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Abstract Atomistic structures can have (sharp) fea-

tures that are not accounted for in standard continuum

theories. A prominent example is a Hertzian contact in

which, however, the indenting tip is cut out of a crystal,

whereby the tip acquires a discretized height profile.

The microscopic stresses observed for such quantized

indenters show sharp stress peaks at the edges of the

height steps so that the stress profiles differ from those

produced by smooth, parabolic indenters. Such devia-

tions are frequently misinterpreted as the breakdown of

continuum theory at the nanoscale. In this Letter, the

stress peaks are confirmed to also occur in a contin-

uum treatment containing steps. In addition, it is shown

that analytical solutions for smooth tips can compare

extremely well to those with steps if both stress fields

are passed through the same (Gaussian) filter smearing
out the features in real space with a resolution close to

the broadest terrace of the quantized tip. Related state-

ments are shown to also hold for the stress distribution

function of randomly rough indenters with quantized

height profiles.

1 Introduction

In their well-received papers The breakdown of contin-

uum models for mechanical contacts [1] and Contact

of single asperities with varying adhesion: Comparing

continuum mechanics to atomistic simulations [2], Luan

and Robbins found – as one of many other results – that

contact stresses of indenters with a quantized height
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can deviate substantially from the Hertzian continuum-

mechanics based solution. Although Luan and Robbins

correctly state in the title of their paper that the models

break down, these deviations are often interpreted by

others as a sign for the automatic breakdown of contin-

uum mechanics at the nanoscale altogether. This can-

not be correct in the context of a phenomenon such as

linear or close-to-linear elasticity, which is essentially

scale free down to atomic dimensions.

In fact, Luan and Robbins find the load-displacement

curve to be much less affected by the steps than the

normal stress profiles. Significant deviations only occur

at small loads when few terraces of the stepped inden-

ter are in contact [1,2]. In this limit results can also

be affected by the finite range of surface interactions

and atomic discreteness, which could also be included

in more accurate continuum theories. Moreover, Luan

and Robbins already emphasize themselves that con-

tinuum mechanics could be applied to smaller contacts

if the true atomic-scale surface roughness was included.

This claim was later confirmed through large-scale

simulations by Medina and Dini [3], who demonstrated

that the sharp features of stresses occurring due to

stepped indenters also appear in continuum treatments.

Yet, the misinterpretation of the automatic breakdown

of substrate elasticity at the nanoscale persists. Cer-

tainly, when external forces or adhesion are sufficiently

large to lead to a strongly non-linear response including

plastic deformation, continuum mechanics can break

down at the nanoscale. However, Luan and Robbins

imposed deformations, which were sufficiently small for

them to state: We present results for ideal harmonic

crystals, but find similar results for Lennard-Jones in-

teractions.

The author of this paper feels that another, detailed

analysis of the stepped Hertzian contacts facilitates the
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correct interpretation of Luan and Robbins’ work. To-

wards this end, continuum-mechanics simulations are

conducted, whose results – like Medina and Dini’s re-

sults [3] – bear much similarity with the mentioned

atomistic simulations. At the same time, it is explored

to what extent the continuum solution for smooth tips

compares to the solution for stepped tips, if both stress

fields are coarse grained with a similar filter reducing

the in-plane spatial resolution of the data. This proce-

dure of comparing atomistic to coarse-grained simula-

tions may allow a resolution-dependent contact area to

be defined in atomistic simulations, even when repulsive

forces have a finite rather than a zero range.

Since the effect of quantized indenter heights on

stresses is an interesting topic, this work also investi-

gates how discrete heights alter the local microscopic

stresses and their distribution function in contacts of

randomly rough surfaces. Discrete steps correspond to

correlated roughness, which are not accounted for in

contact-mechanics theories assuming the random-phase

approximation for the height Fourier coefficients [4].

It is therefore also explored to what extent the pro-

posed stress coarsening procedure benefits the analysis

of large-scale contacts.

The numerical method of this work is Green’s func-

tion molecular dynamics (GFMD) [5] in a new variant

combining two optimization schemes [6]. While it may

be worth mentioning that the Hertz problem defined

in Sect. 2.1 can be solved in 10 s on a standard desk-

top computer with the new GFMD code, the author

abstains from its presentation in this short communi-

cation, because the method is well established [7] and

the new variant described in detail elsewhere [6]. The

remainder of this Letter therefore only contains a re-

sults and a conclusions section.

2 Results

2.1 Hertzian indenters

We first examine the effect of the shape of a rigid, fric-

tionless indenter on the purely continuum response in

an ideal elastic substrate. A smooth indenter is com-

pared to a tip with steps that might represent the atomic

terraces on a nanometer tip as investigated in Refs. [1,

2], but could equally well be microns high. In principle,

the given The such defined problem has no intrinsic

scale and the discretization used in the numerical solu-

tion is not connected to real atoms even if a discretiza-

tion point may be called a superatom – whereby the

subtitle of this article can be justified. As discussed

in Refs. [1,2], real atomic discreteness may introduce

many additional effects, which, however, are not the

focus here.

More specifically, we consider a Hertzian contact

geometry consisting of a stiff, frictionless parabolic in-

denter with a radius of curvature R, which is squeezed

against a flat, linearly elastic solid having a contact

modulus E∗. The (default) load is set to L = 0.01 E∗R2.

The analytical solution to this problem is well known

and summarized in text books on contact mechanics [8].

For example, the contact radius is ac = 3
√

3LR/4E∗

and the peak pressure is p0 ≈ 3

√
6FE∗2/R2/π, which

in our case leads to ac ≈ 0.1957R and p0 = 0.1246E∗

for the smooth parabolic indenter. Relative deviations

of the numerical data — ac(GFMD) ≈ 0.1947R (sub-

grid resolution can be obtained from fits to the stress

near the contact edge) and p0(GFMD) ≈ 0.1258E∗ —

to the analytical Hertz solution are less than 1%. They

arise from two effects: (i) Periodic boundary conditions

are employed within the plane with a simulation-box

length of L = R. (ii) Real space is discretized into ele-

ments having a linear dimension of R/512 rather than

into infinitesimally small elements. Note that because

we are in the linear, scale-free limit, the results for these

two geometries can be mapped to a continuum of iso-

morphic problems. For example, doubling R and halv-

ing L would leave the contact radius unchanged but

reduce the pressures and strains by a factor of 22/3.

Besides the smooth indenter, we also consider a tip

with discrete heights separated by integer multiples of

∆h = R/200. An outer step-wise approximation to the

parabolic shape was chosen, because it leads to the

largest possible flat terrace and thereby to a maximum

discrepancy between the stress profile of the smooth

and a step-wise constant profile. The geometry of the

tips is shown in Fig. 1.
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Fig. 1 Height profile of a continuous (broken lines) and a
stepped (solid lines) Hertzian tip. The step height is R/200.
Note that the abscissa and the ordinate are normalized in the
same way but they are not to scale.
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Hard-wall interactions are used to describe the in-

teractions between the surfaces. There are three main

reasons for this choice: First, and most importantly, if

body rather than surface forces are used in the atom-

istic simulations, then the continuum treatment should

also be based on body forces and not describe a different

system. Second, the use of hard-wall interactions allows

contact area to be defined unambiguously. Third, real-

istic characteristic lengths ρ for exponential repulsion

(not adhesion, which may be much longer ranged) are

typically a quarter of an interatomic spacing a, i.e., a

is in the order of a bohr. Fig. 11 of Ref. [5] reveals that

when ρ is small compared to the characteristic lengths

defining the contact, the effect of finite-range repulsion

is predominantly a smearing out of the stress kink at

the contact edge. This smearing out is less substantial

and less broad than the effect that the height plateaus

have on the stress profile, except at very small loads.

The stress profiles differ radically between stepped

and non-stepped indeters at the investigated load, as

can be seen in the top panel of Fig. 2. The quantized

indenter leads to the previously observed [1,3] stress

peaks at the edge of each step, while the continuous

indenter shows the well-known continuous stress pro-

file. Yet both solutions appear to resemble each other

and the question arises if a well-defined coarse graining

reveals that similarity.

One possibility to check for resemblance between

both data sets is to apply a similar local averaging, or

filter, to both stress profiles. For this study, a Gaus-

sian filter was explored. The reason for this choice was

predominantly that a Gaussian folded with a second

Gaussian remains Gaussian. In addition, a Gaussian de-

cays asymptotically more quickly than an exponential

so that a Gaussian could be said to lead to a more lo-

cal smearing than an exponential filter. The Gaussian

filter coarse-grains the stress profile according to

σcg(r) =
1

2π∆r2

∫
d2r′ e−(r−r

′)2/2∆r2σ(r′), (1)

where ∆r is a measure of the length scale over which

the stress is locally averaged. The filter is rather easily

implemented in a Fourier-based Green’s function code

like ours. It basically requires only one additional line

of code, e.g., in our code,

stress[iQ] *= exp(-(dr*q[iQ])^2/2).

This command must be invoked before the inverse Fourier

transform is taken, because the Fourier representation

of Eq. (1) reads

σ̃cg(q) = e−∆r
2q2/2 · σ̃(q). (2)

The result of such a coarse-graining procedure is

shown in Fig. 2. Note that the stress peaks at the edges

of the steps in the fully resolved calculation would turn

into stress singularities in the limit of infinitesimally

small discretization. Finer discretizations than those

presented here are easily possible, but do not noticeably

change the shown coarse-grained stress profiles, except

that the stress singularities result in higher peaks. Very

large peaks, however, would ultimately induce a plastic

response in a real system, as discussed, for example in

Ref. [10].
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Fig. 2 Coarse-grained stress σcg(r) of the investigated con-
tinuous (broken lines) and the quantized (solid lines) Hertzian
tip as a function of the distance r from the symmetry axis.
In the top panel, no filter was applied. In the remaining pan-
els, filters smearing out the stress with different resolutions
∆r are employed. Successive curves are shifted downward to
avoid mutual overlap. Thin gray lines indictate the respective
reference abscissa.

Fig. 2 reveals that coarse-graining makes the origi-

nal and the stepped solution approach each other quite

closely even when the broadening width ∆r is clearly

less than the width of the broadest terrace wt, which

takes the value of wt = 0.1 R in the current case study.

For ∆r ≈ wt/2, the coarse-grained continuum and the

stepped solution are already almost indistinguishable,

as can be seen for the ∆r = R/16 curve in Fig. 2.

An effective coarse graining of stresses also occurs

naturally as a function of depth, as expressed by Saint-

Venant’s principle. It states that the details of the stress

distribution on a scale a barely matter at a depth 3a [1].

Recent simulations by Klemenz et al. [11] revealed an

impressive example for Saint-Venant’s principle: a sin-

gle graphene layer deposited on top of a stepped metal

regularizes quite noticeably its mechanical response. For

our problem of interest, the question thus arises how

the stress profiles of smooth and stepped indenters dif-
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fer in the bulk as a function of depth. A particular

depth is d = 0.78 ac, where the continuum profile has

the largest shear stress. Fig. 3 reveals that the nor-

mal stresses at this depth produced by the smooth and

the considered stepped profiles show maximum devi-

ations of order 10%. The observed differences at that

critical depth are therefore noticeable but yet much re-

duced compared to those of the surface stresses. Similar

statements hold for other stress-tensor elements includ-

ing the von Mises stress, which were computed as de-

scribed recently [9]. However, the numerical values for

von Mises stress also depend on the Poisson ratio.
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Fig. 3 Stress profile of the smooth and stepped indenter at
the depth d = 0.78 ac, where the smooth tip has the largest
shear stress.

Note that the coarsening of stress with depth dif-

fers from that considered here. Different wave vectors

coarsen essentially exponentially with depth z, e.g., with

exp(−q z) or with (1 + q z) exp(−q z). In the Gaussian

coarsening procedure proposed here, the Fourier com-

ponents are instead multiplied with exp(−∆r2q2/2).

We conclude this section with a discussion of the

question how many steps need to be in contact in or-

der for the stress coarsening procedure to be effective.

However surprising it may sound, contact with one sin-

gle step is sufficent. If the filtering is done with ∆r being

half a terrace width, the filtered original Gaussian and

the filtered stepped stress profiles look already quite

similar. A maximum relative difference in the stress of

a little less than 20% occurs. Increasing ∆r to the full

width of the terrace reduces that error to 4%.

For completeness, we also comment on the normal

displacement d, even if the d(L) relation is unrelated to

the stress-coarsening procedure proposed in this work.

While making contact solely with a single step, d is

linear in L, as for the flat punch solution. This relation

obviously differs from the d ∝ L2/3 proportionality of

the original Hertzian-contact geometry. For the d(L)

relation of stepped and unstepped indenters to resemble

each other, several steps need to be in contact. This is

in line with the observations of Luan and Robbins [1,

2], who found the biggest deviations from Hertz in the

limit of small numbers of contacting steps.

2.2 Stepped, randomly rough indenters

The presence of stress singularities at the edges of steps

brings up the interesting question how height quanti-

zation affects the stress in contacts of elastic solids in

contact with randomly rough indenters. To address this

question, the contact mechanics of such surfaces is com-

puted using GFMD and compared to their continuous

counterparts. This includes a comparison of the stresses

in real space as well as of their distribution function

Pr(σ).

A model for randomly rough surfaces is used which

is similar to those that have been routinely simulated

for a little more than a decade [7,12–16]. It is based on

a surface height spectrum C(q) ≡ 〈|h̃2(q)|〉 having the

functional form [17–19]

C(q) =
C0Θ(qs − q)

{1 + (q/qr)2}1+H/2
. (3)

Here h̃(q) is the complex Fourier transform of the height

profile. Its absolute value is set to
√
C(q) and its phase

is assigned a uniform random variable on (0, 2π). More-

over, qr = 2π/λr and qs = 2π/λs represent the roll-

off wavevector and high-wavevector cutoff, respectively,

while Θ(. . . ) is the Heavyside step function. The prefac-

tor C0 is chosen such that the root-mean square (rms)

height gradient ḡ equals unity, but the results are iso-

morphic to solutions for arbitrary slope in the linear,

scale-free limit considered here. The calculations pre-

sented in this work are based on the following param-

eters L/λr = 3, λr/λs = 100, and λs/a varying from

3.4 to 27.3. H is called the Hurst roughness exponent,

which is set to its generic value of H = 0.8.

Stepped height profiles are realized by replacing the

initially drawn height h(r) with ∆h · int{h(r)/∆h}. For

the case study presented here,∆h = λr/200 was chosen.

The studied height profiles along a cut at x = L/2 are

shown in Fig. 4.

The interaction between the indenter and the flat,

linear elastic body is a hard-wall repulsion as for the

Hertzian indenter. The two bodies are squeezed against

each other with a normal pressure of p0 = 0.01E∗ḡ,

which leads to a relative contact area of ar ≈ 0.02.

Fig. 5 shows the resulting stress for both continuous
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Fig. 4 Surface topography of the original smooth (red line)
and the stepped (blue line) height profile along a cut at x =
L/2 through the surface.

and stepped stress height profiles. Without much spa-

tial resolution, the distribution of contact stresses ap-

pear quite similar in both cases, even if there is no one-

to-one match regarding each individual contact patch.

When contemplating the stresses locally, clear dif-

ferences between the stress produced by continuous and

stepped indenters can be appreciated. These differences,

however, disappear when the data at the small scale

(e.g., at the atomic scale) is processed through a Gaus-

sian filter of the same form as in Eq. (1). In a boundary-

element code, σ(r) is known on a suitable grid and like-

wise the stress is known in Fourier space, in which case

the coarsening can be readily done in the Fourier repre-

sentation via Eq. (2). After applying the filter to both

stress fields, i.e., the one resulting from the smooth and

the one from the stepped random roughness, the two

stress distributions look rather similar.

In passing we note that a similar smoothing proce-

dure can also be applied to conventional atomistic simu-

lations, which are not boundary-element method based

like GFMD. An atom i below a plane with a surface

normal to the z-axis can be assigned a surface stress of

the form σ3α(r) = Fnαδ(r−rn), where δ(...) is the Dirac

delta function, rn the in-plane coordinate of the atom,

and Fnα the force acting on atom n, which is due to the

presence of atoms on the other side of the plane. [20]

For truly atomic simulations it might therefore be best

to use Eq. (1), or, when the coarsening length ∆r is

large, to assign the forces in an appropriate fashion to

bins.

We come back to the issue of stresses in randomly

rough surfaces. Often, it is not useful to know the stress

in a spatially resolved manner, but the microscopic dis-

tribution function Pr(σ) may be of interest. Pr(σ)∆σ

states the probability that a randomly picked surface

point in the interface is assigned a stress within σ ±
∆σ/2 in the limit ∆σ → 0. Fig. 6 reveals that the

functional form of the microscopic stress distribution

functions differ between the two cases. In particular, if

the total probability density is written as

Pr(σ)∆σ = (1− ar)δ(σ) + ar · Prc(σ)∆σ, (4)

it is found that a frequently used, analytical approxi-

mation to Prc(σ) [4] satisfying

Prc(σ) ∝ e−(σ−p0)
2/2∆σ2

− e−(σ+p0)
2/2∆σ2

, (5)

with ∆σ2 = (E∗ḡ/2)2, describes the stresses very well

for σ > E∗ḡ in the case of smooth surfaces. In contrast,

Prc(σ) ∝ 1

1 + (σ/σref)2.4
(6)

approximates the contact-stress distribution quite well

for stepped surfaces for all σ.

As a side comment, it is noted that Eq. (5) was

reported earlier to be inaccurate for the stress distri-

bution function for σ < E∗ḡ for regular, randomly

rough surfaces and that Pr(σ → 0) obeys a power law,

in which Pr(σ) grows approximately as σ0.7 at small

σ [21], which is consistent with the data produced for

this study.

While the functional forms of the stress distribu-

tion differ for smooth and stepped, randomly rough

surfaces, their first moments turn out quite similar.

In both models, the dimensionless ratio κ ≡ acE
∗ḡ/p0

turns out κ = 2 within 1%, confirming previous results

on stepped, elastic indenters [10]. This means that the
first moment of the stress averaged only over the con-

tact is 〈σ〉contact ≈ E∗ḡ/2 for the smooth and the con-

sidered stepped profile, where, however, ḡ denotes the

rms-gradient of the original surface.

Finally, Fig. 7 addresses the question if the stress

distribution functions of smooth and stepped randomly

rough surfaces become similar to each other when a

Gaussian broadening is applied to both of them. Due to

the Gaussian filter, the non-contact δ-function contri-

bution leads to significant contributions at small values

of σ, which were not present before. At the same time,

the broad tails of the stress distribution for stepped sur-

faces has disappeared and turned into a similar asymp-

totic behavior as for the continuous surfaces. In fact, at

the given moderate amount of smoothing, the tails at

large stresses still resembles the analytical solution of

Eq. (5).

It appears that smearing out the stress fields with a

resolution ∆r . λs suffices to invoke a relatively close

resemblance between the σcg distributions for stepped
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Fig. 5 Stress in contacts between a randomly rough, rigid indenter and a flat, linearly elastic solid. Top and bottom rows refer
to continuum and stepped heights, respectively. The left column shows the stress on the entire simulation cell. The middle
column shows the stress on a selected meso-scale contact patch, while the right column shows the same stress after having
been coarse-grained through a Gaussian filter with a resolution of ∆r = 0.006λr.
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Fig. 6 Stress distribution function of the original (red cir-
cles) and the stepped (blue squares) randomly rough surface.
The dashed red and blue line represent, Eq. (5) and Eq.(6),
respectively.

and smooth, random surfaces. However, the same state-

ment does not quite hold for the real-space data. Rem-

nants of stress singularities at the edge of “large” ter-

races, whose linear size clearly exceeds λs = 0.01λr, are

still noticeable in the lower right panel of Fig. 5.
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Fig. 7 Stress distributions of the local stress resulting from
the microscopic stress distribution after coarse-graining using
Eq. (1) with ∆r = 0.6λs. All stresses are normalized with the
rms-gradient of the continuous surface ḡc.

A brief discussion might be in place regarding the

asymptotic σ → 0 behavior of the stress distribution

function. As in early numerical studies of randomly

rough contacts [12], the coarse-grained Pr(σ) increases

towards small σ, in contradiction to the prediction by



Elasticity does not necessarily break down in nanoscale contacts 7

Persson theory of a linear relationship [4] or the sublin-

ear power law identified in high-resolution GFMD sim-

ulations [21]. The reason for this discrepancy is that

the coarse-graining also effects the displacements so

that they implicitly have a high-wavenumber cutoff at

a similar scale where roughness is smoothed or cut off.

In contrast, continuum theory and the high-resolution

GFMD simulation assume elastic response functions at

wavevectors that exceed the high-wavenumber cutoff of

the surface roughness.

3 Conclusions

Robbins and Luan [1,2] provided the useful insight that

classic Hertz and related adhesive models are not ac-

curate in contacts that approach atomic dimensions,

as common for atomic force or other scanning probe

microscopy. New length scales and phenomena become

important at these scales that are not included in the

classic theories. One is the presence of height fluctu-

ations that lead to strong oscillations in the surface

stress. As they noted, these are related to changes in

geometry that are not included in Hertz theory. Unfor-

tunately these oscillations have often been interpreted

by others as a sign of a universal failure of elasticity at

small scales.

In this paper, we have confirmed that these stress os-

cillations do not reflect a failure of elasticity but rather

the elastic response to the true surface geometry [1–3].

Moreover, we demonstrate that the analytical solution

for a Hertzian indenter compares extremely well to the

numerical solution for a stepped Hertzian surface, when
the stress fields of both calculations are passed through

the same (Gaussian) filter with a resolution slightly

more than half the maximum terrace. Although the

continuum flat punch solution would certainly be the

appropriate model in the limit of a single plateau, the

coarsened original and the coarsened stepped Hertzian

profile still resemble each other in this extreme limit.

The presented simulations also revealed that stepped,

randomly rough surfaces can be described in terms of

recent contact mechanics theories taking the height spec-

tra as input, i.e., Persson’s contact mechanics theory [4].

However, such theories are only valid up to the inverse

wavelengths, at which the steps lead to significant tails

in the surface spectrum. When including wave vector

components of the spectra, which arise due to the steps

and for which correlation matters, Persson theory (in

its present form) is not yet in a position to make correct

predictions for the stress distribution functions. The

theory always predicts Gaussian tails for Pr(σ), while

the distribution function is clearly algebraic for stepped

surfaces. It had been speculated earlier that possible de-

viations of the random-phase approximation present in

real surfaces induces non-Gaussian – more slowly decay-

ing – asymptotics of Pr(σ) at large stresses [13]. Thus,

addressing correlation in randomly rough contacts re-

mains a theoretical challenge to be solved.

The comparison between a continuum model and an

atomistic model is only fair when the continuum model

is an accurate representation of the full model. Other-

wise, either the model has to be refined or, as demon-

strated in this work, the results from the full and the

continuum model have to be passed through an appro-

priate filter reducing the spatial resolution. Thus, when

atomistic simulations do not appear to match up with

continuum simulations, it may well be that the com-

parison is not ideal rather than that continuum theory

is invalid. This last line is not intended to criticize the

papers by Luan and Robbins [1,2], since they stated

that their simulations were affected by the direction-

ality, finite range, and finite stiffness of interfacial in-

teractions as well as by atomic discreteness. Nonlinear

response, plasticity, and other phenomena may also be

important in contacts with atomic dimensions. These

effects are not in traditional continuum models used in

the tribology community, but could be included.

To conclude the paper (though the following text

could have also been placed into the Introduction), it

might be worth reflecting the meaning of the sentence

Continuum mechanics breaks down. Two questions need

to be addressed: Where does continuum mechanics end

and when does it breaks down? In the author’s opinion,

continuum mechanics knows body forces, strain fields

may have an upper wavenumber limit (which would be

commonly set to π over the atomic spacing), and con-

tinuum corrections can be applied, e.g., in the form of

realistic dispersion relations for bulk phonons or stress-

displacement relations of semi-infinite bodies. None of

these features are reflected for good reasons in the Hertz

model. A beyond-the-norm sophisticated attack of con-

tinuum mechanics on a specific contact problem, how-

ever, would incorporate them. If large discrepancies be-

tween such a treatment and full atomistic simulations

persisted, only then should continuum mechanics be

said to have broken down. An extremely sophisticated

continuum-mechanics approach might even include the

atomic-scale undulations of the substrate potential, as

done in approaches to the Frenkel-Kontorova model [22]

and thereby rationalize or even quantify the effect of

crystalline alignment on interfacial shear forces, which

are commonly treated as ugly add-ons in continuum

mechanics.
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