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Abstract

We show that various quantities of relevance to the contact mechanics of ran-

domly rough surfaces can be directly estimated from the easy-to-acquire height-

difference-autocorrelation function Gδh(∆r). These include the areal elastic en-

ergy density and the stress autocorrelation function, for which we derive expres-

sions that are exact for full contact (within linear elasticity) and approximate

for partial contact (within Persson theory). Our approach makes it possible to

estimate scale–dependent contact areas, stresses, stress gradients, or to make

well-informed corrections to the Dahlquist criterion for adhesion with elemen-

tary mathematical operations that do not necessitate the Fourier transform to

be taken.

Keywords: contact mechanics, self-affine surfaces, surface spectra, Persson

theory

1. Introduction

Traditionally, roughness of nominally flat surfaces is characterized by the

height-distribution function, also known as Abbott-Feierstone or bearing area

curve [1], or by its first few moments: root-mean-square height, skewness, and

kurtosis. However, their knowledge hardly provides useful information for con-5

tact mechanics. In order to make predictions on quantities like real contact area,
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contact stiffness, or the mean gap as a function of load, an additional spatial

characterization [2] is required. In particular, it is crucial to know to what extent

roughness decomposes into long or short wavelength modes [3, 4, 5]. Predictive

theoretical and computational approaches to contact mechanics are therefore10

based on height spectra Ch(q) rather than on moments of the height distribu-

tion function [4, 6, 7]. While reporting surface-roughness spectra is now more

common than in the past [5, 8], little to nothing is generally done with Ch(q) be-

yond its reporting. Exceptions to this claim do not go much beyond — if at all —

Persson theory [4, 6, 9, 10, 11] and numerical simulations [12, 13, 14, 15, 16, 17]15

taking Ch(q) as input.

As is the case for other stationary random variables, spatial (or temporal)

correlations of the height can also be expressed in real space (time) rather than

in the wave vector (frequency) domain [18, 19]. In fact, the height-difference

autocorrelation function (ACF)

Gδh(∆r) ≡ 1

2

〈
{h(r)− h(r + ∆r)}2

〉
, (1)

contains the same stochastic information on the surface profile as Ch(q). Here,

h(r) is the height as a function of the in-plane coordinate r, while 〈. . . 〉 represents

an average, which is taken either over a sufficiently large sample or over a

periodically repeated domain. The factor 1/2 was introduced on the right-hand20

side of Eq. (1) to turn Gδh(∆r) into a scale-dependent height variance yielding

the mean-square height at large ∆r.

One might conclude that knowing Gδh(∆r) does not bear any advantage over

knowing Ch(q). However, it is rarely exploited that deducing Gδh(∆r) from a

measured height profile is much simpler than constructing Ch(q). More impor-25

tantly, it appears to have remained unnoticed how easily central tribological

quantities can be deduced directly from Gδh(∆r) with quite elemental mathe-

matical operations. These quantities include the energy to fully – or locally –

conform an elastic manifold to a rigid, rough substrate, scale-dependent contact

stresses, and the stress-autocorrelation function. Knowledge of these quantities30

then allows conclusions to be drawn on the tackiness of objects or the amount
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of plastic deformation.

In this article, we derive formulae that allow several tribological quantities to

be calculated directly from the height-difference ACF and demonstrate their ap-

plication in a few selected cases. We describe partial contact using a real-space35

interpretation of Persson theory, which can be advantageous for the description

of heterogeneous surfaces or multi-scale approaches. While the derivations re-

quire some mathematical background, final expressions can be used with the

mathematical toolbox provided at the undergraduate level in engineering.

The remainder of this paper is organized as follows: Derivations are pre-40

sented in Section 2, where we first treat full and then partial contact. Section 3

demonstrates how to use the results. Conclusions are drawn in section 4.

2. Theory

2.1. Notation, definitions, and conventions

Throughout this work, we consider linear elasticity in the small-slope approx-45

imation. It allows us to distribute the combined compliance and the combined

roughness arbitrarily to either side of the interface [20]. The (inverse) combined

compliance is summarized in the contact modulus E∗, while h(r) contains the

combined roughness of the two surfaces. The calculations are conducted in the

spirit that an ideally flat, elastic manifold is pressed against an ideally rigid,50

corrugated counter face. However, the calculations apply in the same fashion to

a mechanical interface that is self mated in the sense that the elastic properties

of the two solids in contact as well as their surface spectra are identical. In that

case h(r) should be interpreted as the interfacial separation between the two

solids before they deform.55

In this work, functions may be “overloaded”, which means that the precise

definition of a function depends on its variable. For example, Ch(q) denotes

the height spectrum at a given wave vector, while Ch(q) is the average over all

Ch(q) at fixed magnitude of q. A similar comment applies to Gδh(r). In this

context, we wish to mention that our assumption of isotropy, which we make60
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throughout this manuscript, can be used unless the stochastic properties of the

surface profiles and elasticity are simultaneously unisotropic. In this last case,

our treatment would necessitate alterations, which are straightforward to make

but heavy on the book keeping of indices. We therefore see the description of

simultaneous anisotropy of roughness and elasticity beyond the scope of this65

article.

It is often easiest to start the analysis on periodically repeated domains,

in which case the height h(r) can be represented as a complex Fourier sum

according to

h(r) =
∑
q

h̃(q) exp(iq · r), (2)

where q is a wave vector defined in the xy plane. The (mean) surface normal is70

taken to be parallel to the z axis and the coordinate system is chosen such that

the mean height satisfies h̃(0) = 0. The inverse transform then reads

h̃(q) =
1

A

∫
d2r h(r) exp(−iq · r), (3)

A being the area of the periodically repeated domain. One can now define the

height spectrum

Ch(q) ≡ A
〈
|h̃(q)|2

〉
, (4)

where the expectation value on the right-hand-side of the equation should be

interpreted as a disorder average over many surfaces that are generated with

identical stochastic rules, or, alternatively, as a local average of |h̃2(q)| over75

different wave vectors of magnitude close to q. The tilde, which usually indicates

the Fourier transform, is omitted for spectra like Ch(q), in order to follow

usual conventions. The transition from conducting a calculation on a finite

domain to that on an infinite domain is achieved with the substitution
∑

q ...→

{A/(2π)2}
∫
d2q....80

2.2. Relations between spectra and real-space ACFs

Before addressing contact mechanics, we recapitulate some relations between

the real-space ACF of a random variable defined on a two-dimensional surface
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and the corresponding spectrum. We use the height as random variable, but

the equations also hold for other spatially fluctuating fields such as the normal85

stress. Part of the goal is to provide the reader with expressions that are not

only mathematically correct but also numerically stable.

Given the definition of Gδh(∆r) in the introduction, it follows that

Gδh(∆r) = σ2
h − 〈h(r)h(r + ∆r)〉 (5)

= σ2
h −Gh(∆r), (6)

where σ2
h is the standard deviation of the surface height, and Gh(∆r) the height

ACF. Expressing h(r) via their Fourier transform leads to90

Gδh(∆r) = σ2
h −

1

A

∑
q

Ch(q)eiq·∆r, (7)

→ σ2
h −

1

2π

∫
dq q Ch(q) J0(q∆r). (8)

For non-isotropic surfaces, we imply an average over all possible orientations of

∆r at a fixed magnitude ∆r, whenever we consider a correlation function that

only depends on the magnitude of the distance, as in Eq. (7).

Since the evaluation of Gδh(∆r) at small ∆r with equation (8) requires the

difference between two large numbers to be taken, it is convenient to rewrite it

as

Gδh(∆r) =
1

2π

∫
dq q C(q) {1− J0(q∆r)} (9)

for a numerical evaluation of G(∆r) from C(q).

Eq. (8) can be inverted for Ch(q) with the Hankel transform

Ch(q) = 2π

∫
d∆r∆rJ0(q∆r)

{
σ2
h −Gδh(∆r)

}
. (10)

This time, numerical round-off errors become relevant when G(∆r)� σ2
h in the95

integrand of of equation (10). One might therefore consider to evaluate the two

terms in the integrand of equation (10) separately for ∆r ≤ 1/qr and ∆r > 1/qr,

where qr is the roll-off wave number introduced later in section 3.3. This yields

Ch(q)

2π
=

σ2
h

q qr
J1(q/qr)−

∫ 1/qr

0

d∆r∆rJ0(q∆r)Gδh(∆r)

+

∫ ∞
1/qr

d∆r∆rJ0(q∆r)
{
σ2
h −Gδh(∆r)

}
. (11)
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Note that we have not made the assumption of the random-phase approx-

imation in the calculation of the two-point correlation function. The formulae100

are therefore also valid for surfaces with correlated or deterministic roughness.

A similar comment applies to all full-contact calculations presented in this study

as long as the surface topography and/or the elastic properties are (statistically)

isotropic.

2.3. Areal elastic-energy density in full contact105

In this section, the relation between an isotropic height-difference ACF and

the full-contact, areal elastic-energy density is derived in a real-space represen-

tation. The considered energy density of a periodically repeated domain is given

by

vel =
∑
q

qE∗

4
|h̃(q)|2 (12)

→
∫ ∞

0+

d2q
qE∗

4
Ch(q). (13)

Replacing Ch(q) with −Cδh(q) for q 6= 0, see Eq. (6), and using the (continuous)110

Fourier transform to relate the height-difference spectrum Cδh(∆r) with the

height-difference ACF,

Gδh(∆r) =
1

(2π)2

∫
d2qeiq·∆rCδh(q) (14)

Cδh(q) =

∫
d2∆re−iq·∆rGδh(∆r), (15)

the areal energy density in full contact can be written as

vel = β
E∗

4

∫ ∞
0

d∆r
Gδh(∆r)

∆r2
(16)

with the dimensionless number

β ≡ − 1

2π

∫ 2π

0

dϕ

∫
dq q2 eiq∆r cosϕ q∆r3

= −1

∫ ∞
0

dx x2 J0(x), (17)

where J0(x) is a Bessel function of the first kind. The latter integral needs to be

converted into a convergent one, which we achieve by multiplying the integrand115
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with a regularizing factor exp(−αx2) and by considering the limit α→ 0. This

leads us to

β = − lim
α→0

∫ ∞
0

dx x2 J0(x) exp(−αx2), (18)

= 1. (19)

In Appendix Appendix A, we show an alternative derivation for the depen-

dence of vel on Gδh(∆r), which does not necessitate a regularizing function in

the integral. It is based on dimensional analysis and single-wavelength rough-120

ness.

If we now consider self-affine scaling, Gδh(∆r) ∝ ∆r2H , H being the Hurst

roughness exponent, a well-known result can be readily recuperated: the elastic

energy in full contact is dominated by large-lengthscale ondulations if H > 0.5

and by short lengthscales for H < 0.5, since the integrand in Eq. (16) scales as125

∆r2H−2.

2.4. Stress-autocorrelation function in full contact

The stress ACF is defined as

Gσ(∆r) = 〈σ(r)σ(r + ∆r)〉. (20)

Inserting the definition of the Fourier transforms and evaluating the mean value

of exp{i(q− q′) · r} to δqq′ , one therefore obtains

Gσ(∆r) =
∑
q

|σ̃(q)|2eiq·∆r, (21)

which reflects nothing but the well-known Wiener-Khin-chine theorem [18, 19].130

In full contact, this expression becomes (leaving away the zero-q mode giving

an off-set of p2
0)

Gfull
σ (∆r) =

(
E∗

2

)2∑
q

q2|h̃(q)|2eiq·∆r (22)

→ − 1

(2π)2

(
E∗

2

)2 ∫
d2q q2Cδh(q) eiq·∆r (23)

=

(
E∗

2

)2
1

∆r

∂

∂∆r

{
∆r

∂Gδh(∆r)

∂∆r

}
, (24)
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where we have used that the multiplication of a Fourier transform with −q2

corresponds to applying the Laplacian to the original function in real space.

2.5. Scale-dependent, mean-square height gradient135

A central quantity in Persson theory is the magnification or resolution-

dependent mean-square (ms) height gradient. Its definition in a Fourier rep-

resentation is

ḡ2(q) =
∑
|q′|<q

q′2|h̃(q′)|2. (25)

A scale-dependent ms height gradient is needed as a function of ∆r, in order to

formulate a real-space version of Persson theory. We express this as

ḡ2(∆r) ≡ 1

(2π)2

∫ 2π/∆r

0

d2q q2Ch(q). (26)

The exact evaluation of this term is

ḡ2(∆r) =
−1

2π

∫
d2∆r′

∫ 2π/∆r

0

dq q3Gδh(∆r′)J0(q∆r′)

=

∫ ∞
0

dx

{
J3(x)− 2J2(x)

x

}
Gδh(x∆r)

∆r2
. (27)

Although this is an analytical expression, it is not practicable, among other rea-

sons because it necessitates a regularizing factor in the integrand. It is therefore

numerically more convenient to use eqs. (10) and (26) to deduce the “exact”

expression for ḡ2(∆r), or, to use approximations.140

The simplest approximation to ḡ2(∆r) is 4G(∆r)/∆r2, which is asymptoti-

cally exact for qs∆r � 1. However, prefactors are off in the self-affine domain,

and incorrect scaling is obtained in the roll-off region. A second, overall better

approximation is discussed in Sec. 3.4.

2.6. Partial contact145

So far, we have derived expressions for the elastic energy density and the

stress ACF. These and related expressions remain exact (within linear elasticity)

for partial contact when replacing terms of the form of |h̃(q)|2 with |ũ(q)|2,
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where u(r) is the true displacement field. The latter differs from the h(r) field

whenever contact is partial.150

Following the argument by Persson [9, 10] that stress can only be transmitted

at those locations, where the elastic manifold appears to be in contact at a

resolution of λ = 2π/q, the expectation value
〈
|σ̃(q)|2

〉
can be assumed to

satisfy 〈
|σ̃(q)|2

〉
≈
(
qE∗

2

)2

|h̃(q)|2ar(p0, q). (28)

Here, ar(p0, q) is the relative contact area that is obtained when resolving only

those spatial features with a wavelength greater 2π/q. In the simplest version

of Persson theory, this is approximated as

ar(p0, q) ≈ erf

( √
2p0

E∗ḡ(q)

)
. (29)

Later modifications of the theory include the introduction of ar-dependent weight-

ing functions W (ar) (of order unity) on the right-hand side of equation (28) or

slightly altered dependencies of ar on the reduced pressure p∗(q) ≡ p0/E
∗ḡ(q).

To use the theory in real space, we need to replace ar(q) in the stress ACF

with its real-space variant ar(∆r). This means that the stress ACF in partial

contact can be approximated as follows:

Gpart
σ (∆r) ≈ p2

0 +Gfull
σ (∆r) ar

(
p0

E∗ḡ(∆r)

)
, (30)

where depending on the required accuracy, either the original expressions for

Gfull
σ (∆r) and ḡ(∆r) can be used or approximations to them. Likewise, a real-155

space version of the theory can benefit from empirically determined weighting

functions of order unity on the r.h.s of equation (30) or related equations. We

will explore this aspect in more detail in the results section.

Assuming that a proper weighting function gives (quasi-) exact results for

the stress-ACF, i.e.,

Gpart
σ (∆r) = p2

0 +Gfull
σ (∆r)W{ar(∆r)}, (31)

we can use the relation

σ̃(q) =
qE∗

2
ũ(q) (32)
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and the properties of the Fourier transform to deduce correlation functions for

the displacement. In principle, it is then possible to write the (quasi-) exact

displacement ACF as

Gu(r) =

∫
dr′
∫
dr′′K̂(r, r′, r′′)Gδh(r′)W{ar(r

′′)}, (33)

where K̂(r, r′, r′′) is a linear, integro-differential convolution operator with two

non-vanishing summands.160

At this point, we have only managed to work out a closed-form expression for

the simpler summand, which however, we believe to be the most important term

when deducing the total elastic energy from the displacement ACF in partial

contact conditions. Using only this one summand, we approximate

Gδu(r) ≈ Gδh(r)W{ar(r)}. (34)

2.7. Numerical methods

In the result section, we assess the proposed methodology with respect to nu-

merical results. These are either obtained with a house-written Green’s function

molecular dynamics (GFMD) code or taken from a recently reported contact-

mechanics challenge [7].165

In the new set of simulations, we do not consider adhesion but only the usual

non-overlap constraint as short-range repulsion. Height-spectra are modeled

with a continuous transition [21] from the self-affine to the roll-off region via

Ch(q) ∝ 1/{1 + (q/qr)
2}1+H . Two different values of the Hurst exponent are

studied, namely H = 0.5 and H = 0.8. In both cases, the system size is170

L = 16 λr and the roll-off wavelength λr = 1024λs. The finest discretization in

the GFMD simulations satisfied a = λs/32.

GFMD simulations were run at three different resolutions, each one contain-

ing 213×213 grid points. All investigated ACFs – in particular height-difference

and stress – showed clear overlap when passing from one scale to the next, which175

turned our sequential multi-scale (or multi-grid) approach into a simple exercise.

In the contact-mechanics challenge, a diverse body of numerical, theoretical

and experimental works investigated the adhesive contact of a compliant body
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with a computer-generated, albeit typical surface profile. Details of the set-up

are described in the original work [7]. Here it shall suffice to say that the physical180

dimensions were a little smaller than in our new set-up, namely L/λr = 5

and λr/λs = 200, however, due to short-range adhesion the discretization of

the calculation had to be much smaller than for the new simulations to reach

convergence.

3. Results and discussion185

3.1. Acquiring Gδh(∆r)

Since commercial profilometers do not always provide height-difference ACFs,

it might be in place to sketch ways of deducing them from an h(r) measurement.

One generic method is to randomly pick initial points on a surface, chose a sec-

ond point a distance ∆r under a random angle, compute the squared height190

difference between initial and end point and finally average over many such

observations. If the spacing between different ∆r is taken constant on a loga-

rithmic scale, this procedure scales with N lnN , where N = ∆rmax/∆rmin. The

efficiency of this method should be at least on par with a fast-Fourier-transform

based analysis.195

It is also possible to acquire Gδh(∆r) by scanning over the surface and by

a systematic average over the surface [22, 23]. The numerical cost of deducing

Gδh(∆r) from height topographies should not exceed that for generating spectra,

since no Fourier or wavelet transform of the data has to be taken. Much can be

done to optimize accuracy and efficiency for the computation of a multi-scale200

correlation function. This, however, is a large topic in itself.

3.2. Advantages of real-space over spectral representations of roughness

While the tribological community is used to consider height spectra, quite a

few reasons exist why a real-space based representation bears many advantages.

Some of them are:205
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1. The scale-dependent root-mean-square roughness and gradient can be

quickly read off a figure showing Gδh(∆r), which in turn allows for a

quick assessment of scale-dependent contact stresses. This point is fur-

ther elaborated on in sections 3.4 and 3.5.

2. Knowledge of Gδh(∆r) allows one to quickly estimate the elastic energy210

that is needed to create full contact over a contact patch size of radius ac.

This point is discussed in more detail in section 3.6.

3. Experimentally determined profiles may suffer from undesired artifacts,

such as erratic spikes as they sometimes arise in weight-light interferome-

try. Also dimples could be present in a surface. While their precise depth215

is often irrelevant for contact mechanics, their presence strongly affects

the height spectra. The effect of such “undesired” features can be easily

eliminated from averaging when acquiring Gδh(∆r) without deteriorating

statistics at large ∆r, while this is not possible for the determination of

C(q) at small q – unless Gδh(∆r) is determined first and C(q) is deduced220

from it in post processing.

4. When reportingGδh(∆r) there is no ambiguity with respect to normalizing

factors. In contrast, when interpreting Ch(q), the precise choice of the

Fourier transform needs to be known, for example. whether a symmetric

or asymmetric Fourier transform was used. This point should be irrelevant225

in an ideal world. However, in our own experience, it takes up a significant

amount of time in the initial phases of a collaboration.

5. Since real surfaces are neither infinitely large nor periodically repeated,

the Fourier transform needs to be replaced with a wavelet transformation,

which can entail information loss, in particular at small and large values230

of q. To reconstruct Gδh(∆r), it might have to be known what wavelet

transformation had originally been used. There is no such ambiguity when

reporting Gδh(∆r) to begin with.

6. “Stitching together” measurements using different experimental techniques

probing different lengthscales can necessitate quite elaborate considera-235

tions [5], while this is quite straightforward to achieve in a real-space
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representation.

What could be the advantages for a spectral representation of roughness? At

this point, the authors of this paper only see one, namely that Persson theory

has so far been formulated in Fourier space. However, first steps are taken in240

this paper to also formulate it in real space.

3.3. Comparison of real-space versus spectral representations of roughness

It may be instructive to discuss the instantiation of an idealized surface

spectrum to better understand the relation between Ch(q) and G(∆r). Towards

this end, we consider a functional form of a height spectrum as it is often used

in numerical studies to approximate the stochastic properties of real surfaces:

Ch(q) = Cr ×


1 if qr ≤ q < q0

(q/qr)
−2·(1+H) if qs ≤ q < qr

0 else.

(35)

Here, qs and qr denote the magnitude of the wave vectors of the short-wavelength

and roll-off-wavelength cutoff, respectively. Cr is the value of the spectrum at

qr. The smallest wave vector q0 can be associated with 2π over the linear245

system size. The value of the Hurst exponents typically lies between 0.7 and

unity [8], however, small values are occasionally reported as well. We therefore

chose a compromise, H = 0.5, in the numerical example discussed hereafter and

note that results for other values of H in the physically meaningful range of

0 < H < 1 are rather similar, unless H approaches unity, in which case it is250

difficult to locate the transition from the self-affine to the ballistic scaling regime

introduced in Fig. 1.

Fig. 1 shows the height-difference ACF that follows from the idealized spec-

trum in equation (35) using the parameters H = 0.5, qs/qr = 104, and qr/q0 =

10. G(∆r) is normalized to the height variance σh and ∆r to the inverse roll-off255

wave vector. The ACF has three domains: The roll-off-region at large ∆r, where

the surface appears to be flat. The self-affine region, in which G(∆r) scales as

∆r2H and the short-range region, in which G(∆r) scales as ∆r2, which we call
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Figure 1: Height-difference ACF G(∆r) resulting from the idealized surface-height spectrum

given in Eq. (35) using H = 0.5 (solid lines). The asymptotic behaviors of three scaling

regimes are indicated with gray lines. Circles indicate an approximation to Gδh(∆r) according

to equation (36).

the ballistic region in analogy to diffusive processes. It may be difficult or even

impossible to observe this latter regime experimentally, since roughness usually260

extends all the way to (or close to) the atomic scale. However, to describe

the contact mechanics of rough surfaces, it can be meaningful to yet approxi-

mate surfaces as locally smooth in order to work with a well-defined continuum

approach, which can necessitate (unphysical) sub-atomic resolution.

The height-difference ACF produced from equation (35) leads to a functional

dependence on ∆r, which can be reasonably well approximated with

1

Gδh(∆r)
≈ Cb

∆r2
+

Csa

∆r2H
+

1

σ2
h

, (36)

which we also expect to be a good representation for experimentally measured265

profiles. In practice, for example, when an experimentally measured Gδh(∆r)

is reported, σh, Csa, and H would play the role of adjustable parameters. Al-

though the parameter Cb is also a fit parameter, in principle, there will be

some ambiguity when determining it in practice for reasons stated in the last
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paragraph. In order to yet set Cb, we suggest to chose it such that the repro-270

duced function Gδh(∆r) enters the ballistic regime around a few Angstroms to

a nanometer. One reason for this choice is that atomistic simulations indicate

a deviation from the possibility of self-affine scaling below one nanometer [24].

When Gδh(∆r) is meaningfully reproduced (its representation might be

somewhat approximate near the transition from one regime to another one),275

the coefficients Csa and H will ensure that Gδh(∆r) shows the correct scaling

behavior in the self-affine regime, while σh and Cb take care of the roll-off and

ballistic regime, respectively.

A minor oscillation in Gδh(∆r) is noticeable at ∆r ≈ λr with a maximum

overshoot of 4% from the large ∆r asymptotic value of G(∆r). It is a conse-280

quence of the sharp features in the idealized spectrum, which manifests itself as

“ringing”, also known as Gibbs phenomenon. If an alternative form for Ch(q)

had been chosen for q > qs, such as Ch(q) ∝ 1/{1 + (q/qr)
2}1+H , [21] the minor

ringing near λr would have been suppressed. No ringing becomes obvious near

λs, despite the hard cutoff at small wave vectors. This, however, can change285

for higher-order derivatives of G(∆r). Similar observations are made for other

choices of H. The most important effect is that the ringing at ∆r ≈ λr becomes

somewhat more visible when H is increased.

Finally, we note that seeing clear transitions between the various regimes in

Gδh(∆r) in computer-generated surfaces is not always possible. This is because290

the linear system size typically ranges from three to four decades with some

few simulations being based on 105 × 105 grid points. This is just big enough

to see clear scaling in all three regimes. The limitation can be overcome by

using sequential multi-scale techniques, e.g., by running simulations at different

resolutions and connecting their results – as we do in this paper for our GFMD295

simulations.
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3.4. Assessing scale-dependent height gradients, contact stresses, and contact

areas

As discussed in particular in Persson theory, the perceived contact area of

nominally flat surfaces depends on the spatial resolution ∆r with which the mi-300

croscopic height fluctuations in a contact are represented; the higher the resolu-

tion, the smaller ∆r, and the smaller the contact area. In the simplest variant

of Persson theory, the relative contact area can be approximated with equa-

tion (29). Thus, to estimate scale-dependent contact areas and thus stresses,

one first needs to identify scale-dependent surface height gradients ḡ(∆r).305

In order to deduce ḡ(∆r) from Gδh(∆r), one could use either equation (26)

or (27), or, as another and simpler alternative find an approximation to Gδh(∆r)

according to:

1

ḡ2(∆r)
≈ 1

ḡ2(0)
+

C ′sa
∆r2(H−1)

+

(
∆r

rro

)4

. (37)

The coefficients ḡ(0), rsa, H, and rro can be mostly determined from fits to

individual branches of Gδh(∆r). In particular, we find the following relations

to be useful

ḡ2(0) = 4/Cb (38a)

C ′sa = csa(H)Csa (38b)

rro = cro(H)σ2
hλ

2
r . (38c)

Asymptotic estimates for csa(H) and cro(H) are shown in figure 2. If λr is

not known, it can be associated with the value of ∆r above which Gδh(∆r) is310

roughly constant.

It needs to be kept in mind that the just-mentioned relations may sometimes

only provide rough estimates for the scale-dependent ḡ(∆r), in particular as the

precise value of cro(H) is somewhat sensitive to how exactly C(q) depends on q

near qr = 2π/λr. For example, we find a reduction of O(40%) in cro(H) when315

the abrupt transition of the self-affine to the roll-off scaling is replaced with a

smooth transition [21]. Thus, our approximations are only meant as a recipe for
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Figure 2: Estimates for the functions csa(H) (red squares relating to the left ordinate) and

cro(H) (blue circles relating to the right ordinate). Symbols show investigated values of H,

while lines are cubic splines through the explicit data.

those who want to take full advantage of the promise made in the last sentence

of the abstract of this work.

We now turn our attention to scale-dependent mean contact stresses, which320

we define as the ratio of external pressure and true contact area at a spatial

resolution of ∆r:

σc(∆r) ≡ p0

ar(∆r)
(39)

≈ E∗ḡ(∆r)

κ
for p0 � E∗ḡ(∆r). (40)

Here, κ is the dimensionless proportionality coefficient relating true contact

area and reduced pressure at a small reduced pressure. In the original Persson

theory [4], κ =
√

8/π, while numerical simulations [12, 13, 15, 16, 17], reveal325

κ & 2 to be a better approximation for randomly rough surfaces satisfying the

RPA.

Eq. (40) reveals that the scale-dependent stress is intimately linked to the

scale-depend rms gradient, whose spatial dependence we therefore discuss in
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Figure 3: Scale-dependent root-mean-square gradient ḡ(∆r) for the spectrum defined in

equation Eq. (35) using H = 0.5 (solid lines). The asymptotic behaviors of three scaling

regimes are indicated with gray lines. Circles indicate an approximation to Gδh(∆r) according

to equations (37) and (38).

Fig. 3. There, we compare the “exact” dependence of ḡ(∆r) on ∆r with that330

deduced through fits to Gδh(∆r) and using equation (38)

We conclude this section with a brief discussion of the ramifications of Fig. 3.

Assuming that rms-gradients reach the order of unity at the atomic scale of

a0 ≈ 5 Å, linear elasticity predicts local contact stresses to be of the order

E∗/2. This number will not change by much more than an order of magnitude335

for typical surfaces all the way up to λr. To corroborate this claim, we give a

numerical example: Assume H = 0.8 (which is a quite common value [8]) and

λr = 105a0. The contact stress is then expected to decrease only by a factor of

(105)0.2 = 10 for a description of a resolution with λr. For elastomers with a

small contact modulus, these numbers are not so large that chemical bonds are340

broken and the deformation can remain predominantly (visco-) elastic.

In the case of metals, the predicted local scale-dependent elastic stresses

much exceed the indentation hardness for all resolutions with ∆r < λr. How-
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ever, it must be kept in mind that indentation hardness is usually probed with

sharp tips leading to large strains and large strain gradients, which enhance345

plastic deformation. Our brief analysis of the scale-dependence on stress in the

previous paragraph and even more so the results on the stress-ACF, presented

further below in Sec. 3.7, reveal that the expected (coarse-grained or scale-

dependent) elastic stress gradients and thus strain gradients are rather small up

to λr. This can reduce the amount of plastic deformation predicted by the more350

detailed strain-gradient-plasticity theories [25] compared to that predicted by

scale-independent continuum plasticity. In fact, the displacement of a randomly

rough contact turns out smaller with size-dependent plasticity than with con-

tinuum plasticity [26] and the trend might somewhat continue to smaller scales

when using the more refined discrete-dislocation plasticity (DDP) [27] model.355

For the parameters (stresses) studied in reference [26], it yet remains unlikely

that the most refined treatment would find normal displacements that would be

at most O(10%− 50%) greater than the ones predicted by linear elasticiy. This

means that for sufficiently plastic metals, knowledge of the elastic stress-ACF

might be a poor starting point to estimate the amount of plastic deformation.360

Our proposition for the estimation of (a lower bound of) the plastic response

would yet be to use the smooth shape of ḡ(q) – or even better that of the stress

ACF – to come up with a first, informed guess for a characteristic, spatial

dependence of local stresses. The such obtained stress field can then be used as

an initial boundary condition for a DDP analysis. A recently proposed coupling365

scheme of GFMD and DDP [28] certainly provides an efficient tool for the

proposed analysis.

3.5. Quick and dirty assessment of scale-dependent contact stresses

First determine a reasonable guess for H and λr by plotting Gδh(∆r) and

read off σ2
h at G(∆r →∞).370

For ∆r < λr:

σsa(∆r) ≈ E∗
√
csa(H)G(∆r)/∆r (41)
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For ∆r > λr:

σro ≈ E∗
√
cro(H)λrσh/∆r

2. (42)

If you are ambitious, fiddle with λr until your estimate of σ(∆r) is continuous

at λr. If p0 exceeds the first estimate of σ(∆r), take p0 instead.

3.6. On the Dahlquist criterion

In the derivation of his criterion for tackiness, Dahlquist [29] compared the

elastic energy (density) needed to flatten rough surfaces to the energy that is375

gained upon microscopic contact formation. To evaluate the elastic energy for

the Dahlquist criterion, a frequent course of action is to (somehow) estimate a

characteristic radius of curvature and amplitude of a single wave. Since most

surfaces do not have a distinctive wavelength, the procedure is somewhat am-

biguous.380

Here, we wish to address a question that is related to the Dahlquist criterion:

what is the minimum size of a contact patch that develops when two adhering

solids touch in a point? In the absence of external stresses squeezing the two

solids against each other, the local contact radius ac can grow at most until the

required elastic energy density exceeds the adhesive energy gain. This leads to385

the following approximation

γ & vel(ac) (43)

≡ E∗

4

∫ ac

0

dr
Gδh(r)

r2
, (44)

which is investigated in Fig. 4. The analysis yields an upper estimate for the

minimum characteristic contact radius of 18.5 nm for the contact problem that

was recently investigated in the contact-mechanics challenge.

A more refined analysis can be based on the assumption that the patch grows

as long as its total energy

Epatch ≈ a2
c{−γ + vel(ac)} (45)

keeps increasing with the patch radius ac. This leads to the condition

γ ≈ vel(ac) +
E∗Gδh(ac)

8ac
, (46)
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Figure 4: Elastic energy analysis of a self-affine contact (defined in the contact-mechanics

challenge [7]). The blue, long-dashed line shows the integrand of the expression yielding the

scale-dependent elastic energy vel(∆r) introduced in equation (44). The solid, red line shows

vel(∆r). The roll-off λr and the short wavelength cutoff λs as well as the areal energy density

γ and a first guess for a characteristic minimum contact patch radius ac are indicated by

arrows.

which, applied to the data of the contact-mechanics challenge, results in a re-390

duction of our guess for ac to 12.5 nm.

The just-obtained numbers compare well to the minimum characteristic is-

land size observed in the contact-mechanics challenge of O(1, 000 nm2) cor-

responding to a characteristic contact radius of ac ≈ 17 nm. We find this

agreement quite surprising given the simplicity of the approach, which ignores,395

among other things, the patchiness of true (non-) contact and the distribution

of local contact radii in randomly rough surfaces.

3.7. Stress-autocorrelation function

In the introduction, it was argued why the height-difference ACF contains

more useful information for contact mechanics than the Abbott-Firestone curve.

In the context of stress fields, one could likewise appreciate that their ACF

contains information on how stress decomposes into long and short-wavelength

contributions, whereby information on stress gradients is implicitly contained.
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In the following, we normalize the stress-ACF to the relative contact area at the

smallest scale, i.e., we consider

Γσ(∆r) ≡ Gσ(∆r)

ar(0)
. (47)

In the limit ∆r → 0, Γσ(∆r) states the stress variance averaged solely over

the true contact, while at large ∆r it is essentially the square-root of the stress400

variance in a contact point times the stress standard deviation a distance ∆r

away from contact points. We also remind the reader that for small relative

contact areas, Γσ(∆r) turns out proportional to the contact ACF [30] – except

for very small corrections.

We first investigate the full-contact stress ACF in figure 5. Good agreement405

can be seen between the analytical results and the GFMD data. The H = 0.5

curve shows relatively strong Helmholtz ringing for ∆rqs ≈ 1, which we attribute

to the sharp cutoff at C(qs). Conversely, ringing is more prominent at the

transition from the self-affine to the roll-off domain in the H = 0.8 system than

for H = 0.5.410

In order to reduce ringing effects in our comparison between GFMD and

theory when the pressure is small, we replace Gfull
σ (∆r) with a function that

mimics the exact Gfull
σ (∆r) quite closely but yet goes smoothly to zero, i.e.,

at sufficiently large ∆r we let the function go to zero with a steep power law.

The reason for this choice is that due to the mode coupling between different415

ũ(q) at small ar [31, 32], ringing effects must be expected to smear out, which

suppresses sign changes of Gfull
σ (∆r) at large values of ∆r.

In figures 6 and 7, we compare the reduced stress ACF Γσ(∆r) obtained at

a finite normal stress with GFMD and with two variants of Persson theory. The

latter can be described as

Gσ(∆r) = p2
0 +Gfull

σ (∆r)W [ar{p∗(∆r)}], (48)

where the weighting function satisfies

W (ar) =

 ar original theory

a2
ri/ar modified theory

(49)
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Figure 5: Full-contact stress ACF, Gσ(∆r), for surfaces with two different Hurst exponents,

H = 0.5 and H = 0.8. Symbols represent GFMD data, thin dashed lines refer to the analytical

solution in equation (24), and thick lines to an approximation of the exact stress ACF, which

suppresses ringing effects for ∆r = O(λr). The inset highlights this latter regime.

Here, ari is based on an improved formula for the relative contact area as a func-

tion of the reduced (scale-dependent) pressure p∗, closely following equation (15)

in reference [32]:

ari =
(
1− a2

r

)
erf(
√
πp∗) + a3

r . (50)

It is designed such that the ari relation satisfies ari = 2p∗ at small p∗ and

smoothly crosses over at intermediate contact areas to the original Persson the-

ory, i.e., equation (29), as full contact is reached. In the modified scheme, we420

also normalize Γσ(∆r) with ari(∆r → 0) in order to divide by our (almost) best

possible guess for the relative contact area. The choice of the modified weighting

factor is purely heuristic and motivated by our desire to get accurate numbers

for Γσ(∆r) in the limit ∆r → 0 and ∆r →∞.

Even without the modification to Persson theory, figures 6 and 7 corroborate

previous successful tests of the ability of Persson theory to predict the stress

ACF for randomly rough surfaces [30]. Here, however, we conduct the analysis
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Figure 6: Normalized stress ACF Γσ(∆r) for an H = 0.5 substrate at various pressures as

deduced from GFMD simulations (symbols) and from our real-space interpretation of Persson

theory (lines). Thin dashed lines refer to the original unmodified Persson equation, while

full lines contain slight modifications to the theory with correction factors of order unity as

described in equation (49). The thick dashed lines indicates the low-pressure asymptotics of

Γσ(∆r) in the self-affine domain, which scales as ∆r1−H . Prefactors can be deduced from

equation (51). The simulation set-up is described in section 2.7.
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Figure 7: Same as figure 6 except for H = 0.8.
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in real space rather than in a Fourier representation. We also include the roll-off

domain, which had not been considered hitherto in such a stress test of Persson

theory. Finally, we find that the simple analytical formula

Γσ(∆r) =
πḡ(λs)H

2E∗2
√
Gδh(∆r)csa(H)

2∆r
(51)

provides a quick and yet quite reasonable guess for the asymptotic behavior of425

the stress ACF in the self-affine scaling regime at small pressures. That scaling

behaviour is reflected for only one decade in ∆r when representing the self-affine

branch with λr/λs = O(103).

4. Conclusions

We demonstrated that the height-difference ACF yields quite useful infor-430

mation on properties that are central to contact mechanics. Not a single of the

respective predictions can be even attempted to be made by taking a bearing-

area curve as the sole information on the surface topographies. Examples in-

clude exact expressions for the elastic energy density and the stress ACF in full

contact and approximations of these quantities for partial contact as well as435

scale-dependent contact stresses within the realm of a real-space interpretation

of Persson theory.

When applying the methodology to applications beyond those discussed ex-

plicitly in this work, small modification might be necessary. These can be the use

of a frequency-dependent contact modulus E∗(ω) when viscoelasticity becomes440

important, or, the need to introduce an appropriate scale-dependent E∗(∆r)

for gradient materials or thin slabs. In the latter case, the term E∗(∆r) would

have to be pulled into integral expressions like those occurring on the r.h.s. of

equation (44).

Our results on partial contacts obtained in the real-space representation turn445

out as accurately as when Persson theory is conducted in Fourier space. Since

our formalism does not require sophisticated mathematics, Fourier transforms,

or the writing of elaborate codes but at worst one-dimensional integration or
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differentiation with respect to one variable, we hope that the theory might enjoy

more wide-spread use than it is currently the case. It remains to be seen what450

challenges occur when further porting our real-space approach to a broader

range of applications, which could include adhesion, plasticity, and predictions

on mean gaps as a function of load or gap distribution functions. We are in

the process of working out expressions for the scale-dependent elastic energy in

partial contact, which will not be quite as elemental as our expressions for scale455

dependent stresses or the stress ACF. However, we are certain that the only

needed mathematical tools remain manipulation of the height-difference ACF

in terms of integration and differentiation.

Of course, our formalism does not remedy Persson theory in those situa-

tions, where it cannot be expected to lead to accurate results. It will remain460

flawed when the stress-strain relation differ substantially from linearity or when

the surface roughness strongly violates the random-phase approximation. We

yet feel that a quick but meaningful analysis of a contact problem within linear

elasticity is more useful (even in the mentioned circumstances) than the study

of any bearing model neglecting elastic coupling between asperities also because465

the proper construction of asperity statistics alone is mathematically more de-

manding and less well defined than the full execution of our formalism. We

therefore hope that in the future, height topographies will be routinely reported

as height-difference autocorrelation functions rather than as spectra.

Appendix A. Alternative derivation of real-space elastic energy470

From dimensional analysis, it is clear that the relation between the height-

difference autocorrelation function and the areal elastic-energy density must be

of the form

vel = c · E∗
∫
d∆r

Gδh(∆r)

∆r2
, (A.1)

where c is a dimensionless constant, so that units match. We evaluate this

expression for single-wavelength roughness as described by

h(r) = h̃(q)eiq·r. (A.2)
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With our definition of h(r), the height-difference ACF is

Gδh(∆r) = |h̃(q)|2 {1− cos(q ·∆r)} (A.3)

and its orientational average

Gδh(∆r) =
|h̃(q)|2

2π

∫ 2π

0

dϕ {1− cos(q∆r cosϕ)} (A.4)

= |h̃(q)|2 {1− J0(q∆r)} . (A.5)

Inserting Eq. (A.5) into Eq. (A.1) and evaluating the integral yields

vel = cE∗q|h̃(q)|2. (A.6)

The r.h.s. of this equation corresponds to an individual summand in Eq. (12)

if c = 1/4.
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