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Abstract: The Prandtl model is certainly the simplest and most generic microscopic model describing1

solid friction. It consists of a single, thermalized atom attached to a spring, which is dragged past2

a sinusoidal potential representing the surface energy corrugation of a counterface. While it was3

primarily introduced to rationalize how Coulomb’s friction law can arise from small-scale instabilities,4

Prandtl argued that his model also describes the shear thinning of liquids. Given its success regarding5

the interpretation of atomic-force-microscopy experiments, surprisingly little attention has been6

paid to the question how the Prandtl model relates to fluid rheology. Analyzing its Langevin and7

Brownian dynamics, we show that the Prandtl model produces friction-velocity relationships, which8

converted to a dependence of effective (excess) viscosity on shear rate η(γ̇), is strikingly similar9

to the Carreau-Yasuda (CY) relation, which is obeyed by many non-Newtonian liquids. The two10

dimensionless parameters in the CY relation are found to span a broad range of values. When11

thermal energy is small compared to the corrugation of the sinusoidal potential, the leading-order γ̇2
12

corrections to the equilibrium viscosity only matter in the initial part of the cross-over from Stokes13

friction to the regime, where η obeys approximately a sublinear power law of 1/γ̇.14

Keywords: friction; viscosity; shear thinning; theory; molecular dynamics; Fokker Planck equation;15

blood flow16

1. Introduction17

Understanding frictional forces and thus energy dissipation between two sliding bodies is a18

central task of tribology. The Prandtl model is arguably the simplest and most generic non-linear19

model explaining why and how energy dissipates microscopically [1–3]. It consists of a mass point,20

which is dragged by a spring of stiffness k past a corrugated potential and subjected to a Stokesian drag21

force as well as to thermal fluctuations. When k is less than the maximum curvature of the potential22

V′′max, instabilities occur and friction has a finite zero-velocity limit in the absence of thermal noise,23

consistent with Coulomb’s law of friction. However, if the reduced spring stiffness k̃ ≡ k/V′′max > 124

and/or when the thermal energy kBT is finite, the dependence of the friction force F on velocity v is25

Stokesian at small v but usually much enhanced compared to that caused by the artificially added26

damping term.27

The Prandtl model — while having been mistakenly attributed to Tomlinson, see Sect. 1.1 —28

received a revival when it was realized that the model (sometimes with minor modifications) can29

quantitatively describe friction and stick-slip dynamics as measured in atomic-force-microscope30

experiments [4–9]. This includes the transition between stick-slip motion [10] and structural31

lubricity [11] upon a decrease of load, i.e., the regime where solid turns into viscous friction. The32

relevance of the Prandtl model to fluid rheology remained nevertheless relatively unexplored, despite33

few exceptions [12,13]. This is surprising in light of Prandtl’s comment that we obtain the complete34
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transition from solid bodies to liquids of low viscosity including all states of softening in between. (Here35

and in the following quotations set in italic refer to the excellent English translation by Popov and36

Gray [3] rather than to the original German.) Moreover, Prandtl expected viscosity η to increase37

(only approximately) exponentially in pressure p, in agreement with the so-called Barus equation, its38

generalizations, and more recent experiments [13–15] as well as molecular simulations [16].39

Simple microscopic models describing shear-thinning in non-Newtonian liquids properly are
scarce if existent at all. The most standard model, which could be called semi-phenomenological, is the
Eyring model [13,15,17,18], which assumes the existence of a single energy barrier opposing (lateral)
motion of an atom when a fluid is sheared. The Eyring model arises as the limiting k̃→ 0 case of the
Prandtl model. The dependence of (excess) viscosity η on shear rate γ̇ in the Eyring model is given by

η(γ̇) = ηN
γ̇0

γ̇
arsinh

(
γ̇

γ̇0

)
, (1)

where ηN is the equilibrium (excess) viscosity and γ̇0 a characteristic shear rate near which friction40

crosses over from a linear, fluid-like to a quasi-logarithmic, solid-like dependence on velocity. The41

term “excess” is meant to indicate that experimental results on “full” viscosities, i.e., ratios of shear42

stresses and shear rates, are often fit to equations of the form ηfull(γ̇) = η∞ + η(γ̇). In the following,43

the contribution η∞ will be ignored and we content ourselves with the comment that a related term44

arises in the Prandtl model when an explicit Stokesian damping acts between the mass point and the45

substrate.46

While many liquids follow Eyring’s model at small temperatures or high pressure, a variety
of phenomenological models are used in practice that assume a different functional dependence of
viscosity on shear rate from Eyring. One such equation, which contains many other models as limiting
cases is the Carreau-Yasuda (CY) equation [19–21]

η(γ̇) =
ηN

{1 + (γ̇/γ̇0)a}(1−n)/a
(2)

where n and a are dimensionless parameters. For example, the CY model reduces to the Carreau model47

for a = 2, whereas the friction-shear rate dependence becomes logarithmic like at large shear rates,48

as in the Eyring model, when n approaches zero from above. For γ̇0 → 0, viscosity is an algebraic49

function of shear rate, η(γ̇) ∝ γ̇n−1, so that shear stress increases sub-linearly with γ̇n with an exponent50

0 < n < 1.51

One drawback of the CY equation is that it cannot be asymptotically correct for very small52

velocities, unless a = 2. The reason is that any rigorous, perturbation-theory approach to the53

finite-temperature statistical mechanics of sheared, originally isotropic liquids, in which the sliding54

velocity or shear rate is taken as small parameter, can only lead to a shear stress that can be expanded as55

odd powers of the shear rate. Such an expansion would hold up to the point at which the sheared liquid56

undergoes a (macroscopic) discontinuous change, whereby analyticity is destroyed. Consequently,57

it should be generally possible to express the effective viscosity as a Taylor series expansion in even58

powers of γ̇, at least until a shear-driven thermodynamic phase transformation or another collective,59

symmetry-breaking phenomena occurs. The Eyring model obeys this principle, since the r.h.s. of Eq. (1)60

can be expanded into even powers of γ̇. The predicted friction-velocity relations can be systematically61

improved by adding further odd-power arsinh(γ̇/γ̇0) terms, as shown in the context of the Prandtl62

model [12], However, in preparing this work it was found that convergence tends to be slow in such63

an arsinh(γ̇/γ̇0) expansion.64

Although the CY equation violates elementary symmetry considerations, it certainly provides a65

quite reasonable description of many experiments, most notably those on polystyrene by Yasuda [20],66

which prompted Yasuda to generalize the Carreau equation; the data are reprinted (Fig. 4.1-3) in67

the classical book by Bird, Armstrong, and Hassager on the dynamics of polymeric liquids [21]. An68

interesting aspects of the original results is that they are best described with the exponents n = 0.2 and69
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a = 1.25. It means that, on one hand, the experimental data show an almost Eyring/logarithmic-like70

dependence of shear stress at intermediate sliding velocities since n = 0.2 is much closer to zero than71

to unity. On the other hand, the parameter a clearly differs from the value of two in violation of a72

leading-order η(γ̇) = η(0) + η′′(0)γ̇2/2 dependence. which would be consistent with perturbation73

theory or Eyring.74

The initial motivation for the current study was to address the question of whether simulations
can reproduce experimental results that appear to violate elementary symmetry considerations and to
analyze the system with high precision at exceedingly small shear rates within the linear-response
regime. Such a study will also implicitly address the question of how a shear-stress dependent effective
(free) energy barrier F(τ), which is defined through the equation

γ̇(τ) =
τ

ηN
e−β{F(τ)−F(0)}, (3)

depends on shear stress τ. Generally speaking, the leading-order correction to any finite-temperature75

free-energy barrier ∆F(τ) = F(τ)− F(0), including those opposing a chemical reaction, to an external76

stress can only be an analytical function in the stress tensor invariants, e.g., the hydrostatic pressure p77

and the deviatoric stress tensor invariant, which can be associated with the square of the shear stress.78

Thus, tensile stress σ can change ∆F in leading linear order, since it couples linearly to the hydrostatic79

pressure, but the leading-order correction to ∆F(τ) can only be quadratic in shear stress except at80

zero temperature, where analyticity does not necessarily hold. In addition, the notion of an activation81

volume when expressing the seemingly linear reduction of a finite-temperature free-energy barrier82

with respect to shear stress appears particularly troublesome as a (Lagrangian) shear strain leaves the83

volume unchanged.84

The symmetry arguments on free-energy barriers appear to be in conflict with the assumption of85

an athermal energy barrier ∆E that decreases linearly rather than quadratically with shear stress and86

which is used in transition-state theory [13]. A similar comment applies to other energy barriers that87

can be reduced by shear stress, such as those opposing chemical reactions. Strong support for a linear88

reduction of activation energies comes from the shear-stress assisted decomposition of zinc-phosphate89

based anti-wear additives immersed in sheared, highly viscous lubricants [22].90

In order to study the conditions if/when free-energy barriers depend linearly or quadratically91

on shear stress, very high-precision, effective viscosities are required at small shear rates. Computing92

them in explicit many-atom simulations with sufficient precision might require unfeasible computing93

times even for model substances as simple as liquid Lennard-Jonesium. It was therefore decided to94

investigate the Prandtl model. Discovering that and rationalizing why it mimics the shear thinning of95

real liquids — which we now consider the main message of this paper — was a coincidental byproduct96

of the attempt to reconcile symmetry arguments with empirical evidence.97

A frequent advantage of studying simple systems is that some of the gained insights apply to a98

broader context than simulations of just one specific substance. This happens when the description99

of complex, seemingly unrelated systems simplifies to the same unifying model after abstracting the100

effects of irrelevant degrees of freedom into a thermostat. Thus, liquids with rheological responses as101

distinct as those of polystyrene and camel’s blood may be describable by the same, simple model. This102

simplification is particularly/only useful, if it allows questions like why increasing the pressure of an103

ordinary liquid or decreasing the stiffness of red blood cells leads to a decrease of the exponent n in104

the CY model to be answered.105

The reminder of this article after the small historical section 1.1 is organized as follows: Sect. 2106

presents the investigated model, some theory as well as a brief discussion of the used numerical107

methods. Sect. 3 contains the results. Conclusions are drawn in Sect. 4.108
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1.1. Setting straight some historical facts109

The Prandtl model is often referred to as the Prandtl-Tomlinson model or even simply as the110

Tomlinson model. However, as pointed out in the interesting summary by Popov and Gehrt [3]111

preceding their translation of Prandtl’s original work, Tomlinson [23] was not concerned with sliding112

friction but rather with the description of adhesive instabilities and missed many of the pioneering113

ideas promoted in Prandtl’s work, which went much beyond the mere analysis of isolated, athermal114

elastic instabilities. These include discussions related to the effects of atomic commensurability on115

friction and of thermal fluctuations on the velocity dependence of solid friction. Towards this end,116

Prandtl developped a precursor to Eyring theory, six years before Eyring published his view on how117

temperature affects the transition rate of some (collective) degree of freedom over a barrier [17,24].118

Prandtl recognized that solid friction should become linear in velocity at extremely small sliding119

velocities (with next-order terms being proportional to v3) and rationalized why fluid viscosity120

increases approximately exponentially with pressure.121

Last but not least, Tomlinson’s paper was published one year after Prandtl’s. In fact, the Prandtl122

model had been first described and properly credited as early as 1913 by von Kármán and Föppl [25] in123

an article on the strength of materials. Prandtl’s motivation to publish his ideas so many years after its124

first mentioning was because studies of crystalline structures as well as that of atomic physics had once again125

become up-to-date and that this was why time had come to retrieve his [my] old work. Thus, Tomlinson’s126

paper, while certainly having its own merits, neither contained Prandtl’s model nor did it advance it.127

Tomlinson’s work was disseminated almost a quarter century after von Kármán and Föppl had made128

Prandtl’s model public. This is why the author of this work does not see any other reason than folklore129

to keep Tomlinson’s name attached to the Prandtl model.130

It also seems unclear, why the exponential dependence of viscosity on pressure is often given131

the name Barus equation. The paper [26], which is frequently cited in this context, neither contains132

the so-called Barus equation nor does it appear to have the word exponential in the text. The word133

geometrical does not occur in relation to the dependence of viscosity on pressure either but instead to134

the decrease of viscosity with temperature. But then it appears that improper terminology or reflection135

of laws even befalls truly central tribological laws. Coulomb [27] never claimed solid friction to be136

independent of velocity. He merely noted la vîtesse n’influence que très peu sur les frottements, which137

translates to the finding that velocity barely affects sliding friction, which is very different from not138

affecting it at all. A few sentences later in the text, Coulomb actually describes in words what translates139

to an approximately logarithmic decrease of (dry) friction with sliding velocity. Yet, the rediscovery of140

precisely this dependence, is sometimes sadly celebrated as a violation of Coulomb’s law of friction.141

2. Model, theory and methods142

In this section we first describe the Prandtl model in a slightly modified form, that is, the explicitly143

introduced damping of the mass point does not occur relative to the substrate but within the spring. The144

three different methods pursued to study the dynamics of the system are also described in this section.145

The numerical methods include: molecular dynamics using a Langevin thermostat for the study of146

underdamped dynamics as well as Brownian dynamics and a Fokker-Planck-equation based approach147

for the simulation of overdamped dynamics. Since the Brownian dynamics and the Fokker-Planck148

equation are not commonly used in the field of tribology, despite notable exceptions [28,29], some149

technical details on these methods are reported in the following.150

2.1. The Prandtl model151

A variant of the Prandtl model is chosen in which the mass point’s velocity is damped with
respect to the driving spring, i.e., the equation of motion in the frame of reference of the moving spring
reads

mẍ + m γ ẋ + kx = qV0 sin(qx + v0t) + Γ(t), (4)
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where m is the mass, γ is a damping coefficient, k the stiffness of the driving spring, V0 the amplitude152

of the substrate potential, and 2π/q is the spatial period. Γ(t) is a random force mimicking thermal153

fluctuations and thus satisfying the fluctuation-dissipation theorem.154

Damping was chosen to act relative to the driving spring for mainly two reasons. First, it155

automatically turns the measured friction force into an excess friction compared to that at infinitely156

large velocities, whereby postanalysis is facilitated. The reason that F(v→ ∞) tends to zero is that the157

mass point is too inert, or in the overdamped limit too sluggish, to respond to the rapidly changing158

deterministic forces imposed by the substrate. Second, dissipation occurs within a linearly elastic159

system through the coupling of a single, atomistic degree of freedom to a quasi-continuous set of160

collective harmonic modes. For ideally elastic solids, the damping coefficient of a surface atom — as161

obtained within the Debye approximation to harmonic solids — is roughly half the eigenfrequency162

(see Eq. (5.7) in Ref. [30]), which causes the motion of an individual surface atom to be slightly163

underdamped when described in terms of a harmonic coupling to its lattice site.164

Results will be sometimes expressed in a reduced system in which mγ, q, and V0 as well as kB165

are all equal to unity. The remaining parameters of the Prandtl model are reduced velocity ṽ = vq/γ,166

reduced mass m̃ = m/
√

q2V0/γ2, reduced thermal energy kBT̃ = kBT/V0, and most importantly167

reduced spring stiffness k̃ = k/(q2V0). In this unit system, the maximum, athermal static friction force168

is F̃s,max = 1 in the limit of k̃→ 0, which would also be the maximum, athermal, zero-velocity kinetic169

friction force.170

It may be helpful to note that the letter T can indicate both temperature and period T = 2π/(qv0)171

for the lack of alternatives. To discriminate between the two, the letter kB precedes T or T̃, whenever172

the latter (letter) is meant to represent temperature but is omitted otherwise.173

2.1.1. Relating the Prandtl model to rheology174

In order to relate the Prandtl model to rheology, we consider laminar flow. Each Prandtl175

layer (in fact, Prandtl assumed many springs at irregular spacing so as to avoid artifacts due to176

commensurability) is assigned a width that is similar to the period of the substrate potential. Each177

layer also provides a corrugation potential to the next layer above it. Of course, the corrugation178

potential cannot be spatially periodic. However, as long as instabilities occur locally, only local179

potential-energy landscapes matter and these may be assumed to be similar to the used periodic180

function. Thus, if the center of mass of one layer slides at a velocity of v0 with respect to its neighbor,181

the shear rate would be γ̇ = v0/(2π/q).182

Following the picture described in the previous paragraph, a shear force in the Prandtl model can
be associated with in a shear stress σ after dividing the shear force by (2π/q)2. Thus, a “real viscosity”
of a liquid ηliq = σ/γ̇ and the velocity-dependent damping in the Prandtl model, ηP = Fk/v0, are
connected through the equation

ηliq =
q ηP

2π
. (5)

In the following, the symbol η will refer exclusively to the damping in the Prandtl model, but we hope183

to have made clear its connection to viscosity.184

2.1.2. Temperature dependence of the equilibrium damping185

As mentioned above, the Prandtl model reduces to the Eyring model for k̃→ 0, in which case a186

free, single particle moves through a sinusoidal potential under the influence of thermal noise and a187

constant drag force. This limit is well understood, see, for example, Risken’s excellent text book on188

the Fokker-Planck equation [31]. The small-velocity limit of the damping, which will also be called189

Newtonian damping by analogy to Newtonian viscosity, can be deduced from the thermal diffusion190

constant D of the free particle through the Einstein-Smoluchowski relation D = kBT/(mγ). Since the191

diffusion in a corrugated potential is predominantly impeded by the energy barrier 2V0, diffusion192

of the free-particle is counteracted by an (inverse) Arrhenius factor of exp{2V0/(kBT)}. The missing193
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prefactor can be estimated from the mobility of the free atom, the details and all complications arise194

from the fact that not only the energy barrier but also the entire energy landscape affect the atom’s195

final mobility and thus its damping constant.196

We now discuss the evolution of the probability distribution W(x, t) in the Prandtl model where
k̃ is less than unity but still large enough for at most two minima in the total potential to occur at
any given relative substrate position. (Allowing for more potential energy minima does not change
final results in a significant fashion but requires a much longer discussion.) Moreover, assume that
kBT̃ � ∆F(xs = 0), where xs = 0 indicates that the maximum of the substrate potential coincides with
the spring’s equilibrium position, as depicted in Fig. 1. When the substrate has not yet reached the
situation shown in Fig. 1 such that the left minimum is lower than the right by a few kBT, essentially
all the probability of W(x, t) resides near the left minimum, i.e., near the one in which the dark blue
atom is indicated. To what extent W(x, t) has shifted to the right minimum when left and right minima
are close to each other, say within less than 4kBT, depends crucially on the driving velocity v0. In
the limit v0 → 0, the system is within the linear-response (Newtonian) regime and W(x, t) is very
close to the equilibrium distribution for a given substrate position, i.e., W(x, t) ∝ exp[−βV{x, xs(t)}].
However, for this to occur, the mass point needs to equilibrate, i.e., it must overcome the barrier ∆F
several times while the energy of the left minimum has been raised by a few kBT compared to the right.
The corresponding time to do so increases with the Arrhenius factor exp{∆F/(kBT)}, where ∆F is the
energy barrier that has been renormalized from 2V0 due to the coupling of the (coarse-grained) atom
to the spring, see again Fig. 1. Assuming the prefactor of the equilibrium damping to be proportional
to an inverse power of kBT, we obtain

η̃ =

(
kBT̃η

kBT̃

)α

η

e∆F/(kB T̃), (6)

kBT̃η and αη being dimensionless parameters. The prefactor was added as a general power law of197

thermal energy, as to properly reflect, for example, under- and overdamped dynamics in the k̃ → 0198

and k̃→ ∞ limits.199
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Figure 1. Energy landscape of the Prandtl model for k̃ = 0.25 at a point of time, when both energy
minima are equivalent. ∆E indicates the energy barrier separating the motion of the atom from one
minimum to the next.
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Another parameter affecting the linear damping coefficient is related to a characteristic distance200

that the spring can move relative to the substrate whithout significantly changing the energy landscape.201

It could be defined as the distance ∆Xs from the symmetry point Xs = 0 that needs to be overcome to202

lift the degeneracy of the two minima by more than, say, kBT. Alternatively, it might also be defined203

by the distance that needs to be slid until one of the two initially degenerate minima becomes unstable.204

Since the latter is independent of kBT, we explore this distance graphically in Fig. 2.205
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Figure 2. Full potential energy landscape of the Prandtl model for (left) k̃ = 0.25 and (right ) k̃ = 0.85
at different relative displacements between substrate and spring.

From Fig. 2 it becomes obvious that the energy landscape for the larger k̃ value changes much206

more quickly than the smaller one. Specifically, at a slid distance Xs = 0.01/q, the energy landscape207

of the k̃ = 0.85 system has moved from being degenerate to the point where even an athermal mass208

point would move to the new absolute energy minimum. In contrast, the energy landscape of the209

k̃ = 0.25 system has barely changed when being slid by the same distance. To reach the point at210

which an athermal mass point would becomes unstable a distance roughly 80 times larger is needed211

for the softer spring. Thus, at fixed values of ∆E/kBT and qv0, the softer springs has more time to212

transit the barrier through thermal activation than the stiffer spring. Consequently, the equilibrium213

damping of the softer spring will be lower under these circumstances and its crossover velocity be214

greater than for the stiffer spring. This might be counterintuitive, since the athermal kinetic friction215

force in the ṽ → 0 limit is greater for the softer spring. The crude guesses from this section would216

be that the dimensionless equilibrium-damping term η̃ should be of order exp(β∆F) (at least for the217

overdamped case, for the underdamped case a different unit system might be needed) and that the218

cross-over velocity for k̃ = 0.25 should exceed the crossover velocity for k̃ = 0.85 model by a factor219

whose order of magnitude is 80. Quantifying these numbers more accurately in terms of a closed-form220

analytical expression is beyond the scope of this work.221

2.1.3. Shear-stress dependence of the free-energy barrier222

In the Eyring model, Eqs. (1), (3), and the definition of the effective damping η ≡ τ/γ̇ can be
combined to yield the following shear-stress dependence of the free-energy barrier

∆F(τ) = ∆F(0)− kBT log
(

τ0

τ
sinh

τ

τ0

)
, (7)

where τ0 = ηNγ̇0. This equation contains the two asymptotic limits

∆F(τ) ≈ ∆F(0)− kBT ×
{

τ2/(6τ2
0 ) for τ � τ0

τ/τ0 for τ � τ0,
(8)
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where τ0 is a characteristic shear stress, separating the low-stress regime, where ∆2F(τ) ≡ ∆F(τ)−223

∆F(0) is approximately quadratic in τ from the linear, high-stress regime. This relation will now be224

evaluated for the Prandtl model after replacing the shear stresses τ and τ0 with the shear forces f and225

f0.226

For small k, specifically in the limit k → 0, ∆2F(τ) can be easily estimated in the athermal or227

low-temperature limit of the Prandtl model. ∆2F(τ) corresponds to the work done by the external228

force, while thermal fluctuations moved an atom from one bassin of the tilted sinusoidal potential229

V(x) = V0 cos(qx)− f x, whose minimum is located at xmin, to the top of the barrier at xmax, i.e.,230

∆2F = − f · (xmax − xmin) (9)

and
q · (xmax − xmin) = π − 2 asin{ f /(qV0)}. (10)

While the original Eyring model assumes τ0 or f0 to be constant, we find that the work done to move
the atom from the minimum to the barrier decreases with increasing shear forces. Thus rather than to
keep τ0 or its replacement f0 constant, it is more accurate to use

f0 =
qkBT

π − 2 · asin{ f /(qV0)}
(11)

instead, as is demonstrated in the results section.231

The two following equations summarize the way how a shear force is expected to reduce the232

effective viscosity in the Prandtl model in the limit k̃→ 0:233

η( f ) = ηN · eβ∆2F( f ) (12)

with

∆2F( f ) ≈ −kBT log
(

f0

f
sinh

f
f0

)
, (13)

where f0 is not a constant but given in Eq. (11).234

It finally must be said that the current only applies to situations, where the mass points move in235

an activated fashion. At very large sliding velocities, the mass point no longer manages to dissipate the236

kinetic energy obtained in the last instability before the new minimum becomes unstable. Consequently,237

crossing barriers no longer requires thermal activation. This leads to the situation where a Prandtl238

layer (many atoms coupled to a rigid plate) can have two different stable velocities at a given shear239

force. In other words, the shear force is not necessarily an increasing function of the velocity, which240

conversely means that the inverse function v(F) is not unique.241

2.2. Simulation methods242

2.2.1. Langevin dynamics243

For the molecular dynamics simulation presented below, the velocity Verlet algorithm is used and
coupled to a thermostat reflecting the equation of motion in Eq. (4). Random forces on the discrete
time are chosen according

Γτ =

√
6mγkBT

∆t
(2 uτ − 1), (14)

where ∆t is the time step, τ is an integer that counts the time steps, and uτ is an independent
(pseudo) random number distributed linearly on (0, 1). To keep errors due to the the random forces
small, the mass was chosen such that the isolated oscillator was slightly underdamped, specifically,
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m = V0q2/(4γ). The default time step is chosen as ∆t = T/40, where T is a measure for the smallest
possible period in the system ,i.e.,

T = 2π min
(√

m
k + q2V0

,
1

qv0

)
. (15)

The value of ∆t is readjusted at each velocity such that the the spring is moved by a lattice constant at244

an integer number of time steps.245

At large sliding velocities, simulations were repeated at a quarter of the default time step to246

ensure that systematic errors in the computed forces were always less than 1%. The system was always247

equilibrated over a sliding distance of at least two lattice constants. Simulations were run so that248

the moved distance covered at least 100 lattice constants during the observation. The friction force249

averaged over a sliding distance of one lattice constant was considered to be an independent random250

number so that the stochastic error of its mean could be estimated on the fly. Each velocity was run251

until a target accuracy was reached, typically . 1% relative error of the mean friction force.252

2.2.2. Brownian dynamics253

Langevin dynamics becomes inefficient in the limit of overdamped dynamics, as the time step
has to be made small compared to the damping time 1/γ. Consequently Brownian dynamics were
performed in addition to Langevin dynamics. Time stepping was done using the following scheme

xτ+1 = xτ +
∆t
mγ

{
−k xτ + qV0 sin(qxτ + τ ∆t v0) +

√
6mγkBT

∆t
(2uτ − 1)

}
, (16)

where τ enumerates the time steps again. This time, ∆t was chosen as ∆t = 1/(40 γ) as default value.254

Simulations were run in a similar spirit as the Langevin dynamics simulations and included the255

above-mentioned checks on the systematic discretization errors due to non-zero time-steps as well as256

the stochastic errors caused by finite sampling.257

2.2.3. Fokker-Planck equation258

Both Brownian and Langevin dynamics suffer from a large computational cost at small velocities,259

because at a fixed relative stochastic error, the number of required MD time steps increases by a factor260

of eight when the velocity is halved in the Stokesian regime. For the study of the asymptotic behavior261

at very small velocities, a Fokker-Planck equation (FPE) based approach was therefore used even if262

it might be somewhat less effective than Brownian dynamics at large v0. Results deduced from the263

numerical solution of the FPE do not suffer from stochastic errors, which is why the computational264

effort increases only by a factor of two when the velocity is halved in the Stokesian regime at a fixed265

relative stochastic error.266

The Fokker-Planck equation is a partial second-order differential equation (PDE) in which the
probability distribution function W(x, t) is propagated in time. As presented very clearly in the book
by Risken [31], it reads

mγ∂tW(x, t) = −∂x {F(x, t)W(x, t)}+ kBT∂2
xW(x, t) (17)

in the case of Brownian dynamics, where F(x, t) summarizes the deterministic forces acting on the
mγẋ term. Once steady state is reached, the friction force can be computed as a spatial and temporal
integral according to

Fk =
1
T

∫ Teq+T

Teq
dt
∫ a

0
dx kx W(x, t). (18)
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where Teq is sufficiently large for steady-state sliding to occur and a = 2π/q is the lattice constant of267

the substrate. The FPE can also be formulated for underdamped dynamics, but the speed-up compared268

to explicit simulations is much reduced.269

A relatively simple method was implemented to obtain a direct solution of the FPE. First, space270

was discretized into elements of size ∆x =
√

kBT/(k + q2V0)/8 on −xmax ≤ x ≤ xmax, where xmax271

was chosen to be so large that the ratio of the most likely equilibrium probability of any Weq(x) was at272

least 1010 larger than that of Weq(±xmax), irrespective of the displacement of the substrate relative to273

the spring. Second, time was discretized into ∆t = 0.002/(mγ). The differential operators were then274

realized using second-order Euler schemes, i.e., ∂2
xW(xn, t) ≈ {W(xn+1) + W(xn−1)− 2W(xn)} /∆x2

275

with xn = n∆x, and ∂x{F(x, t)W(x, t)} ≈ {F(xn+1, t)W(xn+1, t)− F(xn−1, t)W(xn−1, t)} /(2∆x).276

Third, W(x, t) was propagated in time by adding to it the finite-difference approximation of ∂tW(xn, t)277

times ∆t/(mγ) to it. The values for W(±xmax, t) were constrained to zero. To compensate for round-off278

errors and for any probability density that effectively left the considered domain (via the above279

mentioned constraints), W(x, t) was multiplied by a constant after each time step so that the spatial280

integral was normalized to unity.281

The-just described scheme is not sufficiently accurate to provide a meaningful solution for an282

initial condition given by a (discretized) δ function. However, it turned out to be well suited when283

W(x, t = 0) was initialized with the appropriate, thermal equilibrium distribution for a non-moving284

substrate. For k̃ = 0.25, it was found that Teq = 5a/2 was sufficiently large to approach the steady-state285

solution reasonably well for ṽ < 0.1. A longer “running-in” sliding distance is only required at large286

velocities.287

Discretization effects in space and time were tested to be negligibly small, i.e., to result in relative288

changes of the measured friction of less than 0.5%, when ∆t and ∆x were decreased by a factor of two.289

3. Results290

The overdamped Prandtl model is characerized by three dimensionless parameters: k̃, ṽ0, and kBT̃291

when mγ, V0 and q are chosen to define units. This is why it is not possible to graphically represent292

all possible dependencies of the kinetic friction force or of the effective damping constant, defined293

(η̃ = F̃k/ṽ) in a single figure. Therefore, we focus on Fk(v) (or rather η(v) ≡ Fk(v)/v) relation for294

mainly two reduced spring stiffnesses, one being significantly less than unity, the other being close to295

it and vary driving velocity as well as temperature.296

For the reduced mass, two options are considered. In one case, it is formally set to infinity,297

while keeping mγ fixed, which leads to overdamped or Brownian dynamics. It is more easily solved298

than Langevin dynamics. In the other case, the mass is set such that the dynamics are slightly299

underdamped. This appears to be the most reasonable approximation for an atomistic interpretation300

of the Prandtl model. However, other choices may be meaningful, for example, when the mass point301

represents a coarse-grained degree of freedom, in which case its motion can be anything from strongly302

underdamped to strongly overdamped.303

Fig. 3 compares over- and underdamped dynamics for k̃ = 0.25 at a thermal energy of kBT̃ = 0.2.304

Both curves show similar trends since they can both be fit very well over an extended velocity range305

with the CY equation. However, overdamped and underdamped η̃(ṽ) relations differ noticeably, in306

particular at very large and very small sliding velocities. Most importantly, the friction in the (slightly)307

underdamped case is reduced by a factor of approximately two in the ṽ→ 0 limit.308

The adjustable parameters of the CY equation were fit to the data presented in Fig. 3 within the309

range 10−3 ≤ ṽ ≤ 0.1. Results for the fits are stated in the figure caption. The two dimensionless310

exponents n and a happen to be reasonably close to those reported by Yasuda for polystyrene [20,21].311

Significant similarity between our results and Yasuda’s data on polystyrene is certainly also revealed312

also by the eye when comparing our Fig. 3 to Fig. 4.1-3 in Ref. [21]. We are certain that the agreement313

can be further significantly improved by slightly increasing k̃ and reducing m̃, and, most importantly,314

by introducing a Stokesian damping between the mass point and the moving external potential. The315
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Figure 3. Effective damping η̃ as a function of velocity ṽ for k̃ = 0.25 and kBT̃ = 0.2. Left: Comparison
of overdamped (red circles) and underdamped (blue diamonds) dynamics, the latter being based on
a reduced mass of m̃ = 1/4. The black lines are fits to the CY equation. Both fits were done in the
interval 3× 10−4 ≤ ṽ ≤ 0.1 but plotted over a larger velocity range. Values for the Carreau-Yasuda
fits are: γ̃ = 115, ṽ0 = 1.63 × 10−3, n = 0.196, and a = 0.812 for the overdamped system and
γ̃ = 56.7, ṽ0 = 2.41× 10−3, n = 0.268, and a = 1.05 in the underdamped case. The Carreau equation is
parametrized as CY, however, with a = 2. Right: Analysis of the small-velocity damping. The Carreau
and CY models were left unchanged w.r.t. the left figure. Additional models include the Eyring model
η̃ = η̃0ṽ0arsinh(ṽ/ṽ0) and a quadratic approximation, η̃ = η̃0 + η̃′′0 ṽ2/2, for which the parameters (η̃0,
ṽ0 and η̃′′) were adjusted to the asymptotic ṽ→ 0 dependence of η̃.

last modification of our model would make the damping/viscosity level off at a finite value for large316

shear rates.317

A large-velocity regime can be identified, in which the CY equation reflects the data extremely318

well when plotted in double logarithmic fashion. However, it does not accurately describe the changes319

of the effective damping at very small sliding velocities, as can be seen from the right graph in Fig. 3.320

For ṽ . ṽ0/3, the effective damping obeys a quadratic ṽ dependence, as expected from perturbation321

theory. Both the Eyring model and an even-power, second-order Taylor series expansion of the effective322

damping into η̃ ≈ η̃0 + η̃′′(0)γ̇2/2 accurately reflect the low-velocity regime. The range in which323

Eyring is a reasonable approximation to the true data is certainly much larger than for a second-order324

Taylor series expansion. Yet, corrections to Eyring remain necessary to reach satisfactory agreement to325

values of ṽ beyond ṽ0, e.g., in terms of a shear-rate or shear-stress dependent activation barrier.326

Despite the close agreement between the simulation data and the CY equation at intermediate327

velocities, it must be noted that the agreement is not perfect. Systematic and non-monotonic deviations328

of order 5% occur, i.e., a quasi-exact proportionality between damping and velocity (F̃ ∝ ṽn) at329

intermediate velocities, is not produced by the Prandtl model. We expect the same to hold for real,330

high-precision viscosity measurements as well.331

When k̃ is increased, the friction-velocity relation continues to be described quite well by the CY332

relation, as can be seen in Fig. 4 for k̃ = 0.85. The exponent n is noticeably reduced compared to that333

obtained for the more compliant k̃ = 0.25 spring, specifically it acquires a value close to 0.5, which334

is representative of human blood [32]. To what extent this agreement is coincidental is discussed in335

Sect. 4.336

While the rheological responses shown in Figs. 3 and 4 are quite similar, some differences appear337

to be worth noting. First, the discrepancy between over- and underdamped friction has become more338

significant at the larger value of k̃: it grew from a factor of two to a factor of three. Second, at the smaller339

reduced spring stiffness, both rheological response functions clearly required the exponent a to be less340

than 2. For the larger reduced spring stiffness, the rheological response function of the underdamped341

system could be very well described with a = 2, i.e., the value that a takes in the Carreau model, while342
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Figure 4. Similar as Fig. 3, however, for k̃ = 0.85 and kBT̃ = 0.02. Parameters used in the
Carreau-Yasuda equation are this time γ̃ = 18.4, ṽ0 = 0.522× 10−3, n = 0.503, and a = 1.28 for
the overdamped system and γ̃ = 5.73, ṽ0 = 1.30× 10−3, n = 0.521, and a = 2 in the underdamped
case.

an accurate description of the overdamped system necessitated a value close to unity. Third, the low-ṽ343

expansions (Taylor or Eyring) of the effective damping always remained smaller than the fit to the CY344

equation in case of the small value of k̃, but not for the larger value.345

We next investigate how the η̃(ṽ) relation depends on temperature for the two reduced spring346

stiffnesses investigated so far. The left graph graph in Fig. 5 shows data for k̃ = 0.25 and reveals347

the following, frequently observed behavior: The temperature dependence of damping is less348

pronounced at high than at low shear rates and the transition between non-Newtonian and Newtonian349

behavior moves to smaller velocities at decreasing temperature. Coefficients deduced from fits to the350

Carreau-Yasuda equation read for the two most extreme investigated temperatures are: η̃ = 25200,351

ṽ = 4.20× 10−6, a = 0.685 and n = 0.156 for kBT̃ = 0.1 and η̃ = 4.38, ṽ = 4.13× 10−2, a = 1.51352

and n = 0.436 for kBT̃ = 0.5. Thus, damping increases by roughly four orders of magnitude upon353

cooling as the thermal energy is decreased from kBT̃ = 0.5 to kBT̃ = 0.1, while the cross-over velocity354

decreases by a similar factor. In addition, the exponent n decreases upon cooling, while a increases.355

In fact, n(kBT̃ = 0.1) is so close to zero that the resulting power law F ∝ vn is difficult to distinguish356

from a logarithmic dependence in a double logarithmic representation unless v spans more than two357

decades.358

Similar to the exponent n, the exponent a decreases systematically with decreasing temperature,359

When the thermal energy is no longer very small compared to ∆E ≈ 0.0348, it appears that data can360

be described by assuming a = 2, as revealed for kBT̃ = 0.02. Yet, while data appear to be perfectly361

consistent with the Carreau equation, as can be seen in Fig. 5, the fit further improves by setting a to362

a = 1.57.363

The temperature dependence of the effective damping is analyzed in the right graph of Fig. 5. At364

low temperatures, it satisfies Eq. (6), where ∆Ẽ = 1.02023 was determined as indicated in Fig. 1. Thus,365

only kBT̃η = 10.9 and αη = 0.5 were adjusted for Eq. (6) to fit the simulated data.366

The just reported analysis was repeated for k̃ = 0.85 and the pertinent results presented in367

Fig. 6. For the softer springs, ∆Ẽ is reduced to approximately 0.035, which in turn is consistent with368

a reduction of the exponent n. The exponential increase of damping at small thermal energies with369

inverse temperature can again be described assuming the barrier depicted in Fig. 1 to be the relevant370

one. However, the prefactor to η̃ at small kBT̃ is now consistent with an essentially constant value near371

unity. To ascertain if the indicated low-temperature behavior is truly asymptotic for either k̃ = 0.25372

or k̃ = 0.85, a lower temperature would have to be reached. We plan on addressing this in the future373

either using improved integration schemes for the FPE or a pertubative treatment.374
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Figure 5. Left: η̃(ṽ) dependence in the underdamped Prandtl model for k̃ = 0.25 at various
temperatures. Symbols show data from MD simulations, while lines are fits to the Carreau Yasuda
equation. The most extreme values for n and a turned out to be n = 0.156, a = 0.685 at kBT̃ = 0.1
and n = 0.371, a = 1.33 at kBT̃ = 0.5. Right: Reduced Newtonian damping η̃ as a function of inverse
reduced temperature (kBT̃)−1. Circles show results from fits of the MD data to the Carreau Yasuda
equation. The solid line is a low-temperature fit of the data to Eq. (6), where ∆Ẽ(k̃ = 0.25) = 1.02023 is
determined as described in Fig. 1 with an exponent αη = 1/2.

The next simulation data presented explicitly is meant to test the order-of-magnitude estimates375

of the equilibrium damping made in Sect. 2.1.2. Towards this end, the velocity dependence of the376

damping term is computed for the two spring stiffnesses k̃ = 0.25 and k̃ = 0.85 at a fixed value of377

kBT/∆E = 0.2. Results are presented in Fig. 7. The dominant factor exp(∆E/kBT) in Eq. (6) yields378

≈ 150, which is 1.5 larger than the value for k̃ = 0.25 reported in the caption of Fig. 7 and a little379

less than a third predicted for k̃ = 0.85. The cross-over velocities were crudely estimated to differ380

by a factor of 80 in the discussion of Fig. 2. This is to be compared to a ratio of 190 found in the full381

simulations. Thus, additional work is required to develop better estimates.382
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Figure 6. Same as Fig. 5, but this time for k̃ = 0.85, for which ∆E(k̃ = 0.85) = 0.0348182. The solid line
obeys Eq. (6), however, the temperature-dependent prefactor is replaced with the constant 1.13. The
most extreme values for n and a in the left graph were n = 0.403, a = 1.34 at kBT̃ = 0.01 and n = 0.668,
a = 1.66 at kBT̃ = 0.1.

An interesting trend revealed in Fig. 7 relates to the breakdown of the Carreau-Yasuda equation at383

large velocities. It can either overestimate or underestimate the true damping when parameters384

were fitted to the cross-over region and predictions then made for large shear rates. Since the385
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high-temperature viscosity η∞ is usually a fit parameter (while it was set and thus known to disappear386

in the current study), the regime for which CY is believed to be valid for given experimental data can387

be easily overestimated. In any event, the appearance of a shoulder at large velocities and values of k̃388

approaching unity from below is observed for both underdamped as well as overdamped dynamics.389
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Figure 7. Effective damping η̃ for overdamped dynamics as a function of sliding velocity ṽ for two
different stiffnesses at a constant ratio of kBT/∆E = 0.2. The low-velocity η̃(ṽ) dependence is consistent
with the CY parameters ηN = 97.8, v0 = 1.62× 10−3, n = 0.769, and a = 0.97 for k̃ = 0.25 and ηN = 498,
v0 = 8.52× 10−6, n = 0.680, and a = 1.16 for k̃ = 0.85.

In the data shown explicitly in this work so far, the values for the two dimensionless exponents390

in the CY equation ranges from 0.156 to 0.769 for n and from 0.685 to 1.66 for a. Many additional391

simulations were run outside this range, which corroborated the expectation that n can take any value392

in between zero (for k̃→ 0) and unity (for k̃→ 1). This expectation arises from the observation that the393

Prandtl model reduces to Eyring in the k̃→ 0 limit so that n→ 0 follows automatically, while for k̃ > 1,394

the friction for the Prandtl model is Stokesian at small velocities, even without thermal fluctuations.395

The final systematic analysis is concerned with the analysis of how the effective free-energy396

barrier, defined in Eq. (3), depends on the shear stress. Results for k̃ = 0.02 (overdamped dynamics)397

and k̃ = 0.25 (underdamped dynamics) are shown in Fig. 8.398

The data for k̃ = 0.02 reveals an astonishingly good agreement between simulation and the399

theory developped in Sect. 2.1.3 for the force-induced reduction of the effective free-energy barrier.400

These corrections are a function of the shape of the corrugation potential. They would therefore be401

different if the corrugation potential had a different functional dependence by including higher-order402

harmonics. The original Eyring theory, which does not include shear-force induced corrections to the403

free-energy barrier, provides an upper bound for the reduction ∆F, which is approached from below404

as T is decreased. The data for k̃ = 0.02 consolidates the claim that the Eyring model is obtained as a405

limitng case of the Prandtl model, even if k̃ = 0.02 is still not fully k̃ = 0+.406

The effect of shear stress on the reduction of the effective energy-barrier is qualitatively similar407

for k̃ = 0.25 as for the just-discussed k̃ = 0.02. The reduction is again roughly linear in the (shear)408

force and only crosses over to a parabolic-like dependence at very small values of ṽ. The change of the409

energy-barrier reduction (as measured in units of kBT) with f̃ /(kBT̃) is similar in magnitude for both k̃,410

however, it is slightly reduced for the larger k̃. The reduction of this slope is much more significant for411

k̃ = 0.85, which is not shown explicitly. In all cases, the slope in the linear regime can be very roughly412

approximated to be q∆xB/π, where ∆xB is the distance between the location of the minimum and that413

of the barrier in the force-free case.414



Version February 25, 2020 submitted to Lubricants 15 of 19

0 1 2 3 4 5 6 7
f / ( k

B
T )

0

2

4

6

8

10

12
ln

 (
η

N
 /

 η
)

0.1
0.125
0.15
0.2
0.3
original Eyring

theory

k
B
T =

k = 0.02
~

~ ~

~

0 0.5 1 1.5 2 2.5 3 3.5
f / k

B
T

0

1

2

3

4

5

ln
 (

η
N

 /
 η

)

0.15
0.2
0.3
0.4
0.5

k = 0.25

k
B
T = 

~

~

~ ~

Figure 8. Shear-thinning expressed via ln(ηN/η) as a function of f̃ /(kBT̃). The term ln(ηN/η)

corresponds to the shear-force induced reduction of the free-energy barrier in units of kBT, or,
−∆2F/(kBT). Full symbols show data on the branch for which the friction force increases with sliding
velocity, while open symbols relate to the remaining data. Left: k̃ = 0.02 and Brownian dynamics. Full
lines show the theory as summarized in Eqs. (11) through (13). The dashed line shows an unmodified
Eyring theory, which assumes f0 to be constant, i.e., to be f0 = qkBT/π. Right: k̃ = 0.25 and Langevin
dynamics. The thin line is drawn to guide the eye.

Outside the range of instabilities (k̃ > 1), the Prandtl model predicts shear thickening at small ṽ.415

The corresponding data, which is not shown explicitly, is again consistent with the CY equation over416

two or three decades in shear rate. In the Prandtl model, this shear thickening could be the consequence417

of resonance effects that arise because the substrate potential reaches the spring’s eigenfrequency, or,418

in the case of overdamping, the inverse relaxation time. Thus, in an atomistic interpretation of the419

Prandtl model, velocities near the speed of sound would be required to approach those frequencies.420

Consequently, strong non-linearities, such as heating, cavitation, chemical break-down of the lubricant,421

etc. would arise, which are all not captured by the model. This is why it would be meaningless to study422

resonance in this case. However, if the mass point of the Prandtl model represented a coarse-grained423

degree of freedom, resonance effects are possible at velocities much below the speed of sound.424

4. Discussion and Conclusions425

In this work, the rheology associated with the Prandtl model was studied and found to be very426

similar to the rheology of real liquids. In particular, by converting the velocity dependence of damping427

to a shear-rate dependence of the effective viscosity, the rheological response of the Prandtl model428

reproduced the Carreau-Yasuda equation over a large range. A similarly satisfactory description429

could not be achieved with other phenomenological descriptions over the same range using only the430

same number of adjustable parameters. The crude interpretation of shear thinning in the Prandtl431

model is similar to the one described by Lacks [33] for a more realistic, all-atom model, consisting of432

binary, glass-forming Lennard-Jonesium: The viscosity can be [is] separated into a "structural" contribution433

associated with the energy minima that the system visits, and a "vibrational" contribution associated with434

displacements within the energy minima. The structural contribution is shear thinning due to strain-activated435

relaxations caused by the disappearance of high-stress energy minima, while the vibrational contribution is436

Newtonian. This sudden disappearance of high-stress energy minima does not occur in the Eyring437

(k̃ → 0) limit of the Prandtl model, but only for finite values below the critical stiffness, i.e., it438

necessitates the elastic component of a fluid’s viscoelastic properties.439

Due to its simplicity, the Prandtl model allows some fundamental questions to be investigated440

with a high (numerical) precision, which might not be achievable experimentally, or when conducting441

simulations of more explicit and realistic models, although such simulations have now reached an442
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impressive accuracy [16,18,34]. This concerns in particular the analysis of the initial stages of shear443

thinning at extremely small shear rates. We found that leading-order corrections to the effective444

Newtonian viscosity are quadratic in velocity (and thus quadratic in friction or shear stress), but that445

this initial regime can be extremely narrow. At the same time, the effect of this initial transition to the446

cross-over regime (i.e., when sliding velocities are of a similar order of magnitude as the parameter v0447

in the CY equation) can still be significant, even if the CY equation appear to be a perfect fit. In the448

Prandtl model, equilibrium damping can be easily overestimated by as much as 20%, by extrapolating449

the damping from v = v0 to v = 0 using the CY equation. As such, we suggest that Newtonian450

viscosities should generally lie between the apparent viscosity measured at the smallest shear rate and451

the value obtained from fits to phenomenological equations like Carreau-Yasuda, at least as long as the452

experimental data extends only to the cross-over shear rate.453

Interestingly, the Prandtl model yields a broad range of values of the exponent n in the CY454

equation, depending on the temperature and velocity; any value 0 < n < 1 appears to be possible.455

Lowering the reduced temperature and/or decreasing the dimensionless spring constant lowers456

n. For k̃ > 1 shear thickening can be obtained. A single dissipative spring suffices to accomplish457

this, even if the model can be readily generalized to yield more complex rheology by augmenting458

or replacing the spring with other rheological elements composed of springs and dashpots, such as459

those defining Maxwell and Kelvin-Voigt materials. Particularly meaningful would be to introduce an460

additional damping element in series with the current dissipative spring, in which the time constant461

of the new damping element reflects the life time of the local topology of an individual atom. The462

topology can be defined by quenching a fluid via a steepest descent to the nearest minimum [35].463

Once properly parametrized, such (thermostatted) Prandtl models show great potential for modeling464

complex rheological responses of liquids for which the use of many conventional rheological elements465

is currently needed when their relaxation functions cover several decades in time.466

The numerical studies presented in this work were focused on two particular values of k̃. For467

k̃ = 0.25 and intermediate values of T̃, the exponent n took values in the vicinity of 0.2, which is468

characteristic for many polymers under ambient conditions. For k̃ = 0.85, values near n = 1/2 were469

obtained, which is close to that observed for human blood [32]. This in itself is not yet necessarily470

meaningful, but an interesting question is if the model allows the way in which the exponent n changes471

for different system to be rationalized.472

For example, let us assume the Prandtl model is parametrized to reproduce the rheological473

response of a polymer under ambient conditions. As the temperature is lowered, the effective damping474

will increase at a given velocity, while the crossover velocity decreases substantially. This happens475

in such a way that the exponent n decreases in the Prandtl model upon cooling, as in a real liquid.476

When keeping the parameters in the Prandtl model fixed, this decrease is approximately exponential in477

inverse temperature, which would reflect the behavior of many liquids including glass-forming liquids478

cooled below their fragile-to-strong-transition temperature [36]. If the pressure were increased, the479

steric repulsion between non-bonded monomers would be enhanced so that an increased value of V0480

would have to be used in the Prandtl model to account for that increase. At the same time, the elasticity481

of individual polymers would scarcely change. As a consequence, the dimensionless parameter n482

would be reduced along with k̃. This argument agrees with the known phenomenology of polymers.483

Assume next that the Prandtl model is parametrized to reproduce the rheological response of484

human blood cells, for which n = 0.5 appears to describe the shear thinning reasonably well [32].485

Now a camel comes along, which happens to belong to a species with extraordinarily stiff red blood486

cells [37]. It appears obvious that stiff springs have to be used in the Prandtl model to account for the487

stiff red blood cells of camels. Increasing the (dimensionless) stiffness in the Prandtl model significantly488

reduces shear thinning, in agreement with the rheology of camel blood [37]. There might be even more489

details of the rheological response of blood that the Prandtl model is able to reproduce. For example, at490

large velocities, the effective damping for k̃ = 0.85 does not quickly converge to the high-velocity limit,491

but shows an indication of a shoulder. A similar shoulder is also observed in detailed simulations of492
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human blood cells as can be seen in Fig. 1 of Ref. [38]. It is not clear at this point to what extent this493

similarity can be further increased with minor adjusments to the model or to what extent the shoulder494

in our simulations simply indicates a resonance of the spring at a given beat frequency. However, it is495

possible that the qualitative resemblance is not entirely coincidental. In order to demonstrate that this496

is indeed the case, a true bottom-up parametrization would be required, which is certainly beyond the497

scope of this work.498

We conclude by quoting again Prandtl: “we obtain the complete transition from solid bodies to liquids499

of low viscosity including all states of softening in between”. While in today’s jargon one might talk about500

shear thinning rather than softening, our work reveals that Prandtl’s expectations were not too high. To501

reproduce the frequently observed characteristic power-law dependence of shear stress or effective502

viscosity on load, there is no need to postulate a (broad) distribution of energy barriers as done by503

Ree and Eyring [39]. Prandtl’s model can be parametrized to represent not only the temperature and504

velocity dependence measured in atomic-force microscopy experiments but also the shear thinning of505

fluids as diverse and complex as polystyrene and blood.506
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