power law scaling only applies at a specific

value of a control parameter.

‡ There may also be an infinite percolating cluster with different scaling properties. As discussed

below, S̃(q) is the same for filled and unfilled regions. One can then apply our analysis to whichever

case does not have a percolating cluster. Note that because the clusters have a simple structure, the

correlations within individual connected clusters are not very interesting, while the correlations for the

total contour cut have nontrivial scaling.
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The contact or lake correlation function can be written as

C(∆r) ≡ 1

Atot

∫
drΘ(h0 − h(r))Θ(h0 − h(r+∆r)) (2)

where the integral performs an average over the total surface area Atot and the Heaviside

function Θ(x) is 0 for x < 0 and unity for x > 0. The Fourier transform C̃(q) = |c̃(q)|2,
where c̃(q) is the Fourier transform of Θ(h0 − h(r)). Except at q = 0, C̃(q) is identical

to the correlation function for areas that are higher than h0. This follows because

Θ(h0 −h(r))+Θ(h(r)−h0) = 1, so the Fourier transforms of areas above and below h0

are equal and opposite at nonzero q.

The contribution of a circular contact of radius a about the origin to c̃(q) is

f̃a(q) =
1

2π

∫ a

0
dr r

∫ 2π

0
dΦ e−iqr cosΦ (3)

=
(qa)

q2
J1(qa), (4)

where we have used the properties of Bessel functions Jα of the first kind, specifically

J0(u) =
1

2π

∫ 2π

0
dΦexp(iu cosΦ) (5)

and

uJ1(u) =
∫ u

0
du′ u′J0(u

′). (6)

Clusters will not in general be circular, but despite their fractal boundaries and the

presence of holes [25], they are two-dimensional objects [1]. As a result, the average

contribution to c̃ of clusters of a given radius should exhibit approximately the same

scaling with q as a circle. In particular, as in Eq. 4, f̃(q) should be constant at small

qa and drop rapidly at larger qa where a corresponds to the radius of a circle with the

given cluster area A. This is all that is required for the following discussion.

The power law distribution of areas PA(A) implies a power law distribution of radii

P (a) = ca−2α+1, where c is a constant. The total correlation function is approximated

by an incoherent sum over patches of all sizes. One obtains

C̃(q) =
∫ ∞

0
daP (a) |f̃a(q)|2 (7)

= c ·
∫ ∞

0
da a−2α+1

{
(qa)2

q4
|J1(qa)|2

}
(8)

= c ·
∫ ∞

0
d(qa)(qa)−2α+1

{
(qa)2|J1(qa)|2

}
︸ ︷︷ ︸

g(α)

· 1
q
q2α−1 q−4

︸ ︷︷ ︸
q−(6−2α)

(9)

= c · g(α) · q−µ. (10)

where

µ = 6− 2α. (11)

Note that g(α) is finite for α < 2. Using the scaling relation α = 2 −H/2 for areas of

cuts through self-affine surfaces[8, 10, 11, 24], we obtain

µ = 2 +H. (12)
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As shown below, Eq. 12 is consistent with our numerical results. It appears that

adding contributions from different contacts incoherently is adequate because C̃(q) is

dominated by the largest clusters. Note that the real space correlation function for

this µ is not well-defined unless a cutoff at a maximum wavelength and corresponding

minimum wavevector qmin is introduced. The Fourier transform diverges as q−H
min for

all r < 1/qmin. The situation is very different for the contacts obtained from a full

solution of the elastic contact problem. In this case, µ = 1 + H, most of the area is

in the smallest contacts, and correlations decay as r−(1−H). It also appears that the

distribution of contact areas is cutoff more rapidly than a power law in the full elastic

solution.

3. Results

In this work, two distinct algorithms have been used to generate self-affine surfaces. In

both cases, heights are generated on a uniform, two-dimensional square grid with N

points in each direction. The spacing a between points is taken as the unit of length.

In the first method, fractal surfaces are constructed by generating Fourier coefficients

h̃(q) = h0 · GRV(q)/q1+H on a two-dimensional square array. Here, h0 is a constant,

GRV(q) is a Gaussian-random-variable with random phase and h̃(q) = 0. The height

profile of the self-affine surface is then obtained by Fourier transforming h̃(q) [23]. The

constant h0 is chosen to adjust the rms slope of the surfaces. The same technique was

employed to build rough surfaces in Ref. [13].

The second approach for constructing self-affine surface topographies was the Voss

or random midpoint displacement algorithm [27, 28], which has also been used by some

of us in previous works [12, 26, 29, 30]. This is an iterative approach for generating

heights for a self-affine fractal surface on a two-dimensional square grid. The process

starts with a single square covering the entire system. At each iteration, each square

is sub-divided into four smaller squares generating new corner points. Then height

values for new corner points are assigned by adding the mean of the parent square

corner heights to a Gaussian random value scaled by `H where ` is the distance between

corners. This procedure is repeated until the required resolution is obtained as shown

in Fig. 1(a) for a fractal surface with N = 4096 and Hurst exponent H = 0.2.

The contacts corresponding to the bearing area model are the set of grid points

where h < h0. As in Ref. [10], results for different realizations are compared at a fixed

fraction fc of contacting points rather than at fixed h0. Fig. 1(a) shows an example for

fc = 0.1 and H = 0.2. A real space contact function c(r) is defined by assigning 1 to all

contacting points and 0 to all other points. This is then Fourier transformed to obtain

c̃(q) and squared to yield the desired correlation function C̃(q).

We begin by examining C̃(q) in the limit of small fractional contact area, since

that is the most common case in experiments. Previous studies show that results for

fc ≤ 0.1 are in this limit [26, 31]. Surfaces were constructed with N = 8192 and with

roughness down to the grid spacing. A typical plot picturing the scaling of C̃(q) for
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(a) Fractal surface (b) Contact area

Figure 1. Left: A fractal surface with N = 4096 points in each direction andH = 0.2.

Color changes from red to blue with increasing height. Right: The contact area for a

contour cut chosen to give a contact fraction of fc = 0.1.

topographies characterized by different Hurst exponents and fractional contact areas is

shown in Fig. 2. As derived in Ref. [13], normalizing by fc(1 − fc)C̃(0) collapses the

results for different contact areas onto universal curves. The straight lines in the figure

show power law scaling with the predicted exponent µ = 2 + H. The lines provide

excellent fits at small q and the power law behavior extends to larger q as H increases.
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Figure 2. (Color online:) Normalized contact autocorrelation functions C̃(q)

corresponding to three values of the roughness exponent H = 0.2, 0.5, 0.8 and distinct

fractional contact areas fc. Surfaces were generated from Fourier components.

A comprehensive comparison of measured values of µ at different fc and the analytic

prediction µ = 2 + H is presented in Figure 3. It is evident from the results for

fc = 0.6, that the same power law is observed outside of the dilute limit. For these data,

surfaces with N = 8192 and H ranging from 0.2 to 0.9 were generated with the random
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Figure 3. (Color online:) Comparison between theoretical prediction (line) and

numerical results for the power law exponent µ describing the contact autocorrelation

function. Numerical results are for a grid with N = 8192 and fractional contact area

of 10% (squares and diamonds) or 60% (asterices) and were obtained from least mean

squares fits over 0.008 ≤ qa ≤ 0.8 (diamonds) or 0.008 ≤ qa ≤ 0.4 (squares and

asterices). Statistical errors in the fits are comparable to the symbol size. Systematic

errors increase as H goes to 0 or 1.

midpoint algorithm. A least mean squares fit was performed over two different ranges of

wavevector to demonstrate the sensitivity of the fits to the upturn in C̃(q) seen at large

q in Fig. 2. Decreasing the upper end of the fit from π/2 to π/4 provides a substantial

improvement, particularly at low H where Fig. 2 shows greater curvature. Exponents

obtained from the surfaces generated with the Fourier method were equivalent within

our numerical uncertainty of about 0.02 at H = 0.5 and 0.05 at large and small H.

Within this uncertainty the numerical results are consistent with µ = 2 +H.

The analytic argument presented in section 2 assumed continuous circular contact

areas, while the area is discretized onto nodal points in the numerical calculation. As

H decreases, the exponent for the area distribution in Eq. 1, α = 2 − H/2, increases

and more and more of the clusters contain only a few nodes. To evaluate the influence

of this effect, we examined surfaces where roughness only extended to a wavelength lmin

that was larger than the node spacing a. This makes the representation of the area

more continuous, but did not produce any statistically significant change in µ.

Another type of error becomes more important at large H. Since α is larger, the

total number of contacts decreases and an increasing fraction of the area is in a few

large clusters. The reduced statistics lead to the larger errorbars for H = 0.9.
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We have also studied the case of rough two-dimensional solids. Here the contour

cuts reduce to lines between points where the interface has a given height. Our numerical

results for the autocorrelation of these lines are consistent with µ = 1 + H over the

entire range of H considered. Once again, this value is higher than the value of µ = H

obtained for calculations of contact correlations that treat the full elastic deformation

of the substrate numerically [32] or analytically [14]. It is interesting that in both 2D

and 3D the full calculation reduces µ by unity.

4. Conclusions

In this paper we have examined the Fourier transform C̃(q) of the autocorrelation

function of areas within contours of constant height on self-affine fractal surfaces. These

correspond to the contact areas in the widely used bearing area model that assume

contact between two solids occurs where the initial separation of the two rough, non-

contacting surfaces is below a given threshold value. The contour cuts also correspond

to the lakes at constant water level on a fractal landscape or the peaks above a fixed

height.

Numerical results show an algebraic decay of correlations C̃(q) ∝ q−µ. We presented

an approximate analytic argument that predicts µ = 2 + H. Numerical results for

surfaces with Hurst exponent 0.2 ≤ H ≤ 0.9 and generated with different algorithms

at different fractional contact areas (0.1% to 60%) are consistent with the analytic

prediction within our statistical errors. These are largest for small H where the scaling

range is smaller.

A previous paper [13] had reported a larger value of µ = 2 + 2H, but a simple

analysis error was found in the code used to study the bearing area model in that work,

motivating the preparation of this article. The error did not affect the results in Ref. [13]

for contact areas obtained from a full numerical solution of the elastic contact problem.

The full elastic solution yields a very different decay µ = 1+H [13], which has also been

derived from Persson’s contact theory [14]. This change in exponent means that the

bearing area model produces contacts with very different geometry than the full elastic

calculation. For example, almost all the area is in the largest contacts for the bearing

area model and almost all the area is in the smallest contacts for the full calculation

[26, 13]. The real space correlation function C(∆r) decays as r increases for the full

calculation but grows with r for the bearing area approximation. These differences may

lead to discrepancies between experiment and predictions based on the bearing area

model.
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[19] C. Campaña, B.N.J Persson, and M.H. Müser. Transverse and normal interfacial stiffness of solids

with randomly rough surfaces. Journal of Physics: Condensed Matter, 23:085001, 2011.

[20] J. A. Greenwood and J. J. Wu. Surface roughness and contact: An apology. Meccanica, 36:617–

630, 2001.

[21] A. W. Bush, R. D. Gibson, and T. R. Thomas. Wear, 35:87, 1975.

[22] S. Akarapu, T. Sharp, and M.O. Robbins. Stiffness of contacts between rough surfaces. arXiv,

(10.1479v1), 2010.

[23] P. Meakin. Fractals, scaling and growth far from equilibrium. Cambridge University Press, New

York, 1977.

[24] J. C. Russ. Fractal surfaces. Springer, 1994.

[25] P. R. Nayak. Some aspects of surface roughness measurement. Wear, 26(2):165–174, 1973.

[26] S. Hyun, L. Pei, J. F. Molinari, and M. O. Robbins. Phys. Rev. E, 70:026117, 2004.

[27] R. F. Voss. Fundamental Algorithms in Computer Graphics. Springer-Verlag, Berlin, 1985.

[28] D. Saupe et al. H. O. Peitgen. The Science of Fractal Images. Springer, 1st edition, 1988.

[29] G. Anciaux and J. F. Molinari. Contact mechanics at the nanoscale, a 3d multiscale approach.

International Journal for Numerical Methods in Engineering, 79, no. 9:1041–1067, 2009.

[30] G. Anciaux and J. F. Molinari. Sliding of rough surfaces and energy dissipation with a 3d multiscale

approach. International Journal for Numerical Methods in Engineering, 83, no. 8:1255–1271,

2010.
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