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Abstract We consider the adhesion-less contact be-

tween a two-dimensional, randomly rough, rigid inden-

ter and various linearly elastic counterfaces, which can

be said to differ in their spatial dimension D. They

include thin sheets, which are either free or under equi-

biaxial tension, and semi-infinite elastomers, which are

either isotropic or graded. Our Green’s function molecu-

lar dynamics simulation identify an approximately lin-

ear relation between the relative contact area ar and

pressure p at small p only above a critical dimension.

The pressure dependence of the mean gap ug obeys

identical trends in each studied case: quasi-logarithmic

at small p and exponentially decaying at large p. Using

a correction factor with a smooth dependence on D, all

obtained ug(p) relations can be reproduced accurately

over several decades in pressure with Persson theory,

even when it fails to properly predict the interfacial

stress distribution function.

1 Introduction

Mechanical contacts between nominally flat surfaces oc-

cur everywhere. Due to the microscopic roughness on

most surfaces, real contact is only made in isolated,

load-bearing patches in the interface, where local com-

presses stresses can exceed the nominal pressure signif-

icantly [1–3]. Depending on the applied load and the

materials involved, plastic deformation can lead to a

significant reduction of local stresses. However, to ob-

serve plastic deformation, the surfaces may have to be

highly resolved [4]. At small or intermediate resolution,
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or, in the case of elastomers up to high resolution, an

elastic description of the contact can be appropriate.

Describing elastic contacts has attracted much at-

tention in the recent past not only for three-dimensional,

semi-infinite bodies [3,5–7] but also for (quasi) two-

dimensional [8–10] elastic counterfaces, in parts because

of their implications in biology [11,12]. The studies were

triggered to a significant degree by advances in the nu-

merical modeling of surfaces [13–16], which made it

possible to simulate systems sufficiently large to re-

flect the typical multi-scale nature of roughness [17–

20]. Many of the simulations were conducted with the

goal to test the validity of a contact mechanics the-

ory proposed by Persson 20 years ago [3,21–23]. It ac-

counts for the deformation of the elastic body outside

of the contact region unlike traditional approaches to

the contact mechanics conducted in the spirit of the

Greenwood-Williamson model [24,25]. The latter as-

sumes the highest asperity to come into contact first,

the second-highest to be second, and so on. Such bearing-

area models unavoidably lead to qualitatively incor-

rect conclusions [26], most notably they predict false

displacement-load relations [7] and contact topographies [27],

which are much too localized near the highest peak(s).

Persson theory has reproduced many experimental

results as well as brute-force simulations to a rather

great precision. This concerns in particular the depen-

dence of the mean gap ug on pressure p [22,28–32] in-

cluding the distribution of the interfacial separation [33,

34] and the leakage rate that follows from it [34–36]

as well as the auto-correlation function of the interfa-

cial stress [27]. Nevertheless, Persson theory remains to

be seen skeptically [37]. This is in parts due to a false

implementation of the theory, which, as discussed be-

fore [38], is certainly not a flaw of the theory itself.

In addition, it could be argued that Persson theory
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does not predict the pressure dependence of the rela-

tive contact area ar(p) very well. Twenty percent error

in the predicted proportionality coefficient relating con-

tact area with the applied pressure at small p are some-

times seen as problematic [5,37]. Some authors even

find logarithmic corrections to a linear ar(p) relation

at small p [39,40]. In this work, we will add algebraic

correcton for low-dimensional elastic body to this list.

However, judging a contact-mechanics theory based on

its ability to produce correct ar(p) dependencies can be

seen critically, whenever the gap distribution function

becomes quasi singular near a gap of zero, since a sig-

nificant fraction of the non-contact area may be within

extremely small distances, e.g., within less than a Bohr

radius, when applied to real systems. Thus, the concept

of contact area is somewhat ill defined outside the realm

of continuum mechanics. In fact, the proper definition

of contact area for atomistic systems remains a matter

of occasionally heated debates [41–44].

The discussion in the precedent paragraph shows

that meaningful tests of (contact-mechanics) theories

are based on quantities that are insensitive to marginal

changes of a criterion. The most simple quantities sat-

isfying this requirement are the standard deviation of

the interfacial stress ∆σp (in partial contact) and the

average interfacial separation, or, mean gap, both as a

function of pressure. Neither of the two functions suffer

from any sensitivity to how contact area is defined.

While most attention has been paid to the contact

mechanics of semi-infinite solids, in which case the elas-

tic energy to deform the surface with a single sinusoidal

undulation scales linearly with the wave number q, it

may also be interesting to study thin sheets. When the

thickness of a freely suspended sheet is much less than

the wave length, the elastic energy scales with q4, as

can be deduced by taking the q → 0 limit of Eq. (A.11)

in Ref. [45]. Once the thin elastic sheet, e.g., a mem-

brane, is set under tension, the small-q scaling changes

to a quadratic q-dependence without directional depen-

dence for equi-biaxial tension [11,46]. In all three cases,

the areal energy density of a superposition of sinusoidal

undulations can be written as

vfullela =
∑
q

kn q
n

2
|ũ(q)|2 (1)

where ũ(q) is the Fourier transform of the surface and

kn =


E∗/2 n = 1, semi-infinite solid

τ n = 2, tensed membrane

E∗t3/12 n = 4, thin sheet.

(2)

Here, E∗ is the contact modulus of a semi-infinite solid,

τ the equi-biaxially applied tension, and t the thickness

of a thin sheet. Systems desribed by n = 2 can be the

human lung [11] but also human skin on (sub-) millime-

ter scales, as demonstrated in the model validation of

this work.

For elastic solids being graded in the direction nor-

mal to the interface but isotropic and homogeneous in

the normal direction, the prefactor to |ũ(q)|2 can de-

pend on the wave number q in a more general way than

assumed up to this point. As will be shown in a sub-

sequent work, a non-integer exponent of n = 1/2 — or

any other value for 0 < n < 1 – could be (crudely) real-

ized by an elastomer, e.g., a hydrogel, designed in such

a way that its elastic stiffness increases as an appropri-

ate function with increasing distance from its surface.

The extreme case of n = 0 would correspond to an

Einstein solid, in which individual atoms are coupled

harmonically to their lattice site. As argued in more de-

tail in Sect. 4.2, an Einstein foundation would be valid

for an infinitely-dimensional elastomer. This makes the

extreme limits of the exponent n and the spatial di-

mension D considered in this work go from D = 2 for

n = 4 via D = 3 for n = 1 to D = ∞ for n = 0. For

n = 2 and n = 0.5 as well as for n = 3, which is added

to the list of explored exponents, we abstain from pro-

viding effective spatial dimensions D but assume that

D is monotonically decreasing in n.

While models with non-integer dimension or even

D > 3 are rarely studied in engineering, expansion of

theories about spatial dimensions is common practice in

statistical mechanics [47], among other reasons, because

it allows properties for “allowed” (integer) dimensions

to be predicted, or, at least to be better rationalized.

This was our main motivation to include values for the

exponent n in addition to those listed in Eq. (2), which,

as we find, turned out quite illuminating.

Thus, in this study, we provide an unifying descrip-

tion of the contact mechanics from thin sheets to mean-

field models and explore to what extent theoretical mod-

els are able to reflect the observed behavior. Towards

this end, the model and the used Green’s function method

are introduced first in Sect. 2. To provide the reader

with a better intuitive understanding of some of the

quite uncommon elastomers, their contacts with Hertzian

indenters are summarized in Sect. 3. Persson theory

for randomly rough indenters is extended to the gen-

eralized elastomers in Sect. 4, which also contains the

closed-form solution for an indented Einstein solid. Re-

sults are presented in Sect. 5. In Sect. 6 we attempt to

rationalize why Persson theory predicts the ug(p) rela-

tion so accurately, even when it fails to predict inter-

facial stress distribution functions. Finally, conclusions

are drawn in Sect. 7.
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2 Model and numerical method

The (default) model consists of an initially flat, linearly

elastic counterface and a nominally flat indenter with

a random, self-affine height profile. The elastic body is

squeezed from above against the indenter, which is fixed

in space and periodic boundary conditions are applied

within the xy plane. The two surfaces interact through

a non-overlap constraint.

The elastic energy used in the Green’s function molec-

ular dynamics (GFMD) simulation is given in Eq. (1).

The used exponents are all integers between 0 and 4 and

n = 0.5. A motivation for the used values is given in the

introduction, except for n = 3, which was added to the

list, because it is the largest integer exponent with “de-

cent” properties. (Thin sheets, or, n = 4, turned out to

behave in a quite non-intuitive fahion and, moreoever,

were difficult to treat computationally.)

To realize the different expression in our existing

C++ GFMD code, only a single (central) line needed to

be modified, in which the prefactor of the restoring force

in wave number space was initialized as kn q
n rather

than as E∗ q/2.

The periodically repeated surface has a default height

spectrum satisfying

C(q) ∝
{

1 + (q/qr)
2
}−1−H

Θ(qs − q), (3)

where qr is the rolloff wave vector, qs the short-wavelength

cutoff, and Θ the Heaviside step function. The abso-

lute value of an individual Fourier coefficient h̃(q) is

set to
√
C(q) and a linear random number is drawn

from (0, 2π) to determine its phase.

We focus our attention on a single, default disor-

der realization of the randomly rough indenter. Since

some of the calculations require a rather fine discretiza-

tion, the ratio qs/qr was set to a relatively large value

of 1/100. The rolloff domain was also relatively nar-

row, i.e., the linear system size L was set to twice the

rolloff wavelength λr = 2π/qr. While the smallest pos-

sible simulation reflecting the full spectrum using a dis-

cretization of the elastic system into 2n × 2n surface

elements (n ∈ N) is 512× 512, simulations determining

the contact area of thin sheets at small reduced pressure

accurately necessitated a discretization into 16k × 16k

surface elements, 16k being shorthand notation for 215.

Thus, while some of the 512 × 512 systems need less

than a minute to relax on a single core when using the

so-called FIRE variant of GFMD [48], others take a

rather long time, in particular as the low-dimensional

elastomers do not only need a fine discretization but

also significantly more iterations to be relax.

In order to explore the validity of the observations,

surface topographies other than the default were also

simulated. In addition, finite-width elastomers were sim-

ulated. Their response cross over smoothly from bulk

to thin-sheet elasticity as the wave length of a surface

undulation increases. Changes to the pertinent default

parameters are mentioned where results are presented.

Results for the normal displacements of elastomers

in contact with a randomly rough indenter are expressed

in units of the standard deviation of the height hstd (as-

suming a zero mean height) and pressures in units of the

standard deviation of the stress in full contact ∆σ. For

Hertzian indenters, the stress is normalized to the stress

at the origin, in-plane lengths to the contact radius ac,

and lengths normal to the interface are expressed as

multiples of a2c/Rc, where Rc is the radius of curvature.

These unit choices turn the numerical values used for

C(qr), Rc, or for the various generalized contact mod-

uli kn irrelevant. Note also that the term stress and the

symbol σ are both meant to refer to compressive stress

throughout this study. In addition, displacements are

always stated as positive.

All simulations were run on single cores on a local

workstation with 13 TB memory.

2.1 Model validation

To demonstrate that n 6= 1 has real-world applications,

we compare the displacement field u(x) of a periodi-

cally repeated acute ridge, which was determined nu-

merically for all integer values 1 ≤ n ≤ 3, to recent

experiments [49], in which a human index finger was

indented from below by sharp ridges with a period of

λ = 2.5 mm, see Fig. 1. This period is well below the

O(10 µm) thickness of the stratum corneum.
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Fig. 1 Experimentally measured displacement field [49] of a
human index finger, u(x), (black lines) indented from below
by a periodically repeated ridge (grey trianlges) having a pe-
riod of λ = 2.5 mm as well as numerical solutions for various
exponents n (colored, dashed lines).
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The displacement field with correct dependence of

stiffness on the wave vector must match the experimen-

tal characteristics for most of the shown domain, be-

cause the actual contact in the experiment was a tiny

fraction of the period. While the n = 3 displacement

field is too pointed near the minima and too blunt near

the maxima, the situation reverses for n = 1, where

u(x) is also too pointed near the maxima well outside

the actual contact. In contrast, the n = 2 data matches

the trends perfectly well.

3 Hertzian contacts of generalized elastomers

To better rationalize the results for randomly rough

indenters, it may be in place to call to mind how the

generalized elastic manifolds interact with a Hertzian

(parabolic) indenter. Its height profile can be given by

h(r) = −1

2

r2

Rc
. (4)

While analytical solutions for the counterfaces have been

identified in the literature [11], except potentially for

n = 0.5, it is found beneficial to repeat some of the

results here. It is seen particularly useful to (re-)derive

the analytical solutions for the displacement fields for

arbitrary n in terms of a Fourier representation, because

the contact mechanics of randomly rough surfaces is ar-

guably best interpreted in terms of spectral approaches,

and results can be easily obtained for exponents n not

considered so far.

The stress profiles for 0 ≤ n < 4 obtained with

GFMD are consistent with the relation

σ(r) = σ(0)
√

1− (r/ac)2
µ
Θ(ac − r) (5)

and

µ = 2− n. (6)

Results are shown in Fig. 2. For n = 4, stress is con-

centrated within the contact line, and both stress and

displacement disappear for r < ac. Moreover, the con-

tact radius increases linearly with the cell dimension at

fixed load, while for n < 3, or even for n ≤ 3, ac has a

well-defined contact radius as a function of the normal

load in the limit of large L.

The displacement field u(r) is the other spatial field

of interest in contact mechanics. Fig. 3 shows it in the

vicinity of the contact edge for the elastic bodies de-

fined in Eq. (1). The values of n considered in this

study happen to be critical values for Hertzian and re-

lated indenters (i.e., bodies of revolution leading to a

single contact line at any given load), where the be-

havior of the displacement field changes qualitatively.
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Fig. 2 (Compressive) stress σ(r) of generalized elastic man-
ifolds as a function of the distance r from the symmetry axis
when contact is made with a parabolic indenter. The stress is
normalized to its value at r = 0, while r is expressed in units
of the contact radius ac.

These changes are summarized in Sect. 3.2. To arrive at

those results, it is sufficient to consider point indenters,

which is done next in Sect. 3.1. While these calculations

do not necessarily enhance the understanding of the re-

maining sections, some of them are seen as useful for

the interpretation of the contacts made with randomly

rough surfaces, in particular as the asymptotic form of

the point indenters closely mimics the true displace-

ment fields up to the proximity of the contact radius,

as can be appreciated in Fig. 3. For reasons of complete-

ness, we state that GFMD simulations indicate that the

gap between indenter and elastomer grows proportion-

ally to (r−ac)(1+n/2) in the immediate vicinity but just

outside the contact, which means that the (1 + n/2)’th

(fractal) derivative of u(x) is discontinuous at r = ac.

3.1 Derivaton of asymptotic displacement fields

The stress field associated with a point force acting on

the origin of an infinitely large domain can be repre-

sented as

σ(r) = F δ(r)

=
F

(2π)2

∫
d2q eiq·r (7)

so that its (symmetric) Fourier transform reads

σ̃(q) =
F

2π
. (8)

Here, F is the (compressive) force squeezing the su-

faces together and σ is the compressive stress. Using

the stress-displacement relation

σ̃(q) = kn q
n ũ(q), (9)
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Fig. 3 Displacement fields u(r) of generalized elastic mani-
folds, in units of a2c/Rc as a function of the distance r from
the axis of a parabolic indenter in units of the contact radius
ac. The indenter has a radius of curvature of Rc. Thin, black,
broken lines indicate the asymptotic solutions of a point in-
denter presented in Sect. 3.1. They were shifted in vertical
direction to match the (numerically) exact displacement field
at large r/ac.

which follows from Eq. (1), the displacement field in

real space, up to an additive constant, becomes

u(r) =
1

(2π)2
F

kn

∫
d2q eiq·r

1

qn
(10a)

=
In F

2π kn r2−n
for n < 1/2 with (10b)

In =

∫ ∞
0

dq̃ q̃1−n J0(q̃), (10c)

where J0 is a Bessel function of the first kind. The tran-

sition from Eq. (10a) to Eq. (10b) can only be made for

1/2 < n, since the Bessel function approaches√
2/(π x) cos(x− π/4) asymptotically for large x, which

renders the integral on the r.h.s. of Eq. (10c) ill-defined.

For n < 1/2, a square or rectangular integration must

be assumed for the wave vectors to make the In con-

vergent. For n ≥ 2, the integrals In diverge because

the integrand grows too quickly as the integration vari-

able approaches zero. However, for a given cell dimen-

sion of a periodically repeated indenter, the integral in

Eq. (10a) can be converted back into a (quickly con-

vergent) sum over wave vectors and/or u(r) − u(0) is

calculated, which alleviates the q → 0 singularity of the

integrand.

For 1/2 < n < 2, the integrals In can be expressed,

in principle, in terms of the gamma function and the

regularized generalized hypergeometric function. How-

ever, this general solution does not proof particularly

useful for our purposes. Only one of the considered ex-

ponents falls into this domain, namely n = 1, and for

this exponent, it is easy to identify the asymptotic so-

lution with elementary functions.

3.1.1 Asymptotic displacement field for n = 0

Since the displacement field is constant outside the con-

tact for n = 0, the calculations outlined above in this

section are not yet needed. The non-contact displace-

ment field simply assumes the height of the indenter

at the contact line, u(ac) = h(ac), which is mentioned

here for reasons of completeness. The value of h(ac)

can also be seen as the (negative) indentation depth,

i.e., dn=0 ≡ u(r →∞) = h(ac).

3.1.2 Asymptotic displacement field for n = 1/2

As already mentioned, I1/2 is not well defined. However,

it can be regularized by multiplying the integrand with

factors such as exp(−αqr) or exp{−(αqr)2}, in which

case it yields the (numerical) value of I1/2 ≈ 0.478(0)

for α→ 0. Thus, the displacement field reads

u(r) = d1/2 −
0.478(0)F

2π k1/2 r3/2
. (11)

The indentation depth d1/2 cannot be determined from

this analysis, since it is specific to the shape of the in-

denter.

3.1.3 Asymptotic displacement field for n = 1

Since
∫∞
0

dxJ0(x) = 1, it follows that

u(r) = d1 −
F

2πk1 r
(12)

where d1 is the displacement in the limit r →∞. This

is, of course, nothing but the well-known Boussinesq
solution for regular semi-infinite solids, although in its

usual formulation k1 is substituted with E∗/2. For the

case of a regular (n = 1) Hertzian indenter, the inden-

tation depth is known to be d1 = a2c/Rc

3.1.4 Asymptotic displacement field for n = 2

The integral I2 is divergent, because its integrand scales

as 1/x when its integration variable x is small. From

this scaling, it follows that the indentation depth must

be a logarithmic function of the linear dimension of the

simulation cell L, because the natural lower bound for

the integration variable q is 2π/L. From the prefactor, it

also becomes clear that a 1/r2−n dependence for n→ 2

should result in a ln(r) dependence. To ascertain the

prefactor to this relation, it is easiest to calculate u′(r)

first, which is obtained by multiplying the integrand on

the r.h.s. of Eq. (10a) with q, so that

u′n=2(r) =
In=1 F

2π k2 r
. (13)
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This yields, after inserting I1 = 1 and after dropping

the index n = 2 in the displacement field,

u(r) =
F

2π k2
ln(r/r2), (14)

where r2 is a reference value defining at what distance

from the origin the asymptotic displacement field has

the height of the exact displacement field in the origin.

For r2 =
√
e ac, the just-derived displacement field

coincides within line width with the data obtained in

GFMD simulations in the immediate vicinity of the con-

tact edge. For this value of r2, the analytical displace-

ment field has the same slope at r = ac as the indenter.

3.1.5 Asymptotic displacement fields for n > 2

For n > 2, the long-wavelength contributions dominate

the integral on the r.h.s. of Eq. (10a). For a periodi-

cally repeated indenter, this means that the first few

Fourier coefficients determine the displacement, unless,

of course, n is very close to 2. In addition, the dis-

placement is best given relative to r = 0 rather than

to r =∞, because dn>2 diverges, while u(ac)− u(0) is

finite.

The n = 3 and the n = 4 displacement fields for pe-

riodically repeated point indenters ressemble the n =

2 and n = 3 solutions for the periodically repeated

line-ridge indenters shown in Fig. 1, respectively, i.e.,

approximately linear right outside the contact for the

smaller value of n and reasonably close to a single si-

nusoidal undulation for the larger value of n.

A reasonably accurate closed-form expression for

the displacement field of a n = 3 elastomer (indented

by a periodically repeated point indenter) can be ob-

tained by using discrete Fourier sums. The first sum-

mand would be taken explicitly while the remaining

terms could be approximated by an integral with a well-

chosen lower integration bound, e.g., a wave number

half way inbetween q0 and
√

2 q0. The solution of that

integral then scales proportionally to r as expected from

Eq. (10b), albeit with a different prefactor. Of course,

this linear scaling only applies for r � L, but it may

hold for r � ac if ac is sufficiently small compared to

L. While this course of action leads to excellent results,

the dashed n = 3 line accompanying the (orange) n = 3

displacement field in Fig. 3 reflects the numerically ex-

act displacement field obtained by GFMD for a point

indenter.

In principle, the n = 4 elastomer can be treated

similarly as the n = 3 elastomer. However, this time

the leading-order Fourier summand is almost sufficient

to deliver a good approximation to the displacement

field throughout non-contact.

3.2 Comparison of different asymptotic solutions

The just-presented asymptotic solutions of the displace-

ment fields allow a few conclusions to be drawn for lo-

calized indenters, which are repeated periodically on a

square domain. They should hold not only for Hertzian

but also for related indenters such as circular flat-punch

or conical indenters, i.e., whenever the asymptotic fields

are quickly approached for radii r & 2 ac.

(i) For n < 2, the indentation depth dn is finite at

constant normal force per indenter, even if L tends

to infinity. For n = 2, dn diverges logarithmically

and for n > 2 algebraically with increasing L.

(ii) The far-field scaling relation u(r) ∝ rn−2 is rig-

orously valid as long as r � L if 0.5 ≤ n < 2.

For smaller exponents, the u(r → ∞) asymptote

is reached more quickly than with rn−2, e.g., for

n = 0, it is reached immediately at r = ac, while for

n = 1/4, numerical evidence (not shown explicitly)

for a u(r) ∝ r−2.25 scaling was found. For n = 2,

the displacement field is logarithmic in r.

(iii) For n > 2, the prefactor to the (derivative of the)

displacement field depends not only on the load per

indenter but also on the period even if L� ac.

(iv) The volume ∆V displaced by an indenter diverges

for L → ∞, unless n is below a critical value ncI
with 0.25 < ncI < 0.5 at which u(r) ∝ r−2 holds.

3.3 Contact radius and (relative) contact area

The final analysis in this section on Hertzian indenters

is the estimation of the contact radius ac and the en-

suing relative contact area for periodically repeated in-

denters. Dimensional analysis is the simplest approach

to obtain functional dependencies. Missing proportion-

ality coefficients tend to be of order unity except close

to critical points, where the dimensional analysis stops

being applicable.

The displacement u(r = 0) of the indenting Hertzian

tip relative to that at r → ∞ scales as a2c/R for n < 2

as becomes clear from Fig. 3. This in turn makes the

potential energy of a single indenter in response to an

external load FN scale as

Upot ∝ −FNu2g/Rc. (15)

A characteristic wave number can be associated with

1/ac so that the elastic energy satisfies

Uela ∝ kna−n+2
c a4c/R

2
c . (16)

Minimizing the total energy, Uela + Upot, then yields

a4−nc ∝ FNRc

kn
, (17)
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which contains the well-known, regular (n = 1) case,

for which the proportionality coefficient would be 3/2.

Eq. (17) can be recast as

ar = κ′n
pRc

kn a
2−n
c

. (18)

for a periodically repeated indenter, whose contact ra-

dius is small compared to the linear dimension of the

periodically repeated cell. Here, κ′n is a unitless propor-

tionality parameter.

Eq. (17) can also be written as

ar = κn
p

∆σc
, (19)

where ∆σ2
c is defined as

∆σ2
c = k2n

〈{
dn

drn
h(r)

}2
〉

c

. (20)

Here, 〈...〉c indicates an average over the true contact

with h(r) = r2/(2Rc) for a Hertzian indenter. Using

the rule for (fractional) derivatives of polynomials, i.e.,

dnqk/dqn = Γ(k + 1)qk−n/Γ(k + 1 − n), ∆σc can be

calculated to be

∆σc =
kna

2−n
c

Rc

√
3− nΓ(3− n)

(21)

so that κ′n is shown to be κ′n = κn
√

3− nΓ(3− n)/π.

Eq. (19) is a generalization of the ar ∝ p∗ relation,

which was shown to be valid at small reduced pres-

sures, p∗ ≡ p/∆σc for periodically repeated indenters

with harmonic height profiles, |h(r)| = rm/(mRm−1c ),

squeezed against a three-dimensional elastic body [50].

The presented calculation can be repeated for arbitrary

n and 0 < m, in which case the proportionality coeffi-

cient κn acquires a second index. However, the propor-

tionality between ar and p∗ remains valid for n < 2.

The (Hertzian) proportionality coefficient κn can be

readily deduced for n = 0 and n = 1 from their ana-

lytical solution to be κ0 = 2/
√

3 and κ1 = 3π/(8
√

2).

κ1/2 was deduced numerically as follows: For a given

normal force F and mesh size ∆a, the stress profile was

computed and fitted with Eq. (5), which allows the de-

termination of the contact radius with sub-mesh-size

precision. For each normal force, the mesh size was de-

creased until the first fourth digit of ac only changed

by plus-minus one. In the same way, F was divided by

factors of 5 until its highest resolution value for ac lev-

elled off. The numerical result yielded κ′1/2 = 0.665(5),

which translates into κ1/2 = 0.994(7). Assuming the

exact values to be simple rational exponents of expres-

sions involving other simple rational numbers and the

numberπ, we believe κ′1/2 = (2/3)2 (8π/5)1/4 and thus

κ1/2 = (2/3)3 (8π/5)3/4 to be exact.

4 Theory for randomly rough surfaces

4.1 Persson theory

In this section, we adopt Persson theory for the con-

tact mechanics between nominally flat, randomly rough

indenters with (semi-) infinite elastomers to that with

more general elastomers, i.e., those whose elastic energy

is given by Eq. (1). In principle, the term kn q
n could be

replaced with any arbitrary function k(q). Since the fol-

lowing treatment allows this generalization to be made

in the final equations, we kept the original expression

of the elastic energy.

Let the stress in a point of contact be given by σ(r)

when all roughness existing in the spectrum with wave

vectors |q′| < q have been considered in an exact solu-

tion of the contact problem. When adding the Fourier

coefficient associated with the wave vector q to a re-

fined calculation, the stress at that point r will change

by

∆σ(r) = i kn q
n h̃(q) eiq·r + c.c. (22)

if the point is sufficiently far away from a contact line.

The just-described change of the local stress would

lead to an expected increase of the second moment of

the stress distribution with k2nq
2n
〈
|h̃|2
〉

if the just de-

scribed changes happened everywhere in the contact.

This, in turn, would lead to a scale-dependent smear-

ing out of the (initial) pressure with a variance of

∆σ2(q) =
∑

q′,q′≤q

k2n q
′2n C(q′). (23)

if all roughness Fourier components with q′ ≤ q had

been considered. The situation can be associated with

that of a random walker and thus with a diffusive pro-

cess. Once a walker has reached σ = 0, it is no longer

considered to be in contact and drops out of the pro-

cess. The adsorbing barrier of the random walk can be

reflected by placing a mirror Gaussian at the negative

nominal contact stress.

Compressive stress and pressure can be assigned the

same sign, so that

Pr(σ) = ācδ(σ) +
exp

{
− (σ−p)2

2∆σ2

}
− exp

{
− (σ−p)2

2∆σ2

}
√

2π∆σ2
(24)

where āc = 1− ac is the relative non-contact area and

ac

( p

∆σ

)
= erf

(
p√

2∆σ

)
. (25)

As argued in the introduction, requiring a theory to

reproduce the pressure-dependence of contact area is

not a particularly telling test. Instead, it may be more
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sensitive to investigate the second moment of the inter-

facial stress, as it is insensitive to a contact criterium,

which, in case of reality and all-atom simulations suffers

from ambiguity. Since the first moment of the interfa-

cial stress in mechanical equilibrium is identical to the

nominal contact pressure, the standard-deviation of the

interfacial stress in Persson theory satisfies

σ2
p

∆σ2
=

1

∆σ2

∫ ∞
−∞

dσ (σ − p0)2 Pr(σ)

= erf

(
p0√
2∆σ

)
+

√
2

π

p0
∆σ

exp

(
− p20

2∆σ2

)
− p20
∆σ2

erfc

(
p0√
2∆σ

)
(26)

and includes the contribution of the zero, non-contact

stress to the std stress.

To obtain the mean interfacial separation, we pro-

ceed as usual and equate the elastic energy in (partial)

contact vela with the work done by the external stress.

The latter satisfies

dvela = −p(ug)dug = −p(ug)
dug
dp

dp. (27)

At infinite pressure, the mean gap is equal to zero and

thus

ug =

∫ ∞
p

dp′
1

p′
v′ela(p′) (28)

In partial contact, elastic energy only has to be paid

in the points of contact. Thus, the spectrum only enters

with a certain weight.

vela(p) =
kn
2

∑
q

W (p,q)qnC(q). (29)

To lowest order, W (p,q) can be assumed to be the

relative contact area. However, the real elastic energy

in partial contact was argued to be less, at least for

(isotropic) semi-infinite solids. It was found that using

weights

W =
{
γn + (1− γn)a2r

}
ar, (30)

which are implicitly functions of p and q, improve the

agreement between theory with experiment or simula-

tions [6]. At small partial contact, the weighting factor

W is still linear in the relative contact area, however,

with a (usually reduced) prefactor γn. As full contact is

approached, W approaches unity. In Eq. (30), the de-

pendence of W on ar was assumed to depend on the

exponent n as denoted by the index n in γn. The ori-

gin of this correction factor, will be discussed further in

Sect. 5.

The usual way to proceed from here would be to

derive a double integral for the interfacial separation,

which allows further analytical calculations to be con-

ducted, albeit not without making approximations. For

the present purpose, it was found beneficial to compute

vela(p) and to evaluate its pressure derivative numer-

ically. Technical details of how this was achieved are

discussed in the following section.

4.1.1 Implementation of Persson theory

Persson theory is carried out with an exact representa-

tion of the spectrum of the simulated system at large

wavelengths λ and with a quasi-continuum approxi-

mation at small λ. This was done by creating nλ =

500 bins, such that the first bin represented the largest

allowed wavelength and the last bin the shortest. The

bins inbetween were chosen such that the ratio of the

wave lengths belonging to two adjacent bins was con-

stant. Each bin contains as information the elastic en-

ergy that is required to make full contact with the

modes associated with that bin as well as the stress

variance accumulated over this and all lower-indexed

bins.

For each bin, the relative contact area entering the

weight function in Eq. (30) and thus also Eq. (29) is

computed as follows: First, ar is computed before and

after (the modes contained in) a given bin are resolved

and denoted by a−r and a+r , respectively. If they do not

differ by more than 10%, their mean value is assigned

to ar, otherwhise the mean relative contact area is com-

puted by

ār =
1

∆σ2
+ −∆σ2

−

∫ ∆σ2
+

∆σ2
−

d∆σ2 ar(p/∆σ). (31)

The integral I on the right-hand-side yields

I =
(
p2 +∆σ2

−
) a−r

2
+
p∆σ− e

−p2/2∆σ2
−

√
2π

−
(
p2 +∆σ2

+

) a+r
2
− p∆σ+ e

−p2/2∆σ2
+

√
2π

. (32)

4.1.2 Comparison to results for periodically repeated

indenters

Persson theory entails a similar relation as Eq. (19)

at small p∗ for nominally flat contacts, except that the

pressure is undimensionalized with ∆σ rather than with

∆σc, in which ∆σ is determined over the entire coun-

terface rather than over the true contact area. If the

theory were modified in a way that ∆σc could be de-

termined over the real contact, the proper real-space

substitution of Eq. (23) would be Eq. (20).
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Proceeding this way, κn is independent of n, since

the linear expansion of Eq. (25) yields ac ≈
√

2/π p∗ for

all n so that a unique proportionality coefficient κP =√
2/π ≈ 0.798 arises in Persson theory. Its value is in

reasonable agreement with the results for Hertzian in-

denters and elastomers with exponents in the range 0 <

n < 1. This agreement is worth noting, because spher-

ically symmetric indenters violate the random-phase

approximation, one of the most criticized assumption

made in Persson theory, in the worst possible way.

4.2 Einstein foundation

In the limit of infinitely large dimensions, D → ∞,

the elasticity of crystals becomes a mean-field model,

in which each atom can be treated as if it were cou-

pled harmonically to its lattice site. A hypercube of

spatial dimension D > 3 has several hypersurfaces,

e.g., D − 1, D − 2, but also (zero-dimensional) ver-

tices, (one-dimensional) edges, and (two-dimensional)

surfaces. The atoms in such a two-dimensional surface

(in contact with a randomly rough, two-dimensional

surface) still have an infinite number of neighbors in

the limit of D → ∞. This is why their coupling also

satisfies the Einstein model, even if the elastic coupling

to lattice sites is potentially different for (hyper-) sur-

face atoms than for bulk atoms. A realization of the

Einstein solid would be a soft elastic body of thickness

t resting on a perfectly rigid foundation, in which only

undulations with wave vectors q � 1/t would be al-

lowed and a total displacement difference in the sheet

well below t. In this case, the stiffness of a mode would

be proportional to 1/t and independent of q as can be

deduced from the q t→ 0 limit of Eq. (A.9) in Ref. [45]

The Winkler foundation is occasionally used as a

contact-mechanics model [51]. It could be argued to

be similar to the Einstein model, because it assumes

a linear relation between displacements within the con-

tact and a generalized stress field. However, it requires

the latter to be transformed so that the resulting field

can be interpreted as a true stress. Moreover, its use

is only rigorous for indenters of rotational symmetry

and singly connected contact patches. In the Einstein

model, stresses do not have to be transformed and the

model is exact for D →∞. This is why it was decided

to use the terms Einstein solid and Einstein foundation

in this study rather than Winkler foundation.

The Einstein model can be solved analytically for a

variety of cases. This includes a Gaussian height distri-

bution, which is acquired in the thermodynamic limit

for indenters satisfying the random-phase approxima-

tion. More precisely, any observable considered in this

work can be expressed in closed form as a function of

the height of the non-contact zone hnc relative to the

mean height h0 of the randomly rough indenter.

The probability distribution of the displacement field

of an n = 0 elastomer, Prn=0(u), is identical to that of

the indenter given that the indenter height is below the

non-contact height hnc so that

Prn=0(u) = ācδ(h− hnc) + Pr(h) Θ(hnc − h) (33)

where ār = 1− ar is the relative non-contact area and

ar =

∫ hnc

−∞
dhPr(h). (34)

Moments of the displacement relative to the non-contact

height satisfy

〈
uk
〉

=

∫ hnc

−∞
dhPr(h) (hnc − h)k, (35)

where the displacement is defined as positive if a point

sits below the non-contact height.

Making the xy plane lie at the same height as the

center of mass of the indenting surface and assuming

a Gaussian height distribution yields the following first

three, non-negative integer moments of the displace-

ment field after some algebra

ar =
1

2

{
1 + erf

(
hnc√
2hstd

)}
(36a)

〈u〉 = hstd
exp

{
−h2nc/(2h2std)

}
√

2π
+ hnc ar (36b)

〈u2〉 = hstd hnc
exp

{
−h2nc/(2h2std)

}
√

2π

+(h2nc + h2std) ar, (36c)

where ar may be interpreted as the zeroth moment of

the displacement field for an Einstein foundation.

Eq. (36) allows the dependence of the mean gap ug
on the pressure to be determined. The mean gap can

be seen as complementary to the displacement so that

〈ug(hnc)〉 = 〈u(−hnc)〉 (37)

and the pressure reads

p = k0 u(hnc). (38)

Finally, all properties of interest in this study can be

calculated as analytical functions of hnc and then plot-

ted against each other.
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5 Results

To set the stage for the further analysis, representative

contact cross-sections at close to 10% relative contact

area are shown in Fig. 4. Like any other bearing model

ignoring elastic deformation outside the contact, the

non-contact height is constant for the Einstein founda-

tion (n = 0). As n increases, the long wavelength struc-

ture of the substrate is ever more followed. At the same

time, the contact patches spread out more and more.

For example, in the shown cross section, the n = 0 solid

only makes contact at r/L . −0.4 and at r/L ≈ 0.6.

For n = 1, additional contacts arise at r/L ≈ 0.1 and

r/L ≈ 0.3, while for n ≥ 2, the contact appears to be

almost uniformly spread out across the interface.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
r / L

-5

-4

-3

-2

-1

0

u
(r

) 
/ 

h
st

d

n = 0

n = 1/2

n = 1

n = 2 h(x)

n = 3

Fig. 4 Displacement field of different counterfaces at a rel-
ative contact area of ar = 0.1± 0.005 across one of two diag-
onals of the simulation cell. The thin sheet (orange, n = 3)
and the stressed membrane (green, n = 2) have most points
within or close to the line width of the randomly rough inden-
ter (black). All other counterfaces, namely, the regular, semi-
infinite solid (red, n = 1), the elastically graded elastomer
(blue, n = 1/2), and the Einstein solid (magenta, n = 0) have
separations, which are clearly visible at the given resolution.

Due to the finite optical resolution, Fig. 4 can con-

vey the impression that the large-n elastomers make

more contact than those with small n. However, the

figure does not immediately reveal that the large-n elas-

tomers rarely reach the indenter’s valleys. Stress has the

much greater sensitivity to reveal this trend.

To demonstrate to what extent the value of n affects

the local contact geometry but also to introduce typi-

cal stress profiles of the various counterfaces, the stress

profile of the asperity located near r/L = −0.4 is shown

next in Fig. 5. While the n = 1/2 elastomer makes al-

most perfect contact in that asperity, the n = 3 elas-

tomer makes close to its “usual” 10% contact. It does

so by sampling predominantly the peaks of the rigid

indenters.
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σ
 /

 ∆
σ

n = 1

n = 1/2

(a)
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r / L
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2.5
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3.5

4.0

σ
 /

 ∆
σ

n = 3

n = 2

(b)

Fig. 5 Local stress profiles at ar = 0.1±0.005 for (a) n = 0.5
(dotted blue line with squares), n = 1 (solid red line with cir-
cles) as well as for (b) n = 2 (dotted green line with triangles
down) and n = 3 (solid orange line with triangle up). Stresses
for n = 3 are divided by a factor of two to make the data fit
on the same graph as the one for n = 2. The discretization in
(a) was 8k×8k and in (b) 16k×16k.

Fig. 5 also reveals that the way how the interfacial

stress disappears with the distance d from a contact

edge is similar to that for a Hertzian contact geome-

try. It obeys the σ ∝ dµ/2 scaling with the same de-

pendence of the exponent µ on n as state in Eq. (6).

To fully reveal the nature of the stress singularities at

the contact edge of an n = 3 elastomer, very fine dis-

cretizations are required. Using 32k×32k elements of

the full default surface is still insufficient. Confirming

that µ(n = 3) = −1 also applies for randomly rough

surfaces requires to zoom into individual asperities with

even finer discretization.

Results for thin beams (n = 4) were not included

in the comparison of contact topographies and stresses

at 10% relative contact for different exponents. It is

computationally unfeasible to reach that limit for n =

4, because of the singular nature of contact stresses at

the contact line making ar somewhat difficult to define.
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5.1 Contact area and stress distributions

One of the two central, scalar quantities to be deter-

mined in an elastic contact-mechanics calculation is the

contact area. Fig. 6a shows the numerical results for the

various elastic counterfaces as a function of reduced

pressure p∗ ≡ p/∆σ including the theoretical predic-

tion by Persson theory, while Fig. 6b shows the ratio

of the numerical results and the theoretical prediction.

Note that the present definition of the reduced pressure

deviates by a factor of two from the usual convention

p∗usual ≡ p/E∗ḡ for semi-infinite solids, where ḡ is the

root-mean-square height gradient.
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_

Fig. 6 (a) Relative contact area ar as a function of reduced
pressure p∗ ≡ p0/∆σ for different elastic counterfaces. (b):
Ratio of computed and predicted relative contact area.

While Persson theory predicts the deviations from

full contact at large p∗ reasonably well for all studied

systems, agreement for ar(p
∗) at small p∗ is less satis-

factory: for 0.5 ≤ n ≤ 2, logarithmic corrections to a

linear ar(p
∗) = κnp

∗ dependence are required, while

an entirely different power law is observed for n = 3.

The need for the logarithmic corrections might disap-

pear or at least be strongly suppressed in the thermo-

dynamic limit, in particular for n = 1 [?]. However,

the contact is spread out over many small patches for

n = 2, Thus, finite-size corrections to Persson theory

conducted similarly as those for the interfacial stiffness

of semi-infinite elastomers [30] would not apply to the

contact-area calculation of the n = 2 elastomer. New

improvements to the theory may have to be identified,

as for example, the replacement of ∆σ with ∆σc. Yet,

as argued in the introduction, the reproduction of rela-

tive contact area is not seen as a critical assessment of a

contact-mechanics theory for randomly rough surfaces,

even if it is the most frequently performed traditional

assessment of their validity.

A potentially more meaningful test for a contact-

mechanics theory is to make it predict the interfacial

stress distribution function Pr(σ). It is given by Eq. (24)

in Persson theory, irrespective of the value of the ex-

ponent n. One of the difficulties in computing it in full

simulations is that discretization effects lead to an over-

estimation of Pr(σ) at small, positive values of σ.

For non-adhesive contacts of semi-infinite (n = 1)

solids with randomly rough surfaces, it is well estab-

lished that Pr(σ) disappears as σ approaches zero from

above, for example, Wang and Müser found a Pr(σ) ∝
σ0.7 at small σ [10]. However, it is generally difficult to

determine the precise (power) law with which this hap-

pens, also because very fine discretizations are required

to unravel the asymptotic σ → 0 behavior. For semi-

infinite solids, this is because the stress in real space

disappears proportionally with
√
d with the distance d

of a contact point from the contact edge. This implies

that the number of points with small σ are scarcely

distributed.

The larger (smaller) n, the more continuous (dis-

continuous) is the disappearance of the stress with d

in an individual contact. While a quantitative analy-

sis would require precise contact patch and contact line

statistics, this trend is consistent with the σ → 0 be-

havior observed in Fig. 7: small exponents n enhance

the probability of small stresses near the contact line

relative to large exponents.

The functional form of Pr(σ) changes continuously

with n. This becomes particularly noticeable for the

asymptotic scaling in the σ → 0+ limit. For small, pos-

itive stresses, we find Pr(σ) ∝ σµ, where µ(n = 0.5) ≈
0.3, µ(n = 1) ≈ 0.6, and µ(n = 2) = 1 for the default

system, where the uncertainty in the exponent is ap-

proximately 0.1. The exponent for the n = 3 elastomer

is difficult to determine for the default system. Using a

discretization of 32k×32k still turned out insufficient.

For smaller systems, e.g., for an H = 0.8 indenter with

a linear system size of merely L = 20 λs, evidence for

super-linear scaling at small σ was identified. The small
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0 0.5 1 1.5 2 2.5 3
σ / ∆σ

0.00

0.02

0.04

0.06

0.08

0.10

P
r 
(

σ
 | 

a
r =

 0
.1

 )
  
 (

∆
σ

)

n = 0.5

n = 1

Persson theory

n = 2

n = 3

n = 0

Fig. 7 Stress distribution function at 10% relative contact
area, Pr(σ|ar = 0.1), as a function of stress σ in units of the
standard deviation of the stress in full-contact, ∆σ. Solid lines
for the various elastic bodies are actual data. Not every data
point is represented as symbols. The data for small σ were
produced with the help of a Richardson extrapolation.

probabilities at small σ for n = 3 is not surprising, be-

cause the lowest contact stresses appear in the center of

the contact patches rather than on their edges, which

makes small positive interfacial stresses be rare.

The n = 3 stress distribution function is also spe-

cial at large stresses in that it is the only one lack-

ing Gaussian tails. Instead, Pr(σ) disappears as a σ−2.5

power law at large stresses. Non-Gaussian tails in Pr(σ)

had also been observed previously for randomly rough,

stepped indenters [52]. This similarity might originate

from similar single-asperity stress profiles, as the flat-

punch stress profile for a n = 1 elastomer has the same

functional dependence as the Hertzian stress profile of

an n = 3 elastomer.

The lowest-order, positive-integer moment of the in-

terfacial stress distribution function in partial contact

is the second moment, ∆σp. Therefore it appears to

be the most appropriate single number with which to

quantify the shape of the stress distribution function

as a function of pressure. Fig. 8 compares the theoreti-

cal prediction, which again does not depend on n when

stress is expressed in units of ∆σ, to the results of ∆σp
for different n obtained with GFMD. The trends of all

data sets is rather similar except, again, for n = 3,

which is discussed next.

The n = 3 elastomer is the only studied case, in

which the interfacial standard deviation of the stress in-

creases with decreasing pressure. This trend, however, is

easily rationalized: When the first non-contact patches

arise, so do the stress singularities at the contact edges,

which increase the stress variance. Since the stress vari-

ance in an isolated Hertzian contact diverges for n = 3,

it should also diverge as soon as the contact edges have
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Fig. 8 Standard deviation of the interfacial stress in par-
tial contact, σp expressed in units of ∆σ as a function of the
reduced pressure p/∆σ. The data shown for n = 3 are only
lower bounds obtained by discretizing the short-wavelength
cutoff into 128 elements. Exact numbers are expected to di-
verge for n = 3 in partial contact using an infinitesimally fine
discretization.

a finite weight, i.e., whenever the relative contact area

drops below unity. In fact, even close to full contact, a

quasi-logarithmic increase of ∆σp with the number of

discretization points is observed.

In this entire section on stress distribution and con-

tact areas, the n = 4 elastomers could not be consid-

ered, because of their peculiar contact mechanics, which

makes the determination of the just-investigated prop-

erties impossible when contact is partial. However, it

is clear that the discrepancies between theoretical pre-

diction and exact results become much accentuated for

n = 4.

5.2 Mean gap

The mean interfacial separation, or, short, the mean

gap, ug, is the other important, scalar quantity, al-

lowing a contact-mechanics theory to be tested. It is

the first (unitless) quantity studied in this work, whose

dependence on the reduced pressure p/∆σ in Persson

theory does depend on the exponent n. Fig. 9 shows

that the theory captures this dependence quite well for

0.5 ≤ n ≤ 4. The Einstein foundation is discussed sep-

arately, as it suffers from large size effects in ug(p∗)

while allowing for an analytical solution in the thermo-

dynamic limit.

For the most part, relative errors for 0.5 ≤ n ≤ 4 can

be said to remain within close to 10% error for ug(p) at

p ≤ ∆σ and 20% for p(ug) when p ≥ ∆σ. This level of
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Fig. 9 Mean gap ug in units of the height standard deviation
hstd as a function of the reduced pressure p/∆σ; (a) with a
logarithmic x-axis and linear y-axis and (b) with a linear x-
axis and a logarithmic y-axis. The data relates to the default
surface with a Hurst exponent of H = 0.8.

agreement was achieved with the following parameters

γn =



0.5 for n = 0

0.45 for n = 0.5

0.35 for n = 1

0.2 for n = 2

0.1 for n = 3

0.02 for n = 4.

(39)

used for γn throughout this study. These factors were

identified to be useful after some trial and error, which

is why further optimization might lead to a closer over-

all agreement between theory and simulation. However,

we do not expect changes to be large, as the theory is

not exact to begin with and fine tuning adjustable coef-

ficients on one data set often leads to the deterioration

of others in that case.

Given the dramatic difference between single-asperity

contact mechanics for the different n and given that the

theory requires as (dimensionless) input only the height

spectrum, the exponent n, and one correction factor

for each value of n, we would argue that the accuracy

of the predictions is rather impressive. It can even be

called surprising, because the prediction of the relative

contact area, which enters the calculation of ar(p
∗), is

much less convincing than that of ug(p∗) in particular

for n = 4, where relative contact areas could not even

be determined with simulations. Yet, the agreement be-

tween theory and simulation might not be (entirely) for-

tuitous or it should have only been found for a single

exponent n.

5.2.1 Transferability test for correction factors

A natural question to ask is whether the numerical fac-

tors γn, which were crudely optimized on the GFMD

data for the default system, see Eq. (39), also apply to

other systems. To answer this question, additional sets

of simulations were run. These include a change of the

Hurst exponent from H = 0.8 to H = 0.3 and the anal-

ysis of the ug for slabs of finite width, both presented

in this section. Moreover, spectra were changed from

roll-off to cut-off. Results were positive but are not re-

ported for time reasons. Another issue appeared to be

more urgent, namely the analysis of finite-size effects

at extremely small stresses. This is an interesting topic

in itself, which is discussed in a seperate section in the

context of the Einstein foundation.

In all transferability tests, the resolution of the sim-

ulations was set to ∆a = λs/2 for reasons of com-

putational efficiency, i.e., we abstained from perform-

ing systematically continuum corrections. However, ug
is an extremely quickly converging quantity so that

the continuum limit of ug and its estimate obtained

at ∆a = λs/2 tend to differ by less than one percent.

For the H = 0.3 simulations, all parameters were

kept unchanged, except, of course, for the Hurst expo-

nent. Fig. 9 shows that the quality of the prediction

does not deteriorate.

In another set of simulations, the thickness t of the

semi-infinite solid was reduced from infinity to different

finite values. For these simulations, the Hurst exponent

was set back to H = 0.8. The spectrum was changed

from a roll-off to a cut-off spectrum

C(q) = C(qr)(q/qr)
−2−2H Θ(q − qr) Θ(qs − 1), (40)

for reasons that are mentioned in the section on finite-

size effects. Moreover, the roll-off domain, or rather cut-

off domain, was increased to L/λs = 5.12, while the

ratio λr/λs remained unchanged (=0.01). The cut-off

domain was enlarged compared to the default simula-

tions in order to increase the ratio of ug/hstd, where

simulations do not suffer from finite-size effects.
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10
-3

10
-2

10
-1

10
0

p / ∆σ

10
-3

10
-2

10
-1

10
0

u
0
 /

 h
s
td

n = 0.5

n = 1

n = 2

n = 3

n = 4

H = 0.3

Fig. 10 Mean gap ug in units of the height standard devi-
ation hstd as a function of the reduced pressure p∗ = p/∆σ.
The randomly rough indenter is constructed as the default
surface, however, with a Hurst exponent of H = 0.3.

The boundary condition of the finite-width elas-

tomer on the surface opposite to the interface is as-

sumed to be constant stress. In this case, the contact

modulus occurring in the expressions for stress and elas-

tic energy for a semi-infinite solid must be replaced ac-

cording to [45].

E∗ →
cosh

(
2 t̃
)
− 2 t̃2 − 1

sinh
(
2 t̃
)

+ 2 t̃
E∗, (41)

where t̃ is the thickness of the three-dimensional n = 1

elastomer in units of the inverse wave vector 1/q. Thus,

the elastomer behaves like a thin sheet for wave vectors

q � 1/t and bulk-like for q � t with a continuous

transition between these two limits.

Because of the effective continuous change from n =

1 at short wave lengths to n = 4 in at long wave lengths,

the correction factor needs to be made a function of

thickness so that the two limits are properly reflected.

For the data presented in Fig. 11, the relation

γ(t̃) = γ4 + (γ1 − γ4) tanh
(
t̃/6
)

(42)

was used, however, it may well be that better switching

functions can be designed.

While Persson theory does not reproduce the ug(p)

relation for elastomers of varying thickness quite as con-

vincingly as for the other models presented in this study

up to this point, it is still at least semi-quantitative.

Yet, at very large pressures, which are not shown explic-

itly at high resolution, it predicts the ug(p) dependence

similarly well as before. To further improve agreement

between theory and simulation, it might also be helpful

to modify the W (ar) dependence of Eq. (30).
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Fig. 11 Mean gap ug in units of the root-mean square height
hstd as a function of the reduced pressure p∗ = p/∆σsi for
three-dimensional elastomers of infinite width and a width in
the range 0.01 ≤ t/λr < 0.1. Here, ∆σsi is the stress standard
deviation of the three-dimensional, semi-infinite elastic body
in full contact.

5.2.2 Einstein foundation and finite-size effects

The results for the Einstein foundation are presented

seperately for mainly two reasons. First, the range of

ug/hstd, in which size effects are negligible, is somewhat

reduced compared to the other elastic bodies, while the

sensitivity to the specific random realization is much en-

hanced. Second, the ug(p) dependence of the Einstein

foundation crosses the data for n = 0 and n = 1/2 in

the shown range of reduced pressures, so that the readi-

bility of the pertinant figures deteriorates substantially.

Moreover, an exact solution is available for the Einstein

foundation in the thermodynamic limit, which makes

additional analysis possible.

Before presenting results on the Einstein founda-

tion, it is usefull to discuss finite-size effects first. In

the thermodynamic limit, that is, for εt ≡ λr/L →
0,, the height distribution is Gaussian. Consequently,

the height difference between highest and lowest point

∆h = hmax − hmin diverges. However, this limit is ap-

proached so slowly that it is far from being reached in

real systems. Typical values for the used height spec-

trum ∆h(εt) in units of hstd are ∆h(1/2) ≈ 6 (as in

the default model), ∆h(1/8) ≈ 8, ∆h(1/100) ≈ 10, and

∆h(1/1000) ≈ 11. For a pressure, which is just slightly

positive, a mean gap of roughly ∆h/2 can be reached.

Fig. 12 reveals these expectation to be accurate: devi-

ations between the GFMD data and the exact solution

start to matter when the mean gap approaches ∆h/2.

An additional finding revealed in Fig. 12 is that

Persson theory does not match the ug(p) relation of

the Einstein foundation for ug/hstd & 2.5. Potential

reasons are discussed separately in Sect. 6. An obvious

concern is that n > 0 foundation might behave simi-
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larly. To check this possibility, additional simulations

were conducted for n = 0.5 and n = 1, in which the fol-

lowing ratios were used: 2 ≤ L/λr ≤ 32, λr/λs = 128,

and λs/∆a = 2. For small pressures, deviations between

the new data and the one presented in Fig. 9 remained

below symbol size. We conclude that the good agree-

ment between GFMD simulations and theory revealed

in Fig. 9 does not arise because of fortuitous error can-

celation caused by finite-size effects.

6 Rationalizing the accuracy of Persson theory

Persson theory predicts ug(p) relations for different elas-

tic counterfaces in an astoundingly accurate fashion,

except for the Einstein foundation when ug/hstd & 2.5,

where the predicted trend is inaccurate. The judgement

“astoundingly” is used because results from the GFMD

simulations appear to violate central assumptions made

in the theory, in particular for large n.

1. The derivation of the ug(p) relation uses the scale-

dependent relative contact area as intermediate step,

however, in contrast to the final result, the precision

of ar(p) is relatively poor and even qualitatively in-

correct for n > 2.

2. The estimate for how an arbitrary point changes the

stress upon adding small-scale roughness is justified

for points far away from a contact edge but poor for

points close to it. Any system in which contact exists

predominantly in small contact patches violates that

estimate, for example, for n ≥ 2 but also for n = 1

with H < 0.5 [53].

3. The theory implicitly assumes that a point dropping

out of contact is a point in which the stress has

“diffused” continuously to zero upon the addition of

small-scale roughness. However, the stress diverges

near the contact edge for n > 2 and discontinuously

drops from infinity to zero when contact is lost due

to the addition of small-scale roughness.

4. The calculation of the elastic energy assumes the

displacement field to consist only of undulations with

the same wave length as the indenter. However, for

n < 1, the slope of the displacement field is dis-

continuous at the contact edge. This implies the

occurence of short-wavelength modes whose elastic

energy is not accounted for in the theory.

Some of this criticism has been uttered before [32,37]

and even been quantified [32] for regular semi-infinite

bodies. However, points 1-3 are accentuated for n > 1,

while point 4 becomes more relevant for n < 1.

Another reason why the accuracy of the predicted

ug(p) relation is deemed astounding is that the the-

ory is extremely simple, though this may as well be ar-

gued to be a reason for why it works so well. One page

of text and graduate-level mathematics are sufficient

to develop all equations needed in this work from first

principles, i.e., from the stress-displacement relation of

a single sinusoidal surface undulation, or, alternatively

from the Boussinesq solution. The full Hertz solution, a

central input ingredient to bearing-area models is much

more complicated than that, and it is only the start-

ing point of many more pages of mathematics used

even in the simple, original GW model, with even more

pages of mathematics in “improvements” of that model,

which then do not even produce meaningful mean-gap-

displacement relations. Keeping in mind that a ran-

domly rough contact is the superposition of many in-

dividual contact patches each of which is much more

complex than a Hertzian contact, it seems counterintu-

itive that a good, approximate solution of an extremely

complex problem is simpler than the exact solution of

a seemingly simple problem.

So, why does Persson theory work so well even when

it shouldn’t? In the following, two main rationals will be

stated, one of which can be used to potentially adjust

the theory and to rationalize the correction factor γn,

which appears as a drop of bitterness needed to turn the

theory from qualitative to (semi-) quantitative. First,

the author of this study showed that Persson theory is

exact for n = 1 up to at least second-order (any sur-

face) and third-order (random phase approximation) in

a rigorous field-theoretical approach (cumulant expan-

sion) to contact mechanics, in which the inverse range

of repulsive interaction, ζ, was treated as a perturbative

parameter and thus as small compared to a height un-
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dulation [54]. The treatment presented in there can be

easily generalized to arbitrary n by replacing the occur-

rence of any qE′ (E′ of Ref. [54] being E∗ in this study)

to 2qnkn. An interesting aspect of this work is that the

formalism could be re-interpreted and re-used for the

design of an effective repulsive-zone model. Assuming

that the effect of all small-scale roughness has been ab-

sorbed into an effective potential, which would turn out

as exponential repulsion for sufficiently large separa-

tion, including larger-wave-length undulations into the

treatment would renormalize that potential and render

the repulsion effectively longer ranged. In this proce-

dure, assuming ζ to be small compared to the (addi-

tional) height fluctuation would actually be a meaning-

ful starting point, while this was not well justified in

the original work.

Another reason why the theory predicts even the

ar(p) relation reasonably well, i.e., up to corrections

logarithmic in p, is that it can be applied with a minor

modification to single indenters with harmonic height

profiles, for which the random-phase approximation is

violated in the worst possible way. The generalization

is that the stress variance ∆σ is evaluated over the true

contact rather than over the entire randomly rough sur-

face. This modification is not only succesful for said

single indenters but also for randomly rough indenters

not satisfying the random-phase approximation in con-

tact with a regular semi-infinite, elastic counterface [?].

Thus, assuming ar = erf(p/∆σc) to hold, it needs to be

understood how the true-contact-area stress variance

∆σ2
c deviates from the full-surface stress variance ∆σ2.

Inspection of Fig. 4 reveals that the larger the expo-

nent n, the more do the elastic counterfaces sample lo-

cal peaks but no local valleys, while counterfaces with

a small exponent n do sample local valleys in global

(coarse-grained) peaks. This behavior automatically en-

tails a reduction of ∆σc and thereby a reduction of elas-

tic energy compared to configuration forming conformal

contact with the indenter, which increases with increas-

ing n.

None of the just-made arguments explains the first

item in the list of reasons stated at the beginning of this

section for why Persson theory should not be accurate.

To rationalize this point, the concept of contact area

and stress distribution needs to be thought about. Are

these properties defined doing a calculation such that

the elastomer’s undulations u(r) are (a) fully resolved

or (b) resolved only up to wave vectors which have been

considered in the magnification-dependent representa-

tion of the randomly rough indenter? In the latter case,

Persson theory would predict at least the correct order

of magnitude for the second moment of the stress distri-

bution function, since the tails of the probability distri-

bution Pr(σ) appear to be quite accurate. In contrast,

in the case of (a), any moment of the stress distribution

function would be completely off. Thus, interpretation

(b) seems to be the correct one, even if it still remains

unclear why the n = 3 gap-pressure relation is obtained

so accurately by Persson theory.
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tact with the default indenter for different discretizations
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The final result noted in this study pertains to the

stress distribution function Pr(σ) points for n = 3 and

its second moment in the continuum limit. For decreas-

ing mesh sizes, Pr(σ) approaches an algebraic decay ac-

cording to Pr(σ) ∝ 1/σβ with β ≈ 2.6 (and estimated

errors of 0.15) for n = 3 and H = 0.8. Since β < 3,

the stress variance diverges. This is consistent with the

results and the discussion of the second moment of the

stress in Sect. 5.

7 Conclusions

In this work, Hertzian and randomly rough indenters in

contact with linearly elastic counterfaces were studied

using both numerical and analytical methods. The elas-

tic bodies differed in the way how their elastic energy

depended on the wave lengths λ of surface undulations.

In most cases, this dependence was a λ−n power-law,

with n ranging from n = 0 (elastic bodies of infinite

spatial dimension) to n = 4 (two-dimensional, freely

suspended sheets) including n = 1, which is represen-

tative of regular semi-infinite solids. For both Hertzian

and randomly rough indenters, out-of-contact displace-

ment and in-contact stress fields depend smoothly on

the exponent n, although critical values for n exist, at

which the behavior changes qualitatively. For example,
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the (compressive) stress near a contact edge approaches

zero for n < 2 but diverges for n > 2, while it is positive

and finite for n = 2. The latter exponent is representa-

tive for thin sheets under equi-biaxial tension.

A central result of this study is that Persson theory

can be easily applied to the contact mechanics of the

considered, generalized elastic bodies. The theory pre-

dicts the stress distribution function Pr(σ) and thus the

relative contact area ar to depend only on the ratio of

pressure p and the root-mean-square stress fluctuation

in full contact ∆σ. Green’s function molecular dynam-

ics (GFMD) simulations reveal dependencies of these

quantities on n, which, however, are relatively minor

for n ≤ 2. Deviations between GFMD and theory worth

noting are logarithmic corrections to the predicted lin-

ear ar(p) relation at p/∆σ � 1 and a Pr(σ) ∝ σβ

power-law dependence for small stress in the case of

partial contact, in which the exponent β appears as

a smooth function of n rather than to assume the pre-

dicted constant value of n = 1. Despite these shortcom-

ings, Persson theory reproduces the dependence of the

mean interfacial separation on pressure at least semi-

quantitatively, with the exception of the n = 0 Ein-

stein (or Winkler or bearing-area) foundation at small

pressures. For all other studied exponents in the range

0.5 ≤ n ≤ 3, errors in either ug(p) at small p or p(ug)

at small ug remain below 20%, This is an astoundingly

close and systematic agreement given that the theory is

is somewhat inaccurate for the ar(p) dependence, which

enters the ug(p) calculation.

In order to achieve close agreement between the-

ory and simulation, a correction factor needed to be

introduced for the calculation of the elastic energy in

partial contact. The correction factor, γn, was adjusted

as a (smooth) function of n but not on the rough-

ness profiles. For freely suspended elastic sheets of finite

thickness t, it has to be made a function of the wave

length so that γ(q) reflects the semi-infinite and thin-

sheet limits meaningfully, i.e., γ(q � 1/t) = γ1 and

γ(q � 1/t) = γ4. Doing so allows elastic sheets of finite

width to be modeled with a greater precision than be-

fore. Discrepencies between theoretical and computed

ug(p) relations at small p no longer have to be hidden by

avoiding their appropriate double- or semi-logarithmic

representations.

The present work identifies a potential origin of the

correction factor γn used in Persson theory and why

it decreases with n: the statistics entering the theory,

i.e., the root-mean-square height gradient for n = 1

and related quantities for other n, are not the same in

partial contact and in full contact, and the way how

true contact samples the roughness of the indenter de-

pends on n. The larger n at fixed relative contact area,

the more does the elastic body sample the global min-

ima but only local heights. Consequently, the discrep-

ancy between full averages of central quantities (i.e.,

root-mean-square height gradient for n = 1 and related

quantities for other n) and averages over partial contact

deviate more for small n than for large n.

How can Persson theory be modified so that ∆σ

is determined over the true contact and not over the

nominal contact? For small n, e.g., for n ≤ 1, it might

make sense to argue that ∆σc at a relative contact of

ar should be averaged over the 100 · ar highest (or low-

est) percentile range of the indenter to determine ∆σc
according to Eq. (20). When doing so, the relative con-

tact even at the smallest pressures would be predicted

within O(10%) accuracy, as this version of Persson the-

ory predicts the relative contact area of single Hertzian

indenters within a few percent. As such, the range of

validity of the theory can be further extended and also

be applied to systems in which the random-phase ap-

proximation does not hold.

How could bearing-area models be modified so that

they apply to systems with n > 0? The worthlessness

of this exercise should become obvious even to a math-

ematically challenged tribologist, as the assumed topo-

graphy of the elastic body is that of the n = 0 curve

shown in Fig. 4 no matter how large n. While there have

been brave attempts to augment bearing-area models

with rigorous boundary-value methods (BVM), they

appear to be less accurate but computationally more

demanding than a full BVM treatment as revealed, for

example, in the contact-mechanics challenge. And who

would want to pay more for less?

Acknowledgement: The author thanks Prof. Shogo

Okamoto (Nagoya Univ.) for sharing his data on the

contact mechanics of human skin and Mr. Joshua Weißen-

fels (Saarland Univ.) for helpful discussions.

References

1. J. F. Archard. Elastic deformation and the laws of fric-
tion. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 243(1233):190–205, dec
1957.

2. D. J. Whitehouse and J. F. Archard. The properties
of random surfaces of significance in their contact. Pro-
ceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 316(1524):97–121, mar 1970.
3. B. N. J. Persson. Theory of rubber friction and contact

mechanics. The Journal of Chemical Physics, 115(8):3840,
2001.

4. B. N. J. Persson. Elastoplastic contact between randomly
rough surfaces. Physical Review Letters, 87(11):116101,
August 2001.

5. S. Hyun, L. Pei, J.-F. Molinari, and M. O. Robbins.
Finite-element analysis of contact between elastic self-
affine surfaces. Physical Review E, 70(2):026117, aug 2004.



18 Martin H. Müser
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