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When quickly detaching an elastomer from a counterface, viscoelasticity dramatically increases
the perceived adhesion relative to its adiabatic or equilibrium value. Here, we report simulations
on the sticking contact between a rigid cylinder and a viscoelastic half space revealing a maximum
in the work of adhesion at intermediate pull-off velocities. Maximum tensile forces yet increase
monotonically with the pull-off speed and the crack-tip speed in accordance with the Persson-
Brener approach. As predicted theoretically, the fracture mode transitions from interfacial crack
propagation to quasi-uniform bond breaking with increasing range of adhesion.

We all know since childhood that the pain experienced
when tearing off a bandage is small when pulling either
very slowly or very quickly. In between these two lim-
its, it hurts. Surely, one important reason for this phe-
nomenon is that breaking an adhesive, viscoelastic inter-
face is crucially affected by the interplay of the interfacial
energy, the maximum tension of the media in contact,
the frequency dependence of their mechanical properties,
and the pull-off velocity [1, 2]. Similar comments can
be made about the rupture and wear of rubber [3, 4]
as well as the adhesion, cohesion, and friction involv-
ing related elastomers including, for example, pressure-
sensitive adhesives [5], tapes [6], or cartilage [7]. Unfor-
tunately, even the most elementary linearly viscoelastic,
adhesive interfaces (for which fibrillation, cavitation, and
other complex phenomena that matter for the bandage
example [4, 5] can be neglected) defy a simple description
of their dynamics.
The critical quantity in a viscoelastic fracture prob-

lem is the energy per unit area, G(v), needed to advance
a crack by a unit area as a function of the crack tip
speed v. Traditionally [1, 8–14], the attempt is made
to determine G(v) from the solution of a self-consistent
equation, which first needs to be derived for each com-
bination of a given frequency-dependent elastic modulus
E(ω) and cohesive-zone model (CZM). The latter states
how adhesive or cohesive stress changes locally with the
interfacial separation, or, gap g. However, as pointed out
by de Gennes [15], certain universal features should ap-
ply given that the stress near crack tips generally obeys
σ(r) = K/√2πr a small distance r away from the crack
tip [16], where K is called the stress-intensity factor, see
also Fig. 1(c). In the immediate vicinity of a fast moving
crack and very far away from it, the contact mechanics
are similar to that of an adiabatically moving crack, how-
ever, assuming the high- and low-frequency elastic modu-
lus, E1 and E0, at small and large r, respectively. Unfor-
tunately, the interesting, non-trivial intermittent region
is where most energy can be dissipated, whereby this re-
gion may predominantly account for the increase of G(v)
compared to its quasi-static or adiabatic value G0.
To quantify the viscous energy loss for a steadily mov-

ing crack, Persson and Brener [17] argued that the stress
singularity near the crack tip is cut-off by the local max-
imum tension σc. This made them introduce a speed-
dependent wave number cutoff qc(v), above which the
elastomer no longer noticeably deforms. The cut-off re-
veals itself experimentally through a blunting of the crack
tip at large crack-tip speeds. It can be obtained through
the self-consistent equation

qc(v) = q0 {1 − I (v qc(v))} , (1)

where the static cut-off wave number q0 = qc(0), whose
relation to other characteristic distances and wave num-
bers is discussed in the supplemental material (SM), is
the only adjustable parameter, and where

I(ω) = 2

π
∫ 1

0
dx

√
1 − x2

x
Im{ E0

E(xω)} . (2)

From this, G(v), which turns out inversely proportional
to qc(v), can be deduced through

G(v) qc(v) = G0 qc(0). (3)

An important advantage of the Persson-Brener approach
is that a relatively simple self-consistent integral equa-
tion needs to be solved, in which E(ω) can be arbitrar-
ily complex without obstructing the calculation of G(v).
Despite this benefit, the Persson-Brener approach [18]
yields a similar speed-dependence of the fracture energy
as that determined from traditional solutions [11, 13, 19]
of simple rheological models.
Neither the traditional nor the Persson-Brener ap-

proach have hitherto been verified against rigorous nu-
merical solutions over a meaningfully large parameter
range. One purpose of this article is to fill this gap.
A further and equally important issue addressed here is
the question how viscoelastic crack propagation affects
the snap-off dynamics in single-asperity contacts. This
includes a test of the prediction [20, 21] that the frac-
ture mode changes from interfacial crack propagation to
quasi-uniform bond breaking at small scales and an anal-
ysis of how the work of separation depends on the pull-off
velocity.

http://arxiv.org/submit/3868711/pdf
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FIG. 1. (a) Displacement field u(x) (blue) and interfacial stress σ (red) in units of the maximum stress σc for the system with
R0 = 64 and E1/E0 = 100. Zooms into (b) contact geometry relative to the right crack tip located at xrc and (c) interfacial
stress relative to the left crack at xlc. The elastic stress fields, defined as the equilibrium elastic stress for a fixed u(x), are
shown for comparison in panel (c). The lateral coordinate x is normalized differently in different panels.

A convenient set-up for our analysis is the contact
between a rigid cylinder, which we approximate with a
parabola having a (varying) radius of curvature R0, and
a viscoelastic half space. During pull-off, the boundary
lines between the contact and non-contact region con-
stitute two linear cracks, which propagate inwards until
an elastic snap-off instability occurs. For this situation
analytical results relate the pull-off force to the crack
propagation energy G(v), which depends on the crack
tip speed v at the point of snap-off [22–24].
The model studied in this work, see also Fig. S1 in

SM, assumes a regular three-element viscoelastic model,
for which

E0

E(ω) =
E0

E1

+ (1 − E0

E1

) 1

1 − iωτ , (4)

and a recently proposed CZM V (g) [25], where V (g) is
zero if g exceeds the cut-off gap gc and

V (g) = −∆γ × ⎧⎪⎪⎨⎪⎪⎩
[1 − (π g/gc)2/2] if g < 0
[1 + cos(π g/gc)] /2 if 0 ≤ g < gc (5)

otherwise. Here, ∆γ is the interfacial binding energy
gained when cylinder and elastomer touch (g = 0). An
advantage of the employed CZM over commonly used
Dugdale-type models are that ours is twice differentiable,
as real interactions are, whereby numerical solutions of
the dynamics are quite robust.
Simulations were conducted using a house-written

Green’s function molecular dynamics (GFMD) code,
which has been described numerous times before, see,
e.g., Appendix 2 in Ref. [26]. However, the used pro-
pagator was changed in order to reflect the dynamics of
the standard three-element model leading to a similar
approach as that pursued by Bugnicourt et al. [27]. To
improve numerical stability, the interfacial stress and its

time derivative, that is, the r.h.s. of Eq. (4) in Ref. [27],
were low-pass filtered as described elsewhere [28].

The length of the periodically repeated simulation cell
was generally set to L = 4R0, where R0 took the val-
ues R0 = 1, 8, and 64. Note that three variables can be
used to define the unit system. Throughout this work,
we assume a unit system in which the contact modu-
lus E∗0 ≡ E0/(1 − ν2), τ , and the smallest R0 define the
units of stress, time, and length, respectively. Here, ν
is the Poisson ratio, which is assumed to not depend on
frequency. Real units can be produced by setting, e.g.,
E∗0 = 5 MPa, γ = 50 mJ/m2, in which case the unit of
length would be 10 nm. From a continuum prospective,
it might be more meaningful to state the Tabor param-

eter, which would read µT = 3

√
R0σ3

c /(E∗0 2∆γ), if the
ratio ∆γ/σc was used as the range of interaction in the
common definition of µT. With σc = π∆γ/(2 gc), the Ta-
bor parameters realized in this study would range from
µT ≈ 4 for R0 = 1 to µT ≈ 16 for R0 = 64, which could be
classified as medium to short-ranged adhesion. In com-
parison, Afferante and Violano studied effective surface
energies in viscoelastic Hertzian contacts in the limit of
long-range interaction, i.e., for µT ≈ 1/3.85, and the fixed
ratio E1/E0 = 10 in a compelling, recent study [19].

Space was discretized into elements with lateral di-
mension ∆x = 1/1024, which was fine enough to prevent
finite-discretization induced instabilities, also known as
lattice trapping, for the current choice of parameters.
They were E∗0 = 1, ∆γ = 0.01, and gc = 0.0175156, so
that max(V ′′(g)) = −min(V ′′(g)) = (π/gc)2∆γ/2 was
exactly one tenth of the maximum static elastic stiffness
κmax = qmaxE

∗
0 /2 with qmax = π/∆x. This means that

quasi-static continuum mechanics of short-range adhe-
sion is closely approached on lateral lengths exceedingO(10 ∆x) but inadequate at smaller scales.
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To further illuminate the model, Fig. 1(a) shows the
overall contact geometry and the stress field for a force-
free static contact and panel (b) a zoom into the displace-
ment field showing our determination of the static crack-
tip radius a0. Moreover, Fig. 1(c), see also Fig. S2 in SM,
confirms that the interfacial stress σint in the vicinity of
the crack tip obtained at different v can be superimposed
when scaling the distance from the crack tip with the
ratio q(v)/q0 deduced from Eq. (1). For v = 0, the elas-
tic stress, σel defined as the inverse Fourier transform of
qE∗0 ũ(q)/2, coincides with σint. At intermediate v, σel is
still relatively close to σint in the immediate vicinity of
the crack tip and approaches it asymptotically at large
distances from the crack tip. However, elastic and inter-
facial stress differ substantially at large v. Since relax-
ation is driven by the difference between elastic and inter-
facial stress, dissipation occurs predominantly far away
from the cracks in the latter case.
Analytical results predict that the maximum tensile

force, also called the pull-off force, Fp, satisfies Fp =(27πG2E∗0 R0/16)1/3 [22–24]. Treating the breaking of
the adhesive bonds between the solids as the propaga-
tion of an opening interfacial crack also at the moment
of pull-off, we therefore expect

Fp(v)
Fp(0) = (

G(v)
G0

)2/3 , (6)

where v is the crack-tip velocity at the moment when the
normal force reaches its maximum. In fact, Fig. 2 re-
veals close agreement between simulation and theory for
how the pull-off force increases with pulling speed. The
static pull-off forces, Fp(0), needed to accurately nor-
malize Fp(v) were deduced from mass-weighted GFMD
simulations [29] using very small vp. They deviated at
most by 0.1% from the just-stated, quasi-static contin-
uum expression for Fp.
Persson-Brener theory (full lines in Fig. 2) match

within the numerical precision in the linear-response
regime at small velocities. This linear-response regime
arises as a consequence of how the modeler (or nature!)
discretizes the elastic manifold. For coarse discretiza-
tion, lattice pinning occurs so that instabilities become
unavoidable [30], which in turn lead to Coulomb fric-
tion. However, at fine discretization, “atoms” move con-
tinuously at all times under adiabatic driving and Stokes
damping arises automatically. Power-law scaling of the
damping force would only be expected down to infinites-
imal small velocities right at the critical point (in the
absence of thermal noise) separating the Stokes from the
Coulomb regime [31]. There will still be extended veloc-
ity regimes, in which sub-linear small-velocity corrections
to either G(v) or F (v) arise even if G(v)−G(0) and thus
F (v) − F (0) ultimately cross over to Stokes, whenever
1/√∣∆r∣ stress singularity near crack tips extends down
to small but not atomic scales.
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FIG. 2. Relative pull-off force increase, Fp(v)/Fp(0) − 1, as
a function of crack-speed velocity v for (a) fixed E1/E0 =
100 and varying radius of curvature R0 and (b) fixed R0 =
1 and varying E1/E0. Symbols and lines reflect simulation
and theoretical results, respectively. Blue dashed lines reflect
upper bounds to Fp. The inset in panel (b) shows the ratio
G(v)/G0.

Differences between Persson-Brener theory and simu-
lations reach 30% at intermediate velocities and decrease
again for large tip radii at large v, where the viscoelastic
fracture energy factor G(v)/G0 plateaus close to the pre-
dicted value of E1/E0. The latter ratio can be directly
deduced from the theory by combining Eqs. (1) to (3)
and by realizing that I(ω → ∞) → 1. The close match
between theory and simulation is an interesting result in
its own right, also because the theory assumes steady-
state crack propagation, while in reality, the crack-tip
speed is not constant at fixed pull-off velocity. Moreover,
even better agreement must be expected for systems with
a broad distribution of relaxation times, as the sharp-
wavenumber-cutoff approximation in the Persson-Brener
approach should be most inaccurate for the three-element
model with a single relaxation time.

Theory and simulation differ significantly in Fig. 2 for
small tip radii when v and E1/E0 are both large. This
is due to the transition of the failure mode from crack
propagation to quasi-uniform bond breaking, which was
proposed to occur at small scales [20, 21]. The argument
for the phenomenon is that the tensile load in a finite
contact should be roughly limited by the product of the
maximum tensile stress and the contact width w. In
fact, the dashed lines reflecting this estimate match the
large-velocity limit for the R0 = 1, E1/E0 = 100 system
quite well if the value for w is the one observed in the
simulations at the moment of maximum tensile force.

The suggested quasi-uniform bond breaking is also
borne out from the displacement fields shown in Fig. 3(a):
the R0 = 64 contact evidently fails by crack propaga-
tion in the limit of large v, while the displacement field
moves almost homogeneously during failure for R0 = 1 at
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large v. Specifically, for R0 = 1 contact is already lost
at r = 0 when the force reaches its maximum, while for
R0 = 64, there is still contact near the origin directly af-
ter the moment of final rupture, which we define as the
point in time right at which the tensile-load displacement
curve assumes its most negative slope. At small veloci-
ties, all contacts studied here break in a similar way as
shown for large R0 in Fig. 3(b). This is because the Ta-
bor parameter is greater than unity even for R0 = 1 so
that the adiabatic tip retraction is close to the continuum
limit [32, 33].
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FIG. 3. (a) Displacement fields in static equilibrium at zero
applied force (t = 0), when the tensile force is maximum (t =
tmax), and at the moment of final rupture t = trup in the
limit of large velocities for contact radii R0 = 64 (red curves)
and R0 = 1 (blue curves). (b) Similar as (a) but for small
pulling velocities and large R0. (c) Force-displacement curves
at different velocities for the R0 = 1 tip and (d) its velocity-
dependent work of separation W .

The blue, dashed lines in Fig. 2 also reveal that the
slope of the critical width w(v), defined as the width of
the contact at the moment of maximum force, changes
discontinuously at a certain crack-tip velocity, which,
however, is unrelated to the transition in the failure

mode. Similar discontinuities in w′(v) occur for all inves-
tigated systems. As no theory apparently predicts this
transition, all currently existing analytical approaches to
the crack-tip problem could be argued to be approximate.
To further illuminate the pull-off dynamics, Fig. 3(c)

shows various load-displacement curves F (d) for R0 = 1.
Their shape changes indeed abruptly near vp = 0.2, for
which F (d) has a very flat maximum. At that pull-off
velocity, dmax—the vertical distance moved to reach the
maximum force—changes quite quickly from a value of
order dmax(v → 0) ≈ 0.08 to dmax(v → ∞) ≈ gc/2, where
the CZM assumes its maximum tensile stress.
Owing to the small forces needed to separate surfaces

adiabatically and the small dmax needed to break the
contact at large vp, the work of separation W turns out
small in both limits. In between, viscous dissipation is
largest leading to a pronounced maximum in W , which is
shown in Fig. 3(d). It can be said to arise, because a ten-
sile force close to Fp(v →∞)/2 acts over relatively large
pulling distances. Similar trends are found for larger
system size when keeping R0 and all other parameters
constant as well as for regular Hertzian tips, for which
W does not have logarithmic system-size corrections, see
also Fig. S4 in SM. Also flat, circular punches show a
maximum in W (vp) at intermediate v, since both high-
and low-velocity separation are easily found to be 2γ
times punch area, at least as long as the range of adhesion
remains short-ranged even when the elastomer assumes
its high-frequency modulus.
The maximum in W might appear counterintuitive,

since G(v) monotonically increases with v. However,
only a small fraction of the initial contact is broken
when the normal force assumes its maximum at large
pulling velocities. Past that point, the crack tip velocity
can quickly increase with time, in particular right before
snap-off, as revealed in Fig. S3 in SM, so that the vis-
coelastic crack-propagation theory, which assumes slowly
changing crack-tip speeds, no longer holds.
Our calculation of the work of separation does not in-

clude the lost energy due to the (visco-) elastic coupling
between the center-of-mass mode of the elastomer’s sur-
face facing the indenter and its other surface, which is
typically driven in laboratory experiments. However,
only the work of separation due to finite q will be dis-
sipated in the vicinity of the contact so that we expect
pull-off induced near-surface energy transfer to be largest
at intermediate velocities. This effect should also hold
for interfaces that are more complex than the one in-
vestigated in this work. For example, the product of
maximum stress and the time during which nerves in the
vicinity of hair roots are exposed to large forces should be
maximal at intermediate pull-off velocities, which might
explain the sudden, but quickly decaying pain that we
experience when pulling off a bandage with an interme-
diate velocity.
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Supplementary materials: Crack and pull-off dynamics of adhesive, viscoelastic solids
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I. DETAILS ON MODEL AND SET-UP

Fig. 1(a) shows the used three element model. E1 can be easily seen to represent the high-frequency modulus
E(ω →∞), while E0 = E1E2/(E1 +E2) represents the small-frequency modulus E(0). Fig. 1(b) depicts the cohesive
zone model used in the numerical simulation. The curvature of V (g) is most negative at the cut-off distance gc,
however, V (g) and V ′(g) are continuous everywhere.

(a) (b)

η

E1

E2
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 0

 1

 2
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Δ
γ
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FIG. 1. (a) Three-element viscoelastic model. The low-frequency modulus E0 ≡ E(ω = 0) = E1E2/(E1+E2), the high-frequency
modulus E(∞) = E1, and the viscosity η = 1/τ are indicated. (b) The wall-wall interaction potential (per unit surface area)
used in the numerical simulations.

II. CHARACTERISTIC WAVE NUMBERS AND DISTANCES

Quite a few different characteristic distances and wave numbers occur in the contact problem treated in the main
paper. They should be generally related by conversion factors of order unity times 1/(2π) to 2π. It may be beneficial
to introduce them and to identify their close-to-exact relation for the used cohesive-zone model (CZM). We expect
their values to be similar for other CZMs so that they remain close to unity and no longer extend all the way to 2π.
The first wave vector to be introduced for our CZM is the one at which the elastic stiffness κel = qE∗0 /2 is equal to

the maximum negative curvature of the interaction potential, i.e.,

qs = 2 max(−V ′′(g))/E∗0 . (1)

For our CZM, σc = (π/2)∆γ/ gc and max(−V ′′(g)) = (π/2)2∆γ/g2c so that

qs = 2σ2
c

E∗0 ∆γ
. (2)

Modes with wave vectors q ≪ qs will always behave as in the continuum / short-range-adhesion limit, while those
with q ≫ qs are too stiff to be distorted by the interfacial interactions. Thus, the wave-number cutoff qc used in the
Persson-Brener theory must be of order qs. A motivated guess for the used conversion factor αcs ≡ qc/qs is provided
further below.
We note in passing that Eq. (1) is not directly applicable to CZMs in which V (g) is not twice differentiable or

assumes a “funky” shape. However, for conventional CZMs, like the Dugdale model, Eq. (2) should remain applicable
within deviations of order 10%.

http://arxiv.org/submit/3868711/pdf
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We are also interested at a characteristic stiffness distance xs [1] from the crack tip in real space at which the the
stress closely approaches the asymptotic σ(x) = K/√2π∣x∣ behavior. As argued in the main text, this distance is of
order xs ≡ 2π/qs. A more precise estimate can be obtained by realizing that the real stress field inside the contact
should roughly follow

σ(x > 0) ≈ σc
√
xK

(x2 + x2
K
)1/4 , . (3)

where xK is again of order xs. Other CZMs will lead to other σ(r) dependencies than ours. However they will all obey
σ(0) = σc, σ′(0) = 0, and σ(x → ∞) = K/√2π x, which Eq. (3) reflects. From Eq. (3), it follows that K = σc

√
2πxK .

Comparing this result to Eq. (19) in Ref. [2], it follows that xK = a(0). However, we note that the value that we used
for a0 was adjusted so that the Stokesian friction for the R0 = 64 tip was accurately reproduced. This was achieved
with the numerical value of a0 = 0.019. This value is close to but slightly less than the static crack tip radius, which
is roughly 0.03.
The parameter xK can be gauged from the computed stress field as demonstrated in Fig. 2(a). The model function

used to determine K and xK , i.e., the full line drawn for positive x in Fig. 2(a), was obtained using xK = 0.4 xs. It
includes the stress-field from the other crack opening and the Hertzian stress field counterbalancing the two stress
fields from the two crack tips to yield zero total pressure.

-1 0 1 2 3
x / xs

0.0
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FIG. 2. Equilibrium stress profile for the R0 = 60 tip at zero external load. Each GFMD grid point is represented by a circle.
The dashed line shows the continuum limit. The full line reflects Eq. (3) for positive x and is meant to guide the eye for
negative x.

III. ANALYTICAL SOLUTION FOR THE THREE-ELEMENT MODEL

For the employed three-element method, the integral I(ω) defined in the main paper becomes [2]

I(ω) = (1 − E0

E1

) 2

π
∫

1

0
dx
√
1 − x2

ωτ

1 + (ωτx)2 . (4)

It has the solution

I(ω) = (1 − E0

E1

)
√
1 + (ωτ)2 − 1

ωτ
. (5)

As a consequence, the self-consistent equation to be solved for a standard, three-element half space becomes

q(v)
q0
= 1 − (1 − E0

E1

)
√
1 + q2(v)v2τ2 − 1

q(v)v τ (6)

after substituting ω = v qc(v). In principle, this is a quadratic equation in q(v) and therefore analytically solvable.
However, the coefficients are cumbersome so that we found a self-consistent solution of Eq. (6) for q(v) to remain
most convenient.
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IV. ANALYTICAL SOLUTION FOR CYLINDER AT DEPINNING

The analytical solution for a quasi-static cylinder in contact with a short-range adhesive, linearly elastic solid
reads [3]

F = πE∗0 b2/(4R)− (2πE∗0 bG(0))1/2. (7)

For a dynamic system, we replace G(0) with G(v). The tensile force F then becomes maximal when

b = (2G(v)R2

πE∗
)1/3 . (8)

leading to the pull-off force of

Fp = (27πE∗R/16)1/3 , (9)

which was already mentioned in the main text.

V. WORK OF SEPARATION

In the main manuscript, we argue the crack-propagation theory to break down at large pulling velocities after
the tensile force assumed its maximum so that it cannot be used directly to estimate the work of separation. To
corroborate this claim, we show how tensile force and the crack-tip position evolve with the slid distance for the
R0 = 64 system in Fig. 3. It can be seen that dynamics become quasi-discontinuous at the moment when the tensile
forces assume their maximum, at which point the contact radius is barely decreased relative to its initial value.
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FIG. 3. (a) Contact width w width and (b) tensile force F as a function of the moved distance vp t for the R0 = 64 system.
(c) Work of separation as a function of pulling velocity vp.

VI. GEOMETRIES BEYOND CYLINDERS

In the main manuscript, we report having observed local maxima in W (vp) for adhesive elastomers also for geome-
tries other than cylinders. To support this claim, we briefly discuss the regular flat punch and also present numerical
results for a regular Hertzian indenter.
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For the flat punch interacting through small-range adhesion, the contact area remains unchanged until the tensile
force reaches its maximum, at which point a crack starts propagating. For a flat punch with radius ρ0, the force-
distance relation reads d = F /(2ρ0E∗), while the pull-off force is given by Fp =

√
8πE∗∆γ ρ30. Thus, in the adiabatic

case, the work of separation, W = ∫ Fp

0 dF d(F ) = 2∆γ, does not depend on E∗. This is why W turns out identical for
the high- and low-frequency modulus, i.e., in the limits v → 0 and v →∞. Since W (v) evaluated at slightly positive v
automatically exceeds W (0), there must be a maximum in the work of adhesion between the limits of infinitesimally
small and infinitely large velocity. The correctness of these conclusions was validated numerically. A detailed analysis
of the depinning of a flat punch from a viscoelastic foundation is currently under preparation.
We also considered a Hertzian contact geometry. The system was modeled numerically with the following param-

eters: Radius of curvature R0 = 1, E∗ = 1, τ = 1, E1/E0 = 100, ∆γ = 2 ⋅ 10−4, gc = 1.473 ⋅ 10−3. With these choices,
the Tabor parameter turns out µT ≈ 2. The depinning force is given by the well-known solution by Johnson-Kendall-
Roberts (JKR), which was also used to numerically determine the adiabatic work of separation. Results are shown
in Fig. 4.
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FIG. 4. (a) Depinning force Fp and (b) work of separation W , both times as a function of pulling velocity vp for a regular
Hertzian tip. Adiabatic results from the JKR solution are included for comparison (dashed black lines) as well as fits (dashed
brown lines).

As was the case for the cylinder, the work of separation is slightly enhanced for v →∞ compared to its adiabatic
value W (0). At small velocities, we find an enhancement of both, Fp and W , compared to their adiabatic values,
which scales roughly with

√
vp. For these “two- plus one-dimensional” contacts, we did not manage to approach the

linear response regime. Also note that the JKR limits will not be approached exactly for v → 0, since the Tabor
parameter of the investigated system was finite.

[1] The term “stiffness distance” is somewhat odd but due to the fact that the words characteristic, cohesive, contact, crack, crit-
ical, and cross-over all start with the letter c and three out of those six words even start with cr, the need for unconventional
name giving arose.

[2] B. N. J. Persson and E. A. Brener. Crack propagation in viscoelastic solids. Physical Review E, 71(3):036123, March 2005.
[3] M. Barquins. Adherence and rolling kinetics of a rigid cylinder in contact with a natural rubber surface. The Journal of

Adhesion, 26(1):1–12, July 1988.


