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This supplementary information contains the radial distribution functions (RDF) g(r) of the system and it’s de-
velopment with the deformation for the three deformation shapes discussed in the main text. We included a brief
comparison of the obtained results with data on α−Zn2(PO4)3 in Sec. II. In the last part of this document, namely
in Sec. III, we provide analytical formulas for components Cii (i = 1, 2, 3) of elastic tensor in the rotated coordinate
system.

I. RADIAL DISTRIBUTION FUNCTION

In all three runs, as the pressure or strain is increased, we observe similar two-body correlation functions. The
changes are continuous, and the difference between g(r) functions for two nearest deformation values is extremely
small. However, at a pressure of 5 GPa we observe slight changes in gZn−O(r) in the case of isotropic compression,
which is depicted in Fig. S1(a). For uniaxial and density-conserving deformations the critical strain values are
ε = −0.24 (Fig. S2(a)) and ε = 0.30 (Fig. S3(a)), respectively. The changes seem to be very subtle or elusive: the
peak position of Zn-O RDF shifts to slightly larger distances, and the magnitude of the peak becomes slightly higher.
In order to quantify the changes, we applied the skewed-normal distribution analysis [1] (SND) to the calculated
functions. Examples of the fit of the first peak of the function Pr(r) = 4πr2ρg(r) are shown in the insets of Fig. S1(a),
Fig. S2(a) and Fig. S3(a). As a result of such analysis, we noticed, that the average coordination number of Zn atoms
changes (quasi-) discontinuously at the critical pressure of pc = 5 GPa from a value close to 4 to a value close to 4.5
for isotropic compression. Similar conclusions were obtained for both uniaxial deformations as well. The respective
changes in the coordination number of zincs are depicted in Fig. S1(b) for isotropic, in Fig. S2(b) for uniaxial and in
Fig. S3(b) for density-conserving compressions. This means, that the local environment of Zn atoms changes abruptly
at the transition.
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FIG. S1. Evolution of (a) radial distribution function gZnO(r) as a function of pressure, and dependence of (b) coordination
number Z of Zn atoms deduced from gZnO(r) on pressure in the isotropic compression run. The inset of subfigure (a) shows
the example of an skewed normal distribution (SND) fit of the probability distribution function PrZnO(r), from which ZZn is
deduced.
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FIG. S2. Evolution of (a) radial distribution function gZnO(r) as a function of strain ε, and dependence of (b) coordination
number Z of Zn atoms deduced from gZnO(r) on strain in the uniaxial deformation run. The inset of subfigure (a) shows the
example of an SND fit of the probability distribution function PrZnO(r), from which ZZn is deduced.
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FIG. S3. Evolution of (a) radial distribution function gZnO(r) as a function of strain ε, and dependence of (b) coordination
number Z of Zn atoms deduced from gZnO(r) on strain in the density-conserving deformation run. The inset of subfigure (a)
shows the example of an SND fit of the probability distribution function PrZnO(r), from which ZZn is deduced.

II. ORTHOPHOSPHATE

To make a connection between zinc phosphates considered in this study and described in the main text, with
a crystalline system similar in composition, which would be subjected to undergo a phase transformation similar
to the observed in this work, we chose to apply the same deformations to the α-Zn2(PO4)3. It is relatively well
understood what happens with this crystal under isotropic compression. In a few experimental studies the authors
observed pressure-induced amorphization of zinc orthophosphate which was accompanied by a change in the coordinate
number of Zn atoms [2, 3]. However, the question remains open on how shear affects α-Zn2(PO4)3.

In attempt to shed some light on this, we conduct a set of static calculations at zero temperature. At first, we
applied a static compression at a fixed external pressure. When pressure reached p = 9 GPa, the crystal underwent
local structure changes, where one third of Zn atoms adopted seesaw local geometry, and the rest of zincs got coor-
dination changed from four to five with local structure which could be considered to be a slightly deformed trigonal
bipyramid, thus getting closer to being square pyramidal. This value of critical pressure is in a good agreement with
a previously reported result of 9 GPa [2]. Then we proceeded with the anisotropic deformations, which included a
uniaxial compression along z-axis, and the same volume-conserving deformation, where the unit cell is compressed
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along z-axis, and expanded equally in x and y directions. In the latter two cases, we were also able to observe the
same transformation. The critical values of strains this time were 0.27 and 0.29 for uniaxial and volume-conserving
deformations, respectively. For orthophosphate, the diversity in stress tensor invariant values at the critical defor-
mations was much higher than for the zinc phosphate. The values of stress tensor components along principal axes
in xy-plane in the case of volume-conserving deformation turned out to be negative. This could be explained by the
fact, that the crystal is much more interconnected, which should lead to a higher Young’s modulus. As a result, the
deformation in xy-plane, which is triggered by z-axis compression is expected to be much smaller for the considered
crystal as compared to the mixture of initially weakly connected molecules. Additionally, in amorphous systems
internal stresses could be relaxed through many more internal degrees of freedom than in a crystal.

The main difference between the considered amorphous and crystalline systems is that the transition in orthophos-
phate for all three deformation turns out to be reversible. In fact, the obtained structures return to their reference
state at lower values of deformation or pressure, thus experiencing a hysteresis which was already reported in a study
of this crystal subjected to hydrostatic compression [2]. Thus all of the phases obtained for the orthophosphate seem
to be metastable, high-pressure phases, with higher enthalpies than the original crystal.

III. ROTATION OF THE ELASTIC TENSOR

If a system has monoclinic symmetry, thus having a parallelogram as a base and the third axis (for convenience
let it be z-axis) perpendicular to the base, by rotating the system of coordinates around z-axis one can maximize
and minimize the in-plane elastic constants C11 and C22 (not necessarily at the same time). From these values one
can determine the stiffest and the softest in-plane directions. In our case the systems had triclinic symmetry after
basin-restricted relaxations. However, the maximum deviation of the angle between any two unit cell vectors from 90◦

which we observed, was less than 3◦. This obviously led to corrections to the calculated smallest and largest in-plane
values of C11 and C22 of order 1% when compared to estimations based on assumption of orthorhombic unit cell. As
a result we neglected these contributions given by the deviations of the unit cell angles from 90◦, mostly because the
analysis is supposed to be qualitative.

If we consider an isotropic solid and choose one axis (let it be z-axis for convenience), then the elastic tensor elements
in the plane orthogonal to this axis would be independent with respect to rotations of the coordinate system. On the
other hand, a highly anisotropic system would show a significant discrepancy between the minimal and maximal values
of the in-plane C11 (or C22) elastic constant when the rotation is applied. For simplicity of analytical derivation, we
will consider only the case of orthorhombic system, but the equations could be easily generalized to any symmetry.
When an orthorhombic system is rotated around z-axis by angle θ, the in-plane components of strain tensor evolve
according to the following equations

ε′11 = ε11 cos2(θ) + ε22 sin2(θ) + ε12 sin(θ) cos(θ) (1)

ε′22 = ε11 sin2(θ) + ε22 cos2(θ) − ε12 sin(θ) cos(θ) (2)

ε′12 = 2(ε22 − ε11) sin(θ) cos(θ) + ε12(cos2(θ) − sin2(θ)) (3)

where εij and ε′ij are the components of strain tensor in the original and in the rotated coordinate system, respectively.
By writing down the elastic energies in the two coordinate systems and by using Eqs. (1)-(3), one can show that the
elastic tensor component Cii within the plane would evolve according to the following equations

C ′11(θ) = C11 cos4(θ) + C22 sin4(θ) + 2(C12 + C66) sin2(θ) cos2(θ) (4)

C ′22(θ) = C11 sin4(θ) + C22 cos4(θ) + 2(C12 + C66) sin2(θ) cos2(θ) (5)

Let us focus on just one equation (let it be Eq. (4)). When rotated by 90◦, C ′11(θ) becomes C22. In the interval of
rotations 0◦ < θ < 90◦, C ′11(θ) has either a maximum or a minimum, and the corresponding rotation satisfies

sin2(θm) =
C11 − (C12 + C66)

(C11 + C22) − 2(C12 + C66)
. (6)

The value of the in-plane elastic constant at this angle is

C ′11(θm) =
C11C22 − (C12 + C66)2

(C11 + C22) − 2(C12 + C66)
(7)

Thus, depending on the balance between the four elastic constants involved in Eqs. (6) and (7), C ′11 would satisfy
either min(C11, C22) ≤ C ′11(θ) ≤ C ′11(θm) (when 2C ′ = (C11 − C12) < C66 in a cubic system; there are several
conditions for other symmetries) or C ′11(θm) ≤ C ′11(θ) ≤ max(C11, C22) (when 2C ′ > C66 in a cubic system).
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In closed-packed metals, max(C11, C22) < C ′11(θm). The values for C ′11(θm)/min(C11, C22), which characterizes the
relative difference between the maximum and minimum values of C ′11, span from 1.03 (gold) to 1.25 (potassium).
Thus, Au (and Ag as well) are very close in this regard to an isotropic solid, which would give a perfect unity. For
ionic solids, min(C11, C22) > C ′11(θm), which is the opposite trend compared to metals. In this case, we construct a
measure C ′11(θm)/max(C11, C22). The well-known NaCl has a value 0.67, and CsI - a value of 0.75. For crystals with
covalent bonding, the relation is the same as for ionic solids, however the values tend to be closer to unity: diamond
has a value of 0.93, and cubic BN - 0.91. Layered structures like graphite and V2O5 fall into the same category and
have values of the relation 0.79 and 0.77, respectively.

For the system which we considered in the current study, it turned out to be min(C11, C22) > C ′11(θm) mostly
because C12 is significantly smaller than C11. C ′11(θm)/max(C11, C22) for the majority of configurations fall between
0.75 and 0.84. Just by itself this number does not give much insight into the structure and potential behavior under
external stress. However, we can compare the out-of-plane elastic constant (C33 in our case) to the minimum and
maximum values of the in-plane elastic constants. The values of C33 happen to be either slightly above C ′11(θm) or
even below it. From these observations one could make a conclusion that our amorphous zinc phosphates seem to be
overall softer along the direction of deformation when compressed uniaxially. In contrast to the initial interpretation
leading to polymerization, this speaks more towards a cross-linked structure, which is ”layered”, and the effective
bond strengths (effective force constants) along z-axis are overall weaker than the in-plane ones.

[1] S. V. Sukhomlinov and M. H. Müser, The Journal of Chemical Physics 146, 024506 (2017).
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