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Systematic analysis of Persson’s contact mechanics

theory of randomly rough elastic surfaces

Abstract. We systematically check explicit and implicit assumptions of
Persson’s contact mechanics theory. It casts the evolution of the pressure
distribution Pr(p) with increasing resolution of surface roughness as a diffusive
process, in which resolution plays the role of time. The tested key assumptions
of the theory are: (a) the diffusion coefficient is independent of pressure p, (b)
the diffusion process is drift-free at any value of p, (c) the point p = 0 acts
as an absorbing barrier, i.e., once a point falls out of contact, it never reenters
again, (d) the Fourier component of the elastic energy is only populated if the
appropriate wave vector is resolved, and (e) it no longer changes when even
smaller wavelengths are resolved. Using high-resolution numerical simulations,
we quantify deviations from these approximations and find quite significant
discrepancies in some cases. For example, the drift becomes substantial for small
values of p, which typically represent points in real space close to a contact line.
On the other hand, there is a significant flux of points reentering contact. These
and other identified deviations cancel each other to a large degree, resulting
in an overall excellent description for contact area, contact geometry, and gap
distribution functions. Similar fortuitous error cancellations cannot be guaranteed
under different circumstances, for instance when investigating rubber friction. The
results of the simulations may provide guidelines for a systematic improvement of
the theory.

PACS numbers: 46.55.+d, 68.35.Gy, 46.15.-x
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1. Introduction

Most natural and industrial solids have rough surfaces, with roughness that is close
to self-affine and fractal, and spanning several orders of magnitude in spatial scale.
Persson theory [1–3] has been shown to describe the contact mechanics of such
surfaces quite well. It has been extended to also describe various other properties and
phenomena, such as adhesion [4–6], plasticity [2, 7], contact stiffness [8, 9], leakage [10–
13], squeeze-out [14], and mixed lubrication [15–17].

Persson theory builds on quite simple and elegant statistical premises about how
the pressure distribution Pr(p, ζ) changes as the “magnification” ζ is increased, i.e.,
sinusoidal roughness is gradually and systematically added to an initially flat, semi-
infinite surface in contact with a counter body. In its original formulation [1], the
only input into the theory are experimentally measurable quantities, in particular the
power spectrum of the surface roughness, the effective modulus, and the external load.
In recent works [18], a “fudge parameter” of order unity is introduced. Its purpose
is to make the theory reflect more accurately the relation between displacement and
elastic energy when contact is partial. While Persson theory has been tested numerous
times and shown to describe many interfacial properties quite accurately, only the final
results of the theory have been under scrutiny. So far, no quantitative analyses have
been reported in the literature to what extent the assumptions entering the theory
hold and to what degree (fortuitous) cancellation of errors may be responsible for
its success. Manners and Greenwood [19] raise some concerns, mainly with regards
to the boundary conditions employed, but fail to investigate to what measure the
assumptions influence the results.

This paper quantitatively investigates the main underlying assumptions of
Persson theory, and quantifies the error each assumption introduces. We do this with
high-resolution numerical simulations using the GFMD method [20, 21]. There are
no adjustable parameters besides those characterizing the rough surface and the ratio
of pressure and elastic modulus. The assumptions of an ideally-elastic, semi-infinite
half-plane are shared by Persson theory. We can test each assumption entering the
theory individually and assess its effect, which may provide guidelines as to how to
correct the theory in the future.

The approach pursued in this work is to solve numerically the contact mechanics
problem by sequentially increasing the magnification. During each step of including
more small-scale details into the simulation, we measure the detailed evolution of the
system, e.g., we compute the transition probability Pr(p, ζ + ∆ζ|p′, ζ). It states the
likelihood that the pressure at a given interface point in real space changes from p′

to p as the magnification is increased from ζ to ζ + ∆ζ. Another central observable
is how the elastic energy is distributed among different modes (in Fourier space) as ζ
changes. These results are then compared to pertinent expressions in Persson theory.
Analysis of individual modes provides additional information beyond previous tests
of the theory that only analyzed integrated properties, for example relative contact
area [22–26], the mean gap [3, 24, 25, 27], the contact stiffness as a function of the
applied pressure [8, 27], adhesion [28], or the correlation functions of contact and
pressure [29, 30].

This work is structured as follows: in Section 2 we summarize key ingredients
of Persson theory, including its main assumptions we set out to test as well as the
numerical methods we use. Section 3 presents the results of our tests. We discuss our
findings in Section 4.



Systematic analysis of Persson’s contact mechanics theory of randomly rough elastic surfaces 3

2. Methods

In this section, we summarize the key ingredients of Persson theory and the numerical
methods we use. Many controlled approximations enter both Persson theory and
the numerical solutions in a similar fashion. Thus, our analysis only pertains to the
accuracy of the solution of the idealized contact mechanics model and not to the
accuracy of the idealizations themselves.

The idealizations used in this work are: The small-slope approximation, neglect
of lateral displacements, linear elasticity, semi-infinite bodies, hard-wall interactions,
and absence of adhesion, although the latter can be added to both theory and
simulations [31]. In addition, we assume self-affine surface spectra, whose height
profiles can be characterized as colored noise. The statistical properties of our idealized
surfaces are defined by their Hurst exponent H, cutoff (or roll-off) wave numbers
limiting the power law behavior at large and small wavelengths, respectively, and a
prefactor [2].

As pointed out recently in a dimensional analysis [25], systems with a cut-off
at large and small wavelengths — which we consider here — are fully defined by a
small set of dimensionless numbers: (i) a dimensionless pressure p̃0 = p0/E

∗ḡ, where
p0 is the dimensional pressure, E∗ the effective modulus, and ḡ the root-mean-square
gradient of the surface, (ii) the Hurst exponent H, and (iii) the ratio of the two cut-offs
at short and long wavelengths, i.e., ǫf = λs/λl. In addition, one may consider (iv) the
ratio of system size L and λl, which, however, is only relevant at very small loads [9],
and

(v), in numerical simulations, the ratio of lattice discretization a and λs, which
we try to keep small enough to approach the continuum limit sufficiently well.

2.1. Persson theory

The contact mechanics theory by Persson has been summarized several times [1, 2, 32],
also in a previous work [25]. Here we focus on its details related to the assumptions
we are going to verify.

Assume we know the pressure distribution in a contact, whose spatial features
are resolved up to a magnification of ζ, i.e., the spectrum of the surfaces is limited
to wavevectors magnitudes ql ≤ q ≤ ζql, where ql = 2π/λl. We could predict
how the distribution changes with increasing ζ if we knew the transition probability
Pr(p, ζ + ∆ζ|p′, ζ), which, as stated in the introduction, specifies the likelihood that
the pressure at a given point in real space changes from p′ to p as the magnification
is increased from ζ to ζ +∆ζ. By definition of the transition probability, one would
obtain

Pr(p, ζ +∆ζ) =

∫
dp′ Pr(p, ζ +∆ζ|p′, ζ)Pr(p′, ζ). (1)

The starting point of Persson theory is an approximation to this transition probability
according to:

Pr(p, ζ +∆ζ|p′, ζ) ≈ 1√
2π∆p2

exp

{
− (p− p′)2

2∆p2

}
(2)

with

∆p2 =
∑

ζql≤|q|<(ζ+∆ζ)ql

(
qE∗

2

)2

|h̃(q)|2, (3)
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where the h̃(q) denote the Fourier coefficients of the (combined) surface height. The
broadening of pressure ∆p is motivated from the exact expression for the broadening
that would hold if an infinitesimally small, single-wave height fluctuation were added
to an otherwise perfectly smooth interface under a finite normal pressure. It appears
that it suffices to use a Gaussian in place of the (unknown) true broadening function,
because — owing to the central limit theorem — the detailed shape of transition
probabilities should become irrelevant when they are applied repeatedly a large
number of times.

One problem of the Gaussian transition probability is that it also allows negative
pressures. This undesired property can be avoided by interpreting the broadening of
the pressure distribution function in terms of a diffusive process: each point in the
interface represents a walker, the pressure could be seen as its “random location”, and
magnification plays the role of time. For example, as magnification goes on, the local
pressure would be expected to mount when the local height increases relative to some
neighborhood with greater ζ, while it would diminish in the opposite case.

The boundary condition of non-negative pressures not being allowed in the given
context can be implemented within this interpretation by assuming that each walker
hitting the p = 0 boundary gets absorbed into it, that is, the walker gets lost to
noncontact. The idea can be realized formally by subtracting a mirror Gaussian from
the original Gaussian in (2) so that

Pr(p > 0, ζ +∆ζ|p′, ζ) = 1√
2π∆p2

×
[
exp

{
− (p− p′)2

2∆p2

}
− exp

{
− (p+ p′)2

2∆p2

}]
. (4)

The transition probability for negative p can now be set to zero. Moreover, at p = 0,
a delta-function is placed, whose prefactor is chosen such that the integral over the
complete transition probability is unity.

An interesting property of the transition probability approach is that the
distribution at any given magnification ζ can be calculated from (4). This is done
by summing over all ∆p2 contributions coming from wavevectors with |q| < ζql into
the transition matrix to yield ∆p2tot(ζ). Moreover, the initial condition (ζ = 1) for
smooth interfaces is that the pressure is homogeneous across the interface when no
roughness features are resolved. Thus, it can be expressed as Pr(p, ζ = 1) = δ(p−p0),
with p0 = L/A0, where L is the normal load and A0 the nominal contact area. This
leads to

Pr(p > 0, ζ) =
1√

2π∆p2tot(ζ)

[
exp

{
− (p− p0)

2

2∆p2tot(ζ)

}

− exp

{
− (p+ p0)

2

2∆p2tot(ζ)

}]
. (5)

We use the variable p (without subscript 0) for microscopic pressures while p0 refers
to the “macroscopic” pressure.

In the original version of the theory, the magnification dependent relative
contact area ar(p0, ζ) is obtained by integrating over the pressure distribution from
infinitesimally small positive pressures to infinity, yielding

ar(p0, ζ) = erf

{
p0√

2∆ptot(ζ)

}
. (6)
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In more recent versions of the theory [18], Persson introduced a correction to (3)
using the argument that the broadening for partial contact is less than for full contact.
This leads to a modified broadening pressure

∆p2mod = S{ar(p0, ζ)}∆p2, (7)

where the “fudge factor” S{ar(p0, ζ)} is parameterized to match the numerical results
for the pressure-dependence of the relative contact area. The following functional form
has been used

S(p0, ζ) = [γ + (1− γ)a2r (p0, ζ)], (8)

with γ ≈ 0.42. Thus, S{ar(p0, ζ)} decreases monotonically from S{ar(p0, ζ) = 1} = 1
to S{ar(p0, ζ) → 0+} ≈ 0.42. This means that the modification is of order unity and
thus relatively minor given that many quantities span many decades, for instance the
contact area, contact stiffness, and the spatial scales of the relevant wavelengths.

With this modified broadening pressure, we cannot write down a closed-form
expression for the modified version of the total pressure broadening. It now has to be
determined self-consistently. However, we may still use the formulae for the (total)
pressure distribution and the relative contact area, as long as we insert the corrected
pressure broadening terms.

Up to this point, the uncontrolled approximations in Persson theory are: (a) the
pressure broadening ∆p2 (and similarly ∆p2mod) entering the transition probabilities
Pr(p, ζ +∆ζ|p′, ζ) only depend on p− p′ (and potentially on ar) but not on the initial
pressure p′ of a walker in any other form, (b) there is no drift in pressure at any value
of p′, neither before nor after adding the mirror Gaussian, and (c) there is no flow of
the probability density at p = 0 back to positive pressure. In the interpretation of the
diffusion equation, it means that any walker gone out of contact is assumed to remain
out of contact for good.

Another quantity of interest is the elastic energy stored in the interface, E , which
is needed, for example, in the derivation of how the contact stiffness depends on
pressure. According to the original Persson work [5], the energy in a resolved mode is

EP(p0,q) =
E∗

4
q ar(p0, q/ql) |h̃(q)|2, (9)

while unresolved modes are assumed to carry no energy. In more recent work [18, 33],
the elastic energy was also modified with a correction factor to read

Ec(p0,q) = EP(p0,q)S {ar(p0, q/ql)} . (10)

We denote the total energies stored in the interface by

EP(p0) =
∑

q

EP(p0,q), (11a)

Ec(p0) =
∑

q

Ec(p0,q). (11b)

Note that the contact area only depends on the nominal external load p0 and the
magnification ζ = |q|/ql. Only the total sum (11a) or (11b) needs to be accurate in
the calculations relating to contact stiffness and mean gap, and not each individual
term of (9). It might be necessary for other applications, such as rubber friction, to
impose stricter requirements. Each summand associated with a given wave vector
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should match, on average, the corresponding term of the exact elastic energy

Eexa(p0,q, ζ) =
E∗

4
q |ũ(p0,q, ζ)|2, (12a)

Eexa(p0, ζ) =
∑

q

Eexa(p0,q, ζ), (12b)

where the ũ(p0,q, ζ) are the exact elastic displacements in Fourier space for a given
magnification and external load p0. Those we determine to high accuracy from
numerical simulations for a given realization of surface roughness defined by the h̃(q).

2.2. Note on contact stiffness and Persson theory

We wish to reemphasize that the purpose of this work is to analyze the starting
hypotheses of Persson theory rather than the final, experimentally measurable results
arising from it. It may yet be useful to remind the reader that some of these final
results are the subject of current debate, in particular how the contact stiffness κ or
the linearly related contact conductance depend on pressure. Paggi and Barber [34]
pointed out that many previous works found a power law relation

κ ∝ pα (13)

with an exponent α < 1 in agreement with their dimensional analysis but in
contradiction to a linear relation, α = 1. The latter is yielded by the original Persson
theory that implicitly assumes the thermodynamic limit, and also found in continuum
simulations in which self-affine roughness spreads only two decades [8, 27]. Scaling
arguments proposed by Pohrt et al. [35], which are meaningful when contact lives
only in a single meso-scale asperity, lead to an exponent α in (13) that solely depends
on the Hurst roughness exponent via

α =
1

1 +H
. (14)

Their own numerical results, which were based on the so-called method of dimensional
reduction, could not confirm this result and instead indicated that α ≈ 0.266 (3−H).
However, work based on accurate GFMD simulations as well as an extension of Persson
theory to finite systems [9] found (14) to be indeed true for pressures that are so small
that contact does not spread over the interface but is located within a single meso-scale
asperity. For more details, we refer the reader to the original literature [9, 25, 34, 35].

2.3. Numerical methods

We use Green’s function molecular dynamics [20, 21] (GFMD) to calculate the response
of an ideally-elastic solid to deformations caused by mechanical contact with a rough
counter body. The solids are integrated over the z coordinate and modeled as semi-
infinite half-planes with hard-wall interactions in the small-slope approximation so
that only normal coordinates need to be considered. The setup is thereby reduced
from a three-dimensional elasticity problem with (3L)3 independent variables to a
classical boundary value problem with L2 grid points, where L is the linear dimension
of the system. We solve it with a molecular dynamics approach in reciprocal space,
in order to reduce critical slowing-down from O(L2) to O(L1/2). While a dynamic
setup is possible, for this work we are interested mainly in the static limiting case and
therefore use damped dynamics here.
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The details of the method can be found in Ref. [25]. We use the parallel FFTW
library [36] which scales to several thousand cores. This allows us to tackle very large
systems which is necessary to cover up to 5 decades in roughness, close to what is
found in natural or industrial surfaces [32, 37, 38]. A simulation with linear size 217

corresponds to 5× 1015 (super-)atoms in an equivalent three-dimensional simulation.
More in-depth detail can be found in the original literature [20, 21].

3. Results

3.1. Preliminary remark on relative contact area and the use of units

Before we present our tests of the assumptions made in Persson theory, we comment
on the dependence of contact area on pressure and resolution, as well as on our choice
for pressure. In our previous work [25], we found that few dimensionless quantities
suffice to define a contact. In particular, we noticed that the contact area is essentially
only a function of reduced pressure p̃0 = p0/E

∗ḡ as long as the linear dimension of
the system L much exceeds the large-wavelength cutoff λl and the ratio of the cutoffs
at small and large wavelengths is sufficiently large. As demonstrated in figure 1, we
can approximate the data from our previous work via the constitutive relation

ar ≈ {1− s(p̃0)} erf(c1
√
πp̃0) + s(p̃0) erf(c2

√
2p̃0), (15)

with two fit parameters c1 = 1.075 and c2 = 1.025 being very close to unity, and using
a “switching function”

s(p̃0) = erf2(c2
√
2p̃0). (16)

The motivation for the functional form is that ar can be described by a single
error function in the limit of low pressure and the complementary contact area by a
single (complementary) error function in the limit of large p̃0. However, the numerical
coefficients to be used in the error functions at small and large pressure differ slightly.
This is why we introduce a switching function that is close to zero at small p̃0 and close
to one at large p̃0 making the first summand on the r.h.s. of (15) dominate the sum for
small p̃0 and the term erf(c2p̃0) be dominant at large p̃0. (Since the leading correction
to the linear low-pressure ar ∝ p̃0 relation is third-order in pressure, we chose the
switching function as the square of an error function.) Previous simulations found
that ar ∝ κp̃0 with κ & 2 for p̃0 → 0. Our approximation for κ = 2.15 ≡ 2 c1 is close
to that value. The second term was written such that it describes the complementary
contact area at large pressures in exact accordance with Persson theory for c2 = 1. In
agreement with a previous numerical study [26], we find that a small correction needs
to be applied. In principle, the coefficients c1 and c2 could be optimized for different
values of H, but for the stated numbers, ar and 1− ar are reproduced within O(10%)
accuracy for any value of H = 0.3, 0.5, and 0.8 used in the simulations.

In the current work, we keep changing the resolution and thus it would not be
meaningful to state absolute values of p0. It would not be meaningful either to express
pressure as p0/E

∗ḡ, because each time we increase the magnification at constant p0,
ḡ would increase as well and thus the reduced pressure would change, although the
absolute pressure p0 would have remained unaltered. We therefore state or plot the
relative contact area at a given magnification rather than p0 or p̃0. With the help of
figure 1 or (15), these numbers can be easily converted into reduced pressures at that
magnification. Furthermore, in most cases one can simply associate p̃0 ≈ E∗ḡar/2.
We choose E∗ḡ as unity to nondimensionalize the pressure [25].
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Figure 1. Representation of the relative contact area ar as a function of the
reduced pressure for three different Hurst exponents H, as obtained in previous
GFMD simulations [25], and the approximative function, (15). To show the
complementary relative contact area (1−ar) in the same figure, we plot ar(1−ar)
rather than ar.

For microscopic, local pressures, i.e., those that hold for individual points at the
interface, we use p0/ar as default unit as the latter reflects the mean pressure averaged
over the contact. Thus, when identifying a walker with a pressure much less than unity,
there is a large probability that it sits either close to a contact line or in a small patch
bearing little load. As stated before, the variable p stands for local pressures while p0
refers to the “macroscopic” pressure.

3.2. Pressure-independent and drift-free broadening

In this section we test the first two approximations implicitly contained in Persson
theory. They can be described as the following two properties of the transition
probability Pr(p′, ζ +∆ζ|p, ζ): (a) the term related to the broadening of the pressure
distribution, ∆p2 depends only on p− p′, i.e., the “diffusion coefficient”

D = ∆p2/∆ζ (17)

is independent of p′, and (b) the transition probability induces no drift at any pressure.
In order to test these two approximations, we first ran simulations with a

maximum resolved target wave number λt = λl/ζ with ζ = 63. In these calculations,
the Hurst exponent was set to H = 0.5 and a system size of L = 16, 384 was
investigated. The pressure was chosen such that it produced a relative contact area
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of 0.01 for the given magnification of ζ = 63. From the relaxed configurations
we computed the pressure at each point at the interface and produced a pressure
distribution function from it on a discretized mesh with constant spacing ∆p. For
selected bins with index n, we memorized each grid point, or walker, for which the
pressure lay in the interval n∆p ≤ p < (n + 1)∆p at ζ = 63. The magnification was
then increased to ζ = 63.3 and the distribution function (of the new configuration)
evaluated over the points that had been associated with the given bins at the old
magnification. This yields a discretized version of the transition probability. Results
are shown in figure 2.
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Figure 2. Original, discretized pressure distribution Pr(p), indicated by plus
signs, at a magnification of ζ = 63. For selected bins, indicated by full circles, the
transition probability Pr(p, ζ +∆ζ|p′, ζ) is recorded for ∆ζ = 0.3 (right ordinate
axis). They are shown in color. Full lines represent fits to mirror Gaussians as
described in the Appendix. Starting at bin 20, the difference to simple Gaussian is
negligible. The heights and thus the widths of the transition probabilities turn out
to depend on pressure p. The simulations were run with H = 0.5 and ar ≈ 0.01.

In figure 2, the transition probabilities are described accurately by mirror
Gaussians, for the bins whose mean pressure much exceeds the broadening, and
information on the diffusion coefficient can be ascertained directly. For example, a
systematic on-the-fly determination of the diffusion coefficient associated with one of
these bins can be done by subtracting the variance obtained at the old magnification
from that at the new magnification. However, special care has to be taken for the
analysis of those bins representing small pressures. In Appendix A we describe
how to compute drift and diffusion coefficients such that their determination is also
meaningful when the mean pressure of a bin is smaller than the broadening. If the
diffusion into the singularity at p = 0 is negligible, even a simple Gaussian suffices
with high accuracy.
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Figure 3. Similar to figure 2, except that the simulations used here were for
H = 0.8 and ar ≈ 0.31, and the magnification changed from ζ = 16 to ζ = 16.2.
The figures show identical trends.

We carried out the same analysis for H = 0.8 and a much larger relative contact
area of ar ≈ 0.31. Figure 3 shows that there is no qualitative difference for the different
Hurst exponents, or at different external loads.

Figure 4 shows bins for which the broadening is larger than the means. In this
case, the procedure laid out in Appendix A is not suited anymore. While bin 10 is
still described quite well (but not by a simple Gaussian anymore), for bin 6, only the
width is still acceptable. The peak is shifted slightly. For bin 2, finally, neither the
width nor peak are suitably described. We did not include any data from bins < 8 in
the following.

In order to arrive at more quantitative results, we conducted a moments analysis
of the pressure distribution, as described in Appendix A, for 64 bins, for a relative
contact area of ar = 0.3. The results shown in figure 5 reveal that the drift is negligible
for large pressures and that the diffusion coefficient comes out as assumed in the
original version of Persson theory. That means that no correction factor is required
to predict the correct broadening for most values of p, although for ar = 0.3, S(p0, ζ)
in (8) should already be close to its minimum value ≈ 0.42. Drift and diffusion
coefficients only deviate from the prediction for p ≪ p0/ar, that is, at pressures much
smaller than the mean pressure in the contact regions.

It can be easily rationalized why the assumptions made in Persson theory hold for
p & p0/ar but not for p ≪ p0/ar. Walkers contributing to the histogram at pressures
p & p0/ar lie far away from any contact line and pressure gradients should usually be
small. The assumption that additional roughness leads to small pressure perturbation
is thus justified, certainly as long as λl/ζ is small compared to the linear dimension
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Figure 4. Pressure distribution of some low-pressure bins for H = 0.8 and
ar ≈ 0.31. The singularity at p = 0 is omitted in all cases. The mirror-Gaussian
function with on-the-fly determined parameters (solid lines) only fits well as long
as the broadening is smaller than the mean. Below that threshold, the description
is unsuitable. It is in principle still possible to fit a mirror-Gaussian to the data
(not shown), but the normalization is inconsistent. We therefore did not include
bins < 8 in our analysis.

of the contact patch to which this walker belongs. In contrast, walkers contributing
to the histogram at p ≪ p0/ar lie close to a contact line, or, more generally, close to
a point or patch that risks to fall out of contact soon. Pressure gradients are high at
those positions and even diverge right at the contact line (as in Hertzian contacts),
which explains why the diffusion coefficient picks up at small pressures. Moreover,
pressure gradients increase as the contact line is approached, which is consistent with
the presence of a negative drift. If, however, a walker is extremely close to a contact
line, there is a large probability that the walker jumps from contact with large pressure
gradients to out-of-contact, where the pressure gradient is zero. This explains why
the drift turns around in sign at extremely small pressures.

An interesting observation in figure 5 is that the pressure broadening in the
contact agrees with the original, correction-parameter-free variant of Persson theory
rather than with the modified version. At the same time, points fall out of contact more
quickly than predicted by Persson theory because many walkers acquire a negative drift
at p < p0/ar. Their number is distinctly larger than of those having a positive drift
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Figure 5. Diffusion (blue circles, left y-axis) and drift coefficients (red square,
right y-axis), describing the evolution of the pressure distribution between a
magnification of 16 and 16.2, at relative contact areas of ar(ζ = 16) = 0.2667
and ar(ζ = 16.2) = 0.2662. The shown data is averaged over four equivalent
but statistically independent realizations of the surface. The dashed lines reflect
assumptions made in the original version of Persson theory. Non-negligible
stochastic uncertainties remain for p ≫ p0/ar as revealed by the error bars.
Stochastically significant discrepancies from the drift-free and the constant-
diffusion-coefficient assumptions remain for pressures p ≪ p0/ar. These can be
rationalized by assuming that low-pressure points tend to be located close to a
contact line. Open symbols are from bins where the mirror-Gaussian fit function
is unsuited to determine the diffusion coefficient, even though the drift in those
bins is well defined.

so that the average contact drift coefficient

µ̄c =
1

ar

∫ ∞

0+
dpPr(p)µ(p) (18)

is negative.
So far, our calculations imply that there is mean drift towards smaller pressures

and an increased diffusion at small pressure as compared to the theoretical prediction.
From this point of view, one would expect Persson theory to overestimate the contact
area. However, the opposite is true. Thus, one must expect walker to re-enter contact
upon an increase of magnification, which would counteract the large flux out of contact
that is induced by large diffusion coefficients and negative drifts at small p. We
investigate this hypothesis next.
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3.3. No re-entry

One key assumptions in Persson theory is that points at the interface are seen to fall
out of contact as finer details of the surface roughness are incorporated. The idea is
visualized in figure 6, which shows cuts through the converged surfaces for simulations
with system sizes of 4, 096 × 4, 096 at five different resolutions ζ = {2, 4, 16, 64, 256}.
The cuts are at the same location for each surface. In each panel, roughness is added
on successively smaller scales. Even though we did not select the location of the cut
specifically for this effect, we happened to find a re-entry point.

A similar analysis as that for the cross section of a contact shown in figure 6 is
repeated in terms of a bird’s eye view of the interface in figure 7. There we highlight
areas that change from contact to non-contact and vice versa, as ζ is increased from
128 to 129.5. Analysis of the data reveals that the net flux to non-contact is a small
fraction of O(15%) of the flux in either direction. The large flux of points getting
back into contact supports the hypothesis that reentry distinctly increases the contact
area relative to the predictions by Persson theory. The effect is sufficiently large to
overcompensate the effects discussed in Section 3.2.

As one may expect a re-entry contact point to get out of contact soon again, it is
not clear how many contact points at a given magnification are reentrant points. To
answer the question how many points have ever returned to contact — or returned
to non-contact — one needs to examine every single change in magnification. This
is an extremely tedious and computationally expensive procedure — even for a small
system, 1, 024× 1, 024 in size, with λl = 512 and λs = 4, there are a total of ≈ 4, 400
different wave numbers, each of which has to be added one-by-one, and the same
number of separate simulations run, for each value of the external load. In addition,
this process has to be repeated for different surfaces to ensure robust numbers. We ran
a set of eight different random realizations for each pressure value of size 1, 024×1, 024.
We did not attempt to carry out this analysis for systems larger than 4, 096× 4, 096,
so that the resulting percentage is still only an estimate, as the fractal limit is not
reached fully. However, it does serve as an orientation — when taking into account
a larger range of magnifications more points are bound to experience re-entry than
for a smaller range. Nevertheless, for ar = 0.14 and H = 0.8, we find that ≈ 62% of
all contact points at the highest resolution have left and re-entered contact at a lower
magnification. For ar = 0.014, every single point in contact had lost contact at a lower
magnification. Even for ar = 0.88, where contact is nearly complete, the fraction is
still ≈ 8% and thus non-negligible. These numbers do not change if the continuum
limit is approached even closer — for ǫc = 1/8 and 1/16, the fractions remain the
same. They do not depend much on λl/L either, and remain comparable for ǫt = 1/4.
The Hurst exponent similarly has a very minor effect; the numbers for H = 0.3 lay
within 4% of those for H = 0.8, and neither showed a dependence on ǫt nor ǫc.

Figure 8 visualizes the reentry for a system of 2048 × 2048 over a larger range
of magnifications. All points shown in color have reentered contact in the examined
range, and only ≈ 25% of all points have remained in contact.

To complete the analysis of reentrance, we note that figure 9 includes data for the
pressure transition probability for an initial pressure of p′ = 0, similar to our analysis
for finite p′. For a change from ζ = 63 to ζ = 63.3, we find about 1% of all points
previously in noncontact reenter contact. Such points therefore act as if they came
from a “source” in the framework of the diffusion analogy, or, more precisely, as if
they were reflected — potentially with a delay — by the boundary. This can affect
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re-entry

Figure 6. (Color online) Cut through a rough contact with gradually increased
roughness on smaller and smaller scales. The magnification increases from top
to bottom with ζ = {2, 4, 16, 64, 256}. The top (orange) solid holds all the
compliance, while the lower (blue) body contains all the roughness. The gap
is kept in white. Even though the overall shape does not change at large
magnification, the local topology does, and this causes re-entry of some points
that had previously fallen out of contact.

the functional form of the pressure distribution function and lead to deviations from
a linear Pr(p) ∝ p dependence at small p, which one gets for the distribution shown
in (5). In fact, preliminary results are in violation of a Pr(p) ∝ p relationship.
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Figure 7. (Color online) Visualization of a contact geometry of a 4, 096× 4, 096
system with H = 0.8 and a relative contact area of ar = 0.14 at magnification
ζ = 129.5. White and blue areas represent non-contact, while gray and red show
contact patches. Blue and red points have changed their nature between ζ = 128
and ζ = 129.5, i.e., blue was in contact at ζ = 128, while red was in non-contact
at the smaller magnification. Since all points are in contact when only the very
longest wavelength is considered (ζ = 1), the red points have “reentered” contact.
The relative contribution of red and blue are 0.675 % and 0.597 % of the apparent
contact area, respectively, implying that the net flow 0.078 % is small compared
to the flux in either direction. The reentry process is not accounted for by Persson
theory.

3.4. Single-mode analysis of the elastic energy

As mentioned before, the derivation of Persson theory assumes that an energy mode
contains no energy until the appropriate mode of roughness is resolved. Beyond this
magnification, the energy in this mode is expected remain the same when even greater
wave numbers are included. For various external loads, figure 10 and 11 demonstrate
that this is an oversimplification when contact is incomplete. We plot the following
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Figure 8. Similar to figure 7, except for a 2048 × 2048 system and different
initial (ζ = 3.2) and final (ζ = 32) magnifications, for which the contact areas
were ar = 0.28 and ar = 0.14, respectively. Here, gray points have been in
contact at all intermediate magnifications, and white points have either been out
of contact at ζ = 3.2 or lost contact exactly once. In contrast, all points in
color have experienced reentry between ζ = 3.2 and ζ = 32; blue points show
out-of-contact reentry and red indicates contact reentry. Note that there are 3.8
times more colored points than gray points, and of all points in contact at the
final magnification, 50% have experienced reentry. Sharp features all come from
low magnifications where the surface changes relatively strongly with each added
wave number.

expression for a given target wave number qt

Enorm(p0, qt, ζ) ≡
Eexa(p0, qt, ζ)
EP(p0, qt)

≈
∑

|q|≈qt
q |ũ(p0,q, ζ)|2

∑
|q|≈qt

q ar(p0, qt/ql) |h̃(q)|2
, (19)



Systematic analysis of Persson’s contact mechanics theory of randomly rough elastic surfaces 17

0.0 0.2 0.4 0.6
p a

r
 / p

0

0.00

0.01

0.02

0.03

0.04

0.05
Pr

 (
 p

,ζ
+

∆ζ
  |

  p
’,

ζ 
)

bin 0

Figure 9. Histogram of the points in the zero pressure bin at ζ = 63, after the
magnification is increased to ζ = 63.3. The total transition probability is ≈ 0.01.
This means that 1% of all points reenter between ζ = 63 and ζ = 63.3.

while

Epred
norm(p0, qt, ζ) = S(p0, ζ) Θ(ζ − qt/ql) (20)

is the predicted normalized energy. Θ(ζ − qt/ql) is the Heaviside step function which
is zero for ζ < qt/ql and 1 for ζ ≥ qt/ql. We find that each mode is partially excited
already at a lower magnification than expected, and peaks at a higher magnification.
Partly this is caused by averaging the contribution of a number of nearby wave numbers
for reasons of reducing scatter. Another important effect should be related to the
following phenomenon: The derivative of the stress becomes singular as a contact line
is approached from within the contact. It then discontinuously drops to zero outside
the contact, as one can readily see in the case of a Hertzian contact. This implies that
the Fourier coefficients of the stress and thus the strain field must be non-zero up to
(infinitely) large wavevectors as soon as there is partial contact. The corresponding
amplitudes may be small, but they are non-zero.

When the external load is very high, as is the case in figure 10a, contact remains
complete up to high magnification, and (20) is essentially accurate. When the pressure
is reduced, as in figure 10b, or, alternatively, the magnification is increased further,
less energy starts to be stored in the short-wavelength modes than predicted. However,
also the long-wavelength modes are populated less than anticipated. Interestingly, the
energy reduction is even stronger for long wavelengths than for short wavelengths and
in contradiction to the functional form of S(p0, ζ) in (8), as revealed by figure 10c
and 10d.
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Figure 10. Normalized elastic energy, see (19) for system sizes of 16, 384×16, 384
and a Hurst exponent of H = 0.8, averaged over 8 statistically equivalent
but independent random realizations. The cutoff wave numbers were λl =
8, 192 and λs = 8, approximately fulfilling the thermodynamic, fractal, and
continuum limits. Each panel shows the elastic energy for a different relative
contact area at full resolution (top to bottom) of 0.87, 0.32, 0.083, 0.009, in
a collection of nearby Fourier modes with qt ≈ ζql normalized by the energy
that they are expected to have in the original Persson theory, i.e., normalized
by ar(qt/ql) E∗/4

∑
|q|≈qt

q|h̃(q)|2. The right ordinate axis shows the relative

contact area at the given magnifications.
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Figure 11. Similar to figure 10 but for H = 0.3 and the contact areas (top to
bottom): 0.88, 0.35, 0.093, 0.0098, 0.0017. Note that in panels (d) and (e), the
axis for the contact area is logarithmic.
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Short wavelengths are populated in a way that roughly conforms with Persson
theory before including the correction factor (8). However, long wavelength
displacements do not appear to develop as much as expected and even appear to
recede when roughness is added at large magnification and small external pressure.
This effect is captured neither in the original version of Persson theory nor in the
modified version.

Figure 10 and 11 seem to show a correlation between the asymptotic value that
the elastic energy, normalized with Persson’s prediction, converges to, and the relative
change of the relative contact area. We explore this correlation in figure 12 and 13.
The fall-off of the elastic energy turns out to be linear with magnification, so we can
extrapolate the curves for λt ≥ λl/128 to ζ −→ ∞ to determine the asymptotic value.

Figure 12. Asymptotic value of the ratio of elastic energy to Persson prediction
for H = 0.8 (see figure 10) versus the relative change of the relative contact area
with magnification, d ln ar/d ln ζ. Despite some scatter, a correlation is visible, of
the form 0.9 exp(−1.0x).

Ignoring the values at full contact, there indeed is a correlation, despite some

scatter, of the form K̃1 exp
[
−K̃2 d ln(ar)/d ln(ζ)

]
. The value of the constants is not

universal and changes with Hurst exponent, but — at least for the two cases we
inspected — assumes values of O(1). Further investigations are necessary.

3.5. Analysis of the integrated elastic energy

The previous section showed that the individual modes of the elastic energy do not
behave as Persson theory assumes, except near perfect contact. Nevertheless the
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Figure 13. As figure 12, but for H = 0.3. The correlation is not the same as for
H = 0.8, but the same form, with 0.7 exp(−1.4x).

theory quite accurately predicts the relative contact area and the mean gap found in
the contact between two randomly rough elastic bodies. Especially the latter depends
intimately on the elastic energy — albeit not on each mode but on the total sum. Still
it is not obvious that the total elastic energy is correct while each individual term is
inaccurate. In this section, we examine the integrated elastic energy and compare this
to the results that Persson theory posits.

In order to test the correction factor that is present in Persson theory, we calculate
it numerically using

S̃(p0, ζ) =
Eexa(p0, ζ)− Eexa(p0, ζ −∆ζ)

EP(p0, ζ)− EP(p0, ζ −∆ζ)
, (21)

where the numerator comprises the subtraction of the total elastic energy of a
simulation in which everything up to a magnification of ζ is resolved from that of
a simulation with a slightly lower magnification. The denominator is the difference
between (11a) for two different values of ζ = q/qt, which leaves only terms due to
the newly resolved wavelengths. We increment the resolution by the minimum amount
possible for a given discretization, i.e. recompute the contact for each new wave
number separately. This expression would yield the correction factor if each mode
of the elastic energy were excited exactly at its appropriate resolution and remained
constant with any further increase of resolution. Similarly in that case, (19) would
yield (20).

The numerator varies quite substantially for different values of q. As a
consequence S̃(p0, ζ) converges very slowly, so figure 14 is the result of more than 2, 400
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sets of independent random instances, for a total of about 2.9 million simulations of size
512×512. We confirmed the results with higher-resolution simulations atN = 1024 (95
sets, ∼ 400, 000 simulations), and, at selected magnifications, with N = 2048 (∼ 100
sets, 80, 000 simulations). The latter also include magnifications up to ζ = 128.
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Figure 14. Incremental correction factor S̃(p0, ζ), see (21), versus magnification,
for different pressures. Solid lines are N = 1024, while open circles (N = 512)
and filled squares (N = 2048) are size-scaled data which shows that the values are
converged. The data is averaged over between 10 and 2, 500 different realizations
of the rough surface.

Since we know from figure 10 and 11 that the individual modes of the elastic
energy Enorm(ζ) do not behave exactly as assumed in Persson theory, (21) may not
be an appropriate comparison. Instead, we consider the deviations of the total elastic
energy with respect to the magnification and to the measured relative contact area.

Enorm(p0, ζ) =
Eexa(p0, ζ)
EP(p0, ζ)

, (22)

The results are shown in figure 15 (varying ζ for p0 = const) and figure 16 (for ζ = 64,
varying p0, and therefore ar). They reveal that using (8) indeed significantly improves
agreement between theory and numerical measurements compared with the original
theory where S ≡ 1. Nevertheless, the total elastic energy is still overestimated by
≈ 10% even with the more complicated functional form. At low pressures, even the
correction factor is insufficient to get theory and measurement to agree.
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Figure 15. Integrated normalized elastic energy. The solid lines represent the
original variant of Persson theory (with S(ζ) = 1), while the dashed lines hold for
S as given in (8). For high and intermediate pressures, the corrected expression
yields very good values. At p̃ = 0.1 and low magnification, the correction factor
boosts the elastic energy beyond the measurement, while at even lower pressures,
the result is far below the measurement. Each data set is an average over 10
different random realizations.

4. Conclusions

In this work, we have revealed quite significant shortcomings of the assumptions
entering Persson’s contact mechanics theory. However, many errors cancel, which
explains why quite a few interfacial properties are predicted very accurately by the
theory. It is nevertheless not clear if all interfacial properties benefit from such
cancelations so that the theory might need to be improved for some applications.
For example, in the context of rubber friction or other problems involving moving
interfaces, the inaccurate partitioning of energy amongst different modes might be
problematic. At the current stage of development, only the net elastic energy of a
relaxed configuration turns out reasonable.

Despite our criticism, we recognize Persson theory as the only theory for
rough, linearly-elastic contacts that is based on controlled approximations and
reveals accurate information not only on scalar numbers but also on distribution
functions including contact geometry. The theory is essentially only based on directly
measurable quantities and thus free of ad-hoc parameters except for one correction
factor of order unity. In this work we found evidence that this correction factor is
needed but has so far been implemented only heuristically. Our results indicate that
the correction factor does not yield very accurate elastic energies at low pressure
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Figure 16. Similar to figure 15, except that the integrated normalized elastic
energy is plotted against the relative contact area (at constant magnification
ζ = 64). Each data set is an average over 10 different random realizations. The
correction factor works well for ar & 0.05; at even lower pressures, the deviation
from the measurement increases dramatically.

and moreover is sensitive to the rate at which the relative contact area decreases with
increasing resolution rather than to the relative contact area itself. One reason why the
gap distribution functions are nevertheless predicted quite accurately may be that for
low pressures the mean gap is approximately only logarithmic in pressure [3, 18, 25, 33].
As a consequence, a change in gap is only a logarithmic function of energy so that
only the order of magnitude of the energy needs to be known. For high pressures, on
the other hand, Persson theory is quite accurate.

Correcting individual ingredients to the contact mechanics theory might disturb
a delicate balance of error cancelations which is currently present. It might therefore
be necessary to make adjustments to the elastic energy and the various aspects of the
diffusion analogy simultaneously so that the predictions of the quantities tested so far
do not deteriorate.

It would certainly be desirable to motivate corrections to the theory without
making ad-hoc or uncontrolled assumptions. One possible avenue to derive such
corrections is to consider a model in which hard-wall repulsion is replaced with
smoother repulsion, such as exponential repulsion, which is more amenable to
analytical calculations than (non-holonomic) hard-wall constraints. In fact, one of
the authors investigated such a model [39] and proposed that stress-dependent drift
arises beyond a second-order cumulant expansion of the model, which is formally
equivalent to Persson theory. Pursuing such an expansion might, however, turn out
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tedious. The analytical expressions become increasingly involved with each added
order and the next non-vanishing term for colored-noise surfaces only arises at fourth
order.
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Appendix A. On-the-fly determination of the diffusion coefficient

The deduction of drift and diffusion coefficients from data for the transition probability,
Pr(p, ζ +∆ζ|p′, ζ), as shown in figure 2, becomes non-trivial when the magnification-
induced broadening is no longer small compared to p′. It is then no longer sufficient
to assume that the increase of the second moment of the pressure from old to new
magnification reflects the broadening. An example is the case for the distribution
associated with the bin number 10 in figure 2. The reason why looking at the change
in the second moment of the distribution is no longer sufficient is that some walkers
belonging to bin 10 at the original magnification have fallen out of contact at the new
magnification, as one can see, in figure 2, by the (blue) triangle at p = 0. This is why
walkers having landed at p = 0 no longer contribute to the random walk, at least as
long as they stay outside the contact. Thus, rather than fitting to Gaussians, it would
be better to fit the new probabilities to the function displayed on the r.h.s. of (4).
The value for p′, however, would be allowed to differ from the first moment of the
pressure associated with the original bin.

Instead of fitting the measured transition probabilities to (4), we ask the question
what parameters p′ and ∆p should be used to reproduce the first two moments of the
individual bin distribution at the new magnification. It can be readily shown that the
first moment of the distribution is identical to p′. As a consequence, we can simply
set

p′ = 〈p〉n,ζ+∆ζ , (A.1)

where 〈•〉n,ζ+∆ζ indicates an average over all walkers in bin n at the new magnification.
As a consequence, the drift in pressure can be computed from the difference of the
first moments at two consecutive magnifications, i.e.,

µn =
〈p〉n,ζ+∆ζ − 〈p〉n,ζ

∆ζ
. (A.2)

In a similar fashion as done for the first moment, we can equate the second moment
of the pressure as obtained in the simulation and as deduced by the distribution
function via

〈p2〉n,ζ+∆ζ =
1√

2π∆p2n

∫ ∞

0

dp p2
[
exp

{
− (p− p′)2

2∆p2n

}

− exp

{
− (p+ p′)2

2∆p2n

}]

=

√
2

π
p′ ∆pn exp

{
− p′2

2∆p2n

}

+
(
p′2 +∆p2n

)
erf

(
p′√
2∆pn

)
. (A.3)
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While (A.3) cannot be inverted analytically to solve for ∆pn, we found that

∆pn
p′

≈ σn

1 + α1σn + α2

√
π
8σ

2
n

1 + α2σn
(A.4)

with α1 = 0.5153, α2 = 0.7591, and

σ2
n =

〈p2〉n,ζ+∆

p′2
− 1 (A.5)

is exact in the limits of σn → 0 and σn → ∞ and yields results with errors less than
3% in between those limits. If higher accuracy is needed, one may use (A.4) as a
starting point for a Newton’s method.

In this calculation, we have neglected that the pressure distribution in the initial
bin is not an exact delta function but has a finite width δpn that is typically in the
order of but smaller than the half width of the bin itself. This induces a (small)
artifical broadening of the final distribution function, which can be accounted for by
replacing ∆p2n with ∆p2n − δp2n. With this new ∆pn, one can compute the diffusion
coefficient associated with bin n according to

Dn =
∆p2n
∆ζ

. (A.6)
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[39] Müser M H 2008 Phys. Rev. Lett. 100 055504


