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The fast inertial-relaxation engine (FIRE) has proven to efficiently find local minima of potential
energies or related penalty functions although its implementation requires only few, additional lines
of code in a molecular-dynamics or steepest-descent program. So far, FIRE has been predominantly
applied to particle-based or low-dimensional problems. In this work, we demonstrate that it can also
benefit the solution of boundary-value problems. Towards this end, we study the mechanical contact
between an elastic body and a rigid indenter of varying complexity by augmenting Green’s function
molecular dynamics (GFMD) with FIRE. We find a rather remarkable speed-up, which can be
further enhanced when choosing the masses associated with the eigenmodes of the free elastic solid
appropriately. For the investigated adhesive and randomly rough indenter with typical system size,
100 mass-weighted FIRE-GFMD iterations suffice to relax the excess energy to 10−3 of its original
value. The standard GFMD method needs 25 times more iterations. For the investigated problems,
FIRE-GFMD even appears to slightly outperform conjugate-gradient based optimization.

I. INTRODUCTION

Finding minima of some penalty function in a highly-
dimensional variable space is a standard computational
problem. For example, identifying mechanically stable
structures requires minima of potential-energy surfaces
to be located. Various traditional minimization meth-
ods, such as steepest descent, take steps in the variable
or configuration space, which are antiparallel to the gra-
dient direction, i.e., parallel to the force1–4. Such al-
gorithms can lead to undesired zig-zag motion, in which
case the minimum is only reached slowly. The conjugate-
gradient method (CGM) avoids the zig-zag motion and
converges quickly to a minimum if the penalty function
is quadratic. However, when the penalty function is
far from being quadratic, CGM-based minimization may
have to be restarted many times before satisfying conver-
gence is reached. Moroever, it requires the use of libraries
or writing relatively elaborate code.

The fast internal-relaxation engine (FIRE) is a mini-
mization method, which can suppress undesired zig-zag
motion5. It only necessitates a few lines of code to
be added to any existing molecular-dynamics (MD) or
steepest-descent program. The implementation and basic
ideas of FIRE work as follows: Inertia are assigned to the
variables leading to an implicit averageing of the gradi-
ent direction over past iterations and turning a steepest-
descent program into a MD code. At the same time,
the instantaneous velocity is slightly biased toward the
steepest-descent direction. Moreover, the time step size
can be increased with each iteration, since true dynamics
do not matter. Once the vector product of velocity and
forces (negative gradients) is negative, all velocities are
set to zero, the time step is set back to a small value, and
the procedure is restarted with the original, small time
step.

So far, FIRE has been applied to traditional particle-
based problems. The underlying idea should, however, be
more generally applicable, in particular to the solution of
partial-differential equations (PDEs). The reason is that
the solution of PDEs can be mapped onto an MD problem
after discretization of the variable space. Assume f(r) is
the field to be found. Then any function that is a local
minimum if and only if f(r) satisfies the PDE plays the
role of energy, while f(r) at each discretization point cor-
responds to a (generalized) coordinate. In a similar way,
FIRE is applicable to classical boundary-value problems
(BVP).

As one such example, we consider the mechanical con-
tact between an adhesive indenter and a flat, linearly
elastic solid, whose static, elastic energy is fully defined
by the shape of the surface and the elastic tensor. Green’s
function molecular dynamics (GFMD) is a technique that
allows such BVPs to be addressed within the framework
of MD6–8. The central idea is to use the Fourier trans-
forms of the surface modes as coordinates, which are
propagated according to Newton’s equations of motion.
The latter are usually augmented with a damping term
in order to pull energy out of the system until it has set-
tled in an energy minimum. In this study, we replace the
damping term in GFMD with a FIRE-based algorithm
and investigate how this modification effects the rate of
convergence.

In this work, we also explore further optimizations,
which we expect to benefit not only the solution of BVPs
ressembling the studied contact problem but also the so-
lution of PDEs. In many systems – most notably particle-
based systems and second-order differential equations –
long-wavelength modes relax more slowly than short-
wavelength modes. Assigning wavelength-dependent in-
ertia can then help to match frequencies, in particular
when the problem is dominated by the diagonal in a
Fourier representation.
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In the given context, the restoring force on a free-
surface mode is essentially proportional to −qũ(q) at
large q, where q is the wave vector and ũ(q) the Fourier
transform of the displacement field to be determined.
Thus, assigning inertia or masses that increase linearly
with q at large q, must be expected to reduce characteris-
tic long-wavelength time scales relative to those of short
wavelengths.

In addition to the methods proposed here, we also ex-
plore how quickly a conjugate-gradient (CG) based mini-
mization finds the proper solution. Toward this end, CG
– as implemented by Bugnicourt, Sainsot, et al.9 – was
added as an option to our code. The CG method by
Bugnicourt and coworkers had not only outrun regular
GFMD in the contact-mechanics challenge10. In our un-
derstanding, the CG implementation of that group had
led to the overall most quickly convergent solution, al-
though other CG-based contact-mechanics methods11–14

may well be on par. The contact-mechanics challenge
was a publicly announced large-scale contact problem for
three-dimensional solids having the added complexity of
short-range adhesion and hard-wall repulsion. More than
one dozen groups participated in the exercise using a sim-
ilarly large number of solution strategies.

In the remaining part of this paper, the problems are
defined in Sect. II, while the numerical methods are de-
scribed in Sect. III. Numerical results are presented in
Sect. IV and conclusions are drawn in the final Sect. V.

II. MODEL AND PROBLEM DEFINITION

A. Treatment of elasticity

The unit for pressure is defined by the contact modulus
E∗ = E/(1− ν2), where E is the Young’s modulus. The
Poisson number is taken to be ν = 1/4. This choice is
a matter of convenience. It allows an isotropic elastic
body to be represented as a simple bead-spring system,
since the use of pair potential restricts the elastic tensor
to satisfy the Cauchy relation C1122 = C1212, or, in Voigt
notation to C12 = C44 in the case of isotropic solids.

The height h of the deformable body is set to half its
width L. We see this as the smallest natural width at
which the solid can be rightfully claimed to be almost
infinite in the direction normal to the interface. This
is because (static) stress undulations decay roughly as
exp(−qz) into the substrate. Therefore, the damping
This factor turns out to be e−π ≈ 0.04 when evaluated
on the surface opposite to the side touching the indenter
for the system’s smallest, non-zero wavevector, q = 2π/L.
A constant normal pressure is applied to that opposite
side squeezing the elastic body against the rigid indenter,
which is fixed in space.

In order to be in a position to compare the efficiency of
our solution to a full, all-atom simulation, we restrict our
attention primarily to (1+1)-dimensional solids, which
means that the rigid indenters correspond to cylinders,

whose symmetry axes are oriented parallel to the z-axis.
This means that all our energies are, in fact, line energy
densities.

Two approaches are pursued to compute the elastic
energy of the system. In one approach, the complete
(cross-section of the) solid is discretized into a square
lattice. Nearest neighbors and next-nearest neighbors in-
teract with springs of “stiffness” k1 = 0.75 E∗ and k2 =
0.375 E∗, respectively. (True spring stiffnesses have to
multiplied with the length of the cylinder in z-direction.)
These values do not change with the discretization of our
effectively two-dimensional elastic body. The equilibrium
length of the two springs are set to the equilibrium near-
est and next-nearest neighbor distance, r1 and r2, re-
spectively. The spring energy (line density) can thus be
written as

Vel =
1

2

∑
i,j>i

kij
{
rij − reqij

}2
. (1)

In the second approach, we exploit that all information
on the (static) elastic energy is encoded in the displace-
ment field u(x) of the bottom layer (indenter comes from
below), as it is frequently done for the solution of BVPs.
The displacements may occur in both directions that are
orthogonal to the cylinder’s axis, i.e., parallel to x and
y. The elastic energy is best computed in “reciprocal
space”, i.e., in terms of the Fourier transforms of the dis-
placements, for which the following convention is used

ũα(q) =
1

N x

Nx∑
n=1

unα exp{iqx} (2)

unα(x) =
∑
q

ũα(q) exp{−iqx}. (3)

The wave numbers satisfy −πNx/L ≤ q < πNx/L, where
qL/π takes all integer numbers from −Nx/2 to Nx/2−1.
In fact, not only the energy is evaluated in recipro-
cal space when using GFMD, but the entire dynamics
are conducted in the Fourier representation. Moreover,
Greek indices numerate Cartesian coordinates, α = 1
corresponding to the x-coordinate and α = 2 to y, while
the Latin letter n enumerates grid points.

With these definitions, the elastic energy (line density)
of the deformed solid (finite height h, constant pressure
acting on the surface opposite to the indenter) can be
expressed as

Vela =
L

4

∑
q

∑
αβ

qMαβ(q)ũ∗α(q)ũβ(q), (4)

where the matrix coefficients Mαβ contain all needed
information on the elastic coupling between different
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modes15. They read

M11(qh) = (1− r)cosh(qh) sinh(qh)− rqh
‖f(qh)‖

C1111

M12(qh) =
1− r
1 + r

(1− r) sinh2(qh)− 2(rqh)2

‖f(qh)‖
C1111

M22(qh) = (1− r)cosh(qh) sinh(qh) + rqh

‖f(qh)‖
C1111,

where

r =
1− s
1 + s

s =
C1212

C1111

and

‖f(qh)‖ = cosh2(qh)− (rqh)2 − 1.

B. Geometries and interaction

As a first example, we consider a generic, single-
asperity contact, which is sketched in Fig. 1. The elastic
layer defined in Sect. II A is in contact with a parabolic
rigid indenter. The profile of the indenter is given by

h(x) = −x2/2Rc, (5)

where Rc is the radius of curvature. The elastic solid is
placed such that all yn are set to zero as long as no exter-
nal forces are acting on the body. The lateral equilibrium
positions are set to xeqn = nL/Nx. The normal distance
gn of a grid point n from the indenter gn then reads

gn = un,y − hs(xn), (6)

where xn = xeqn + un,x is the lateral position of the dis-
cretization point n.

elastic layer

x

y

FIG. 1: A weakly adhesive, elastic solid of finite
thickness compressed by a parabolic indenter. The

dotted line shows the associated stress profile.

The interaction between the indenter and the elas-
tic body consists of a short-range adhesion and an even

shorter-ranged repulsion. Specifically, we define the in-
teraction energy (line density) as follows:

Vint =
L

Nx

∑
n

γ1 exp(−2gn/ρ)− γ2 exp(−gn/ρ) (7)

where γi has the unit energy per surface area and ρ
of length. We chose them to be ρ ≈ 2.56 × 10−4 Rc,
γ1 ≈ 2.10 × 103 E∗Rc, and γ2 ≈ 2.05 E∗Rc. With
these choices, the equilibrium gap between the two solids
would be ρeq ≈ 1.95 × 10−3 Rc and a surface energy of
γeq = 5.0× 10−4 E∗Rc would we gained at a gap of ρeq.
This leads to a Tabor coefficient of µT & 3, i.e., the ad-
hesion is (mildly) short ranged, as evidenced by a small
adhesive neck, which is visible at the contact edge shown
in Fig. 1.

Assuming that ρeq is of atomic dimension, ρeq ≈ 3 Å
and the interfactial interactions are dispersive, i.e., γeq ≈
50 mJ/m2, the studied system would correspond to Rc ≈
150 nm and E∗ ≈ 650 MPa. This value is representative
of a thermoplastic polymer, such as polypropylene. By
choosing alternative numbers for ρeq and γeq, additional
examples of potential practical interest can be related
to the dimensionless numbers used in the presented case
study.

In the second example, the properties of the elastic
body remain unchanged but an indenter with a randomly
rough, self-affine shape is considered, see Fig. 2. Its power
spectrum C(q) for aD = 1+1 dimensional solid is defined
as follows16

C(q) ∝ q−2H−1Θ (qmax − q) ,

where H = 0.8 is called the Hurst exponent, Θ(•) is
the Heavyside step function, and qmax = 1024 q0 with
q0 = 2π/L.

FIG. 2: An elastic layer of thickness h in contact with a
random roughness substrate. The figure is not to scale,

i.e., the resolution in y direction is enhanced. The
height of the elastic body, which is not fully shown, is

set to half its width.

The third and final example, which is only touched
upon peripherally, is the problem defined in the contact-
mechanics challenge10. It is similar to the second
example, however, the interface is two-dimensional
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and the short- but finite-range repulsion consists of a
non-overlap constraint. For more details, the reader is
referred to the original literature10. Configurations and
exact problem definitions can currently be downloaded at
https://www.lmp.uni-saarland.de/index.php/research-
topics/contact-mechanics-challenge-announcement/.
The surface profiles are also stored at
http://musam.imtlucca.it/wikisurf.html. So far, we
have not yet succeeded in implementing a functioning
mass-weighted GFMD method with a non-overlap
constraint so that we only test the performance of
FIRE-GFMD for this final example. Mass-weigted and
FIRE-GFMD are introduced next in Sect. III.

III. NUMERICAL METHODS

A. Mass-weighted GFMD

As mentioned in the introduction, GFMD solves New-
ton’s equations of motion in Fourier space rather than in
real space. The equation of motion for each surface mode
thus reads

m(q) ¨̃u(q) = f̃(q), (8)

where the Fourier transform of the generalized total force,
f̃(q), can be divided into an elastic, an interfacial, and an
external contribution. m is an inertia or mass, which
in our case, would be of dimension kg/m. The force
coefficients The coefficients of the force vector are com-
puted, respectively, as

f̃ela,α(q) = −qE
∗

2

∑
β

Mαβ(q)ũβ(q) (9)

f̃int,α(q) =
1

Nx

∑
n

∂Vint
∂rα

exp (iqxeqn ) (10)

f̃ext,α(q) = p0 δα2 δq0, (11)

where p0 is the external force divided by the linear length
of the system in x-direction. Imposing non-isotropic nor-
mal or shear stresses on the top surface of the elastic body
rather than a constant normal pressure would necessitate
additional force terms, which can be deduced from the lit-
erature15. The such computed force (per cylinder length)
is the negative gradient of the total potential-energy line
density, Vtot,

Vtot = Vela + Vint − p0Nxũy(0), (12)

When solving static problems, Vtot needs to be mini-
mized.

Standard GFMD assumes m(q) to be constant, in
which case identical dynamics are obtained as if the equa-
tions of motion were integrated in real space. More natu-
ral dynamics would be produced – at least for semi-infinte
solids – if m(q) were chosen proportional to 1/q, because
the elastic deformation of an undulation with wavevector

λ penetrates O(λ) deep into the elastic body. Efficient
dynamics, which are useful to quickly identify a minimum
of the total energy, are obtained if the effective masses
are chosen proportional to the stiffness at wavevector q.
For a free surface, this would be m(q) ∝ qE∗, in the
limit of large thicknesses h. In the presence of an ex-
ternal force, an additional contribution arises due to the
contact stiffness kcont, which couples, in particular to the
center-of-mass or q = 0 mode. In this case, a sensible
choice for a quick convergence to the minimum is

m(q) ∝
√

(qE∗)2 + θ (kcont/A)2, (13)

where A is the apparent contact area and θ a number of
order unity. If kcont is known reasonably well, the nat-
ural time scales of small variations around a minimum
are of similar order of magnitude, which implies that
long-wavelength modes relax to their minima with a sim-
ilar characteristic time scale as short-wavelength modes.
Sometimes, kcont may not be known to high precision.
However, a systematic slowing down with system size – or
with increased small-scale resolution – is prevented from
happening even if the estimate of the optimim choice for
kcont is off by a factor of 10 or 100.

In the case of randomly rough surfaces, kcont can often
be roughly estimated to be a small but finite fraction
of the external pressure divided by the root-mean-square
height h̄, say kcont ≈ p0/(10h̄).

B. Mass-weighted FIRE algorithm

The basic idea of the FIRE algorithm is sketched in the
introduction. Technical details pertaining to our study
are reported here below. Our system is propagated with-
out damping, as long as the power

P = F · v (14)

is positive, where F and v are vectors containing the
(generalized) forces and velocities of the considered de-
grees of freedom. The time step was increased in each
iteration by 2%. Moreover, we redirected the instanta-
neous velocity by changing amounts towards the current
direction of steepest descent while keeping the magni-
tude of the velocity constant. This is done such that
v → (1 − ξ)v + ξfv/f , where ξ = 0.1 initially and after
each FIRE restart. Otherwise, ξ(t+ 1) = 0.99ξ(t), where
t is the time step.

We call our method “mass-weighted”, because the dy-
namics are formulated in Fourier space and the inertia
chosen proportional to the expected curvature of a given
Fourier mode. We also attempted to do conventional dy-
namics using q-independent masses and evaluate an effec-
tive power, in which increased weights wq were assigned
to the slow modes, i.e., e.g., by replacing the expression in
Eq. (14) with

∑
qm(q)F̃∗(q) ·v(q). The effect of this and

related modifications to FIRE was meant to make the
slow modes relax for as long as possible before restarting
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the engine. However, we did not find a parameterization
that would lead to an improved convergence, which is
why we abonded the idea of a mass-weighting on FIRE
without doing the same mass-weighting in the dynamics.

IV. NUMERICAL RESULTS

A. Hertzian indenter

In this section, the efficiency of various minimization
techniques is evaluated on a contact-mechanics BVP with
one simple and one complex geometry. We start with the
simple Hertzian contact geometry, which has become a
benchmark for numerical solution techniques in contact
mechanics17. Due to the short-range adhesion that was
added to the regular Hertz problem, the surface topogra-
phy has features at small scales in addition to the long-
range elastic deformation so that different parts of the
problem relate to rather distinct scales.

Fig. 3 compares how quickly various solution strategies
minimize the energy at a fixed system size. Towards this
end, we first compute the excess energy, which is defined
as the total potential energy minus the total potential
of the fully relaxed structure. The excess energy is then
divided by the value obtained for the initial structure,
which is set up such that the elastic manifold is flat and
located ρeq above the highest indenter coordinate.

The all-atom simulation turns out to be the most inef-
ficient of all investigated methods, even when measured
in (global) time steps, which does not account for the
many layers that need to be simulated. The reason is
the large disparity of frequencies in the system. The
fastest mode, which limits the time step, has an intrin-
sic frequency ωmax which is O(Nx) higher than that of
the slowest mode, ωmin, for which the damping is cho-
sen to be roughly critical. Adding FIRE to the all-atom
simulations leads to an increase of the convergence rate
of six for the investigated system size. While this is an
improvement, another factor of 2.5 is gained when using
conventional GFMD. The ratio ωmax/ωmin reduces from
O(Nx) to O(

√
Nx), which is at the root of the speed-up

compared to natural dynamics.
When adding FIRE to regular GFMD, the conver-

gence increases yet again by almost a factor of three,
which is also slightly faster than our CG-based method,
which only leads to a speed-up & 2 at this system size
compared to regular GFMD. In contrast, mass-weighted
GFMD leads to a speed-up of a factor of ten com-
pared to conventional GFMD. Adding FIRE to the mass-
weighted GFMD increases the convergence rate by an-
other 20%. The overall speed-up is remarkable, even
if the fastest method (mass-weighted GFMD) remains
a linearly convergent method, i.e., the excess energy is
reduced by a decade each 15 iterations. MW-FIRE-
GFMD needs 75 iterations to reduce the excess energy
to 10−5 of its original value compared to & 15,000 it-
erations for natural, that is, all-atom dynamics, while
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FIG. 3: Relaxation of the relative excess energy
∆V (t)/∆V (0) as a function of time steps for a system
with a linear discretization of Nx = 512, ∆V (t) being
the potential energy at time t minus that of the fully
relaxed structure. Each degree of freedom (DOF) is

stepped forward in time once per time step. The
GFMD-based methods have Nx DOFs, while the

all-atom simulation is based on Nx ×Ny DOFs with
Ny = Nx/2. The top and the bottom graph focus on
different methods, regular GFMD being the only one
reported in both. Note that the scales on the x-axis

differ between the two graphs.

regular GFMD needs 1,000 iterations. The value of
10−5 is chosen somewhat arbitrarily. However, the spa-
tially resolved stress profiles start to look very similar
to the naked eye as those of the fully relaxed structures
when ∆V (t)/V (0) < 10−5. Specifically, errors in the
stress are clearly less than 0.5% of the maximum (com-
pressive) contact stress for the investigated and related
examples. This number drops to roughly 10−3% when
∆V (t)/V (0) < 10−8.

While the choice of system size – or number of dis-
cretization points Nx – is quite common for contact-
mechanics problem (give or take a factor of one half
or to eight), it is often useful to know how the con-
vergence rate scales with system size. This question is
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FIG. 4: Number of iterations needed to relax the
relative excess energy ∆V (t)/∆V (0) to 10−5 for the

Hertzian case as a function of the number of grid points.

addressed in Fig. 4. It reveals that the number of iter-
ations needed to decrease the energy to 10−5 of its past
value scales linearly with Nx (or number of discretiza-
tion points in the top-most layer) in an all-atom simu-
lation. To achieve this scaling, the damping has to be
reduced with increasing Nx. If the damping were kept
constant, the long-range modes would be automatically
overdamped at large Nx and the scaling would go as N2

x .
Adding FIRE to an all-atom treatment somewhat alle-
viates the situation, however, the exponent is only re-
duced to 0.85. Regular GFMD improves that to a square-
root dependence. CG-enhanced and FIRE-enhanced
improves the scaling to approximately N0.38 and N0.25,
respectively. It thus appears that FIRE slightly outper-
forms CG-based optimization for this class of problems
when systems are very large. For the considered problem,
mass-weighting appears to eliminate the size dependence
altogether. Similar scaling with system size is found for
2+1 dimensional systems, which we tested explicitly for
the various GFMD methods, however, not in the all-atom
cases.

The scaling shown in Fig. 4 was also found to hold in
2+1-dimensional contact problems, whenever tested, e.g.,
GFMD, FIRE-GFMD, and MW-GFMD. It also persisted
when short-range repulsion was replaced with a hard-
wall constraints. However, in this latter case, we did not
succeed in getting mass-weighting to work so that regular
FIRE-GFMD is the most efficient of the tested methods
for hard-wall repulsion.

So far, we have only evaluated the performance in
terms of the number of iterations. From a practical point
of view, it certainly also matters how long each itera-
tion takes for a given system size, which is analyzed in
Fig. 5. In all-atom simulations, the CPU time per itera-
tion grows with the square of the linear system size (with
the cube for three-dimensional systems), while it only
grows linearly (with the square for two-dimensional sys-

tems) plus logarithmic corrections in the GFMD-based
approaches.
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FIG. 5: CPU time in seconds per iteration as a function
of the linear system size Nx. The solid lines reflect fits,
while the dashed lines are reverse extension of the fits.
Adding mass-weighting or FIRE does not significantly

affect the time per iteration for typically used numbers.
All computations were performed on a personal

computer with a 1.6 GHz Intel Core i5 central processor
unit (CPU). The FFTW version 3.3.5 is used in our

code.

As a final comment in this section, we note that each
method can be combined with the regular multi-scale
tricks of the trade: A crude result can be obtained
at a small discretization and adjustable parameters be
gauged (e.g., those needed for FIRE, damping, or mass-
weighting). The resolution of the simulation can then
be successively increased. This way, the number of iter-
ations is much reduced, while allowing one at the same
time to make a Richardson extrapolation of central ob-
servables to the continuum limit.

B. Randomly rough indenter

Replacing the simple Hertzian geometry with a more
complex self-affine, rigid substrate changes prefactors,
but trends remain similar, as can be seen in Fig. 6. Both
mass-weighting and FIRE are substantially faster than
regular GFMD. Adding FIRE to mass-weighting brings
about a speed up by almost a factor of two versus a 25%
gain in speed in case of the simpler Hertz geometry.

The exponents of the tested methods remain un-
changed within tight margins of ±0.01 compared to those
reported in Fig. 4 for the simple Hertz case. We therefore
speculate that they are almost constant for the consid-
ered class of contact problems.
C. Application to the contact-mechanics challenge

Since this study is the first time that any of its authors
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FIG. 6: As in Fig. 3, however, for a randomly rough
indenter. The default substrate roughness is set up as
follows: We use a Hurst exponent of H = 0.8. There is
no roll-off so that the system size corresponds to the

long wavelength cutoff λl. The short wavelength cutoff
is chosen to be λs = 0.01Lx. By default, the system is

discretized into Nx = 1024 grid points.

actively used a CG method, it was felt that concluding
to have outperformed CG bares a non-negligible risk to
be erroneous. CG requires some fine tuning of parame-
ters and despite much effort, a finite probability remains
of a suboptimal parameter selection. We therefore ap-
plied FIRE-GFMD to the problem defined in the contact-
mechanics challenge. The team by Bugnicourt reported
convergence with their CG method after 3,000 iterations
for a discretization of the surface into 32,768 × 32,768
elements, which clearly outrun the regular GFMD-based
reference solution in terms of efficiency, for which 30,000
iterations were needed to achieve a similar accuracy at
that size. The data submitted by Bugnicourt to the
contact-mechanics challenge revealed convergence to a
few 10−9 times the maximum compressive stresses. An
even greater accuracy would certainly require higher data
precision than those obtained when requesting “double”
in C++ or “double precision” in Fortran.

The convergence of FIRE-GFMD for the contact-
mechanics problem is similar to that identified in this
study for related contact problems. This times, a little
more than 500 iterations are needed to reduce the excess
energy to 10−3 of its original value. This value is slightly
increased compared to the 300 iterations reported in the
previous section. This is due to the contact-mechanics
challenge surface being larger and the adhesion being
more short ranged than in the problem investigated in
the last section. In addition, FIRE-GFMD needs 2,000
iterations to converge the stress to the same accuracy
as Bugnicourt. This means that FIRE-GFMD appears
to slightly outpeforms the CG-based boundary method
by that group. This gain may not be large enough to
motivate the replacement of a working CG-based mini-
mization in a code with a new FIRE method. However,

when designing new code, the truly easy-to-implement
FIRE method appears to be the better choice for this
class of problems.

V. CONCLUSIONS

The fast inertial-relaxation engine (FIRE) is based on
modified Newtonian dynamics of particles5. It was devel-
oped as an easy-to-code but highly efficient method for
structural optimization of molecular-scale models. As
such it has proven useful in numerous atomistic stud-
ies. A small, selected list of applications include density-
functional-theory based simulations of chemically com-
plex systems18–21, classical interatomic potential based
molecular-statics calculations22–24, numerical localiza-
tion of transition pathways25, and even the simulation of
hard-sphere based models of condensed-matter26,27 sys-
tems.

FIRE is implemented in many software suites for
molecular statics and dynamics calculations, for instance,
in LAMMPS28, ASE29, and ATOMISTICA30,31, which
has certainly helped to foster its popularity. However,
despite its rootage in inertial dynamics, it is not lim-
ited to molecular statics. In principle, any numerical
problem that can be formulated as a minimization of a
penalty function can benefit from FIRE. One such exam-
ple could be the optimization of an electrostatic charge
distribution subjected to a given set of constraints and
boundary conditions.

In this article, two contact-mechanics problems were
considered to illustrate the extension of FIRE from the
atomistic realm into the continuum-mechanics world. To-
wards this end, we have employed the Green’s function
molecular dynamics (GFMD) method, which we see as a
prototypical example for how a classical boundary-value
problem can be tackled using the molecular-dynamics
(MD) toolbox. In its original formulation, GFMD sets
up a (critically damped) Newtonian dynamics of surface
Fourier modes to minimize the overall energy. It allows
for the possibility of adhesion, short-range repulsion, and
non-overlap constraints. Since GFMD is an MD method,
introducing FIRE into GFMD requires the addition of
only a few lines to the GFMD code.

It turns out that FIRE can successfully accelerate
a regular GFMD calculation resulting in a remarkable
speed up of one order of magnitude for typical system
sizes and even larger speed ups for larger systems. FIRE
can also be combined in a straightforward fashion with
other accellerators of the GFMD method, such as an
effective choice for the inertia of the modes. The lat-
ter induces a narrow distribution of intrinsic frequencies
whereby the number of required sweeps to relax the sys-
tem no longer increases substantially with system size.
Even if the relative speed-up due to FIRE in such a mass-
weighted GFMD approach is not overwhelming, a factor
of two in efficiency can still be useful for pushing the
boundaries of large-scale problems on massive parallel
supercomputers.

These first promising results suggest that FIRE could
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also be a versatile addition to finite-element, solid-
mechanics codes especially for engineering problems
with many contacts that usually result in highly non-
linear equations. Experience from atomic-scale appli-
cations indicates that FIRE is always competitive with
much more complex mathematical optimization algo-
rithms5,32,33 (such as quasi-Newton methods) and some-
times FIRE can even be superior34. The contact-
mechanics problems considered in this study adds an-
other example, where FIRE appears to slighly outper-
form conjugate-gradient minimization. Therefore, it
might be interesting future research to explore the spe-
cific conditions and the underlying reasons for a superior

performance by FIRE. Its speed depends on a small set
of internal adjustable parameters. The original version
of FIRE comes along with a robust choice of these pa-
rameters that requires no alteration for molecular-scale
calculations. For continuum applications, the previous
choices might not be the optimum and systematic stud-
ies could provide an additional boost of FIRE.
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