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Many bulk-metallic-glass (BMG) forming melts undergo a rather abrupt fragile-to-strong tran-
sition (FST), at which density and local structure appear to change only continuously. In this
study, we reproduce similar results for a ternary BMG former (Zr0.606Cu0.29Al0.104) using com-
puter simulations. The results include a smooth evolution of radial distribution functions at small
distances through the FST. However, the long-range density correlation length increases (quasi-)
discontinuously at the FST as revealed by an Ornstein-Zernike-based analysis of the radial distribu-
tion function. Likewise, the temperature derivative of aZr−Zr(T ) decreases (quasi-) discontinuously
at the FST. These observations add to the rich phenomenology of FSTs lacking a theoretical un-
derstanding.

I. INTRODUCTION

Glass-forming liquids frequently undergo a fragile to
strong transition (FST) at which a high-temperature
non-Arrhenius dependence of dynamical properties, such
as shear viscosity and volume or energy relaxation
times, crosses over to an Arrhenius-type dependence [1–
11]. The FST often occurs in equilibrium well above
the (experimental) glass-transition temperature Tg, e.g.,
in many bulk-metallic glass (BMG) forming melts [8–
10, 12], molecular glasses [2–6] but also in silica [6, 7, 13].
BMGs lacking a FST at conventional cooling rates re-
vealed it when the cooling rate was much reduced [14].
The FST has even been observed in undercooled liquids,
most notably water, outside thermal equilibrium [15–19].
It thus appears as if the FST is a common phenomenon
of complex liquids defying crystallization.
In some cases, the FST is accompanied by significant

structural changes resulting from the competition of two
phases that differ clearly from one another, for exam-
ple, through different densities [15, 18]. A discontinu-
ous change of the temperature dependence of dynamical
properties is then not unexpected but not necessarily an
Arrhenius-like behavior at low temperatures and clear
deviations from it at high temperatures. In contrast,
when density evolves smoothly at the FST, significant
structural changes in the local order at the FST have not
been identified [12], which does not prevent the picture
of two competing phases to be postulated [20].
The mode-coupling theory (MCT) explains a variety

of dynamical anomalies, which occur at the FST [21–23],
in particular, a high-temperature non-hopping dynam-
ics not satisfying Arrhenius-like dependence to a ther-
mally activated motion at low temperatures, in which
(apparent) activation energies may differ for different el-
ements at low T [7]. MCT assumes neither a compe-
tition of phases nor a (smeared-out) transition between
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them [22, 23]. The FST in BMGs (and many other glass-
forming melts) is nevertheless accompanied by thermo-
dynamic anomalies such as a small but noticeable peak in
the specific heat cp(T ) just below the FST-temperature
T ∗ and a subsequent drop of cp(T ) upon cooling to a
value which is barely above that expected of a harmonic
solid [12, 24]. The small value of the specific heat is an in-
dication of structural rearrangements with temperature
being small or the melt jumping between different basins
of attraction having similar energies. The presence of
the peak in cp(T ) is sometimes seen as an indication of
a smeared-out phase transformation [24] or for the ex-
istence of two distinct disordered phases [14]. However,
a recent simulation of a model BMG revealed that the
peak height and intensity are sub-extensive, i.e., that it
decreases with increasing system size [25]. This is the
opposite of what should be expected from a competition
between two different liquid phases.

The analysis of structural evolution in glass-forming
melts in general and BMG-forming melts in particular
have so far been focused on local two-point distribution
functions [12, 26–30] and on the analysis of the proba-
bility of locally preferred structural motifs to occur [26–
29, 31–38]. To the best of our knowledge, no (quasi-)
discontinuous changes in these properties was reported
to exist at those FSTs lacking a density anomaly.

It appears counterintuitive that the quasi-continuous
change of dynamics, which may even include a reduction
of the apparent activation energies ∆E near T ∗ [9, 14,
27], does not correlate with similarly discontinuous struc-
tural changes. This motivated us to investigate not only
the local radial distribution function in a BMG-forming
melt but to focus on the asymptotic long-range density
correlations. According to Ornstein and Zernicke [39]
and subsequent work [40], these can be described as an
exponentially decaying sinusoidal. To fill this gap, simu-
lations were run on the alloy Zr0.606Cu0.29Al0.104, which
was recently demonstrated to reproduce the frequently
observed local maximum of cp just below T ∗ [25] along
with some other features typical for FSTs of (bulk matal-
lic) glass-forming melts.

The remainder of this paper is organized as follows:
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Model and methods are sketched in Sect. II. Sect. III
contains the results and some discussion. Conclusions
are drawn in Sect. IV.

II. MODEL AND METHODS

The model and the simulation set-up used for
this work are identical to those used in a former
study [25], i.e., interactions in the considered model al-
loy Zr0.606Cu0.29Al0.104 are described with an embedded-
atom potential, which was carefully designed for Zr-Cu-
Al ternaries [41]. Simulations are run again in the NpT
ensemble using LAMMPS [42]. This time, the system
size was fixed to N = 8,788. Pressure is controlled again
with a Nosé-Hoover chain [43] with a time constant equal
to 1,000 time steps, while temperature is maintained con-
stant using a Langevin thermostat [44] with a time con-
stant equal to 100 time steps. The time step was chosen
to be 2 fs. We also took the liberty again to reduce the
“isotope masses” of Zr and Cu to that of Al in order to
collapse vibrational time scales of the different elements.
While this isotope trick affects prefactors of dynamical
properties, it leaves static observables as well as apparent
activation energies unchanged, because the Boltzmann
distribution of a classical system factorizes into one term
that solely depends on momenta and another one that
solely depends on coordinates.
For the thermal treatment of the largest N = 8,788

sample, we proceeded as follows: The alloy was set up
on an FCC lattice, chemical identities and vacancies as-
signed randomly and the resulting configuration simu-
lated for 100 ns at the highest temperature of T =
1200 K. The following steps were then repeated each time
the temperature was set to a new value. First it was en-
sured that the instantaneous energy clearly fluctuated
about its (new) mean value. Towards this end, the en-
ergy measurements were passed through a low-frequency
filter, which was necessary to do, because the energy dis-
tribution functions obtained at “adjacent temperatures”
overlapped within a standard deviation. The equilibra-
tion times turned out a-posterio to be ten times the en-
ergy autocorrelation time τE for T clearly above T ∗ and
more than 100 τE in the vicinity of T ∗. The final config-
uration was then used as initial input for the observation
simulation at the same temperature (running over time
periods exceeding that of the relaxation by at least a
factor of two). It was also used as input for the next
lower temperature. Temperature jumps were 50 K at
T > 900 K and 25 K at smaller temperatures. Near T ∗

additional simulations were run to obtain better resolu-
tion, i.e., the temperature discretization was further re-
duced to 12.5 K and 8.5 K. For these additional runs,
configurations were sometimes taken from the nearest
higher or from the nearest lower temperature. This was
done to explore if there was any (systematic) deviation
on final results, e.g., in form of a hysteresis, depending
on whether configurations had been cooled or heated. In

addition, we occasionally checked if the OZ analysis con-
ducted on the configurations of the last half of the relax-
ation run would only necessitate a single pole to describe
the density oscillations at T > 12.5 Å.
Smaller systems, most notably with N = 1,000 atoms,

were also simulated. For the smaller systems, the number
of relaxation steps was set to five times those used in the
large system.
The structure was studied using the conventional ra-

dial distribution function g(r), which states the probabil-
ity density to find an atom a distance r from a given atom
in units of the number density ρ0, so that g(r → ∞) = 1.
The long-range density fluctuations are better analyzed
using a modified pair correlation function defined as

G(r) ≡ 4πr2ρ0{g(r)− 1}. (1)

Its sine transform is proportional to the static structure
factor [45].

III. RESULTS AND DISCUSSION

In our previous study [25], we established a (quasi-)
discontinuous change of the apparent activation energy
deduced from the volume and energy relaxation time
τV,E(T ) of our model alloy at T ∗ = 830 ± 2 K. Speci-
ficially, while τ(T ) was continuous, the apparent activa-
tion energy ∆EV,E ≡ ∂ ln τV,E(T )/∂β with β = 1/kBT
changed quite abruptly at T ∗. At the same time, it was
found that the peak and the intensity of the specific heat
cp(T ) at T ∗ decrease with increasing system size, pro-
viding evidence against the interpretation of the FST to
result from a simple competition between two phases.
In this paper, we present an analysis of the structural
changes accompanying the FST.

A. Temperature-induced structural changes in

local order

Abrupt changes in activation energies could, in princi-
ple, be induced by abrupt structural changes. The sim-
plest quantity defining structure is the mean number den-
sity, or, its inverse, the volume per atom, which we de-
note as Vat. Its temperature dependence is displayed in
Fig. 1. No discontinuities in V (T ) or in the thermal vol-
ume expansion coefficient α ≡ ∂ lnV/∂T become obvious
within the statistical uncertainty of the data. One imme-
diate consequence of this observation is that it should be
difficult to identify a meaningful relation between the so-
called “free volume” (whatever this quantity is precisely
meant to be) and the relaxation times in the considered
melt.
A change of the thermal expansion coefficient near the

FST had been reported earlier [27] from a molecular-
dynamics model similar to ours. We believe that this
conclusion was a consequence of the large cooling rates,
which were effectively 0.5 K/ps – similar to those used
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FIG. 1. Volume per atom Vat as a function of temperature T ,
which is normalized to our estimate for the FST-temperature
of T ∗ = 830 K. The straight line is a linear fit to the simulation
results.

in many other simulations of quenched BMGs [37]. This
moved the in-silico Tg to the immediate vicinity of T ∗.
In fact, with equilibration times of O(1 µs) near T ∗, we
only just managed to equilibrate the melts (using jumps
of 12.5 K near T ∗) at an effective cooling rate of approxi-
mately 107 K/s, while the former study equilibrated only
for 100 ps after temperature changes of 100 K were fol-
lowed by a 3.4 ns lasting temperature holding process.
T ∗ and Tg would no longer have been resolved from one
another with such large temperature jumps, even if the
relatively large relaxation times of 1 µs had been used.
We thus argue that the (very interesting and well con-
ducted!) study by Zhang et al. [27] investigates the FST
in a supercooled liquid in which Tg and T ∗ are close to
each other. In fact, when we initially equilibrated our
samples for shorter times, we also observed a change of
thermal expansion at T ∗.
We claim our system to be in thermal equilibrium,

which we ensured as follows: (i) getting similar numbers
for the specific heat from energy fluctuations and from
finite-difference of the internal energy, and (ii) reproduc-
ing the correct asymptotics of the long-range density fluc-
tuations (LRDF) in the melt. Usually, the LRDFs devi-
ate noticeably from the Ornstein-Zernicke asymptotics
during relaxation after a temperature reduction in the
melt, see also Eq. (3). Of course, deep in the glass, spe-
cific heats from fluctuations and finite difference match
up again. Likewise, the long-range structure in glasses
may reflect the fluctuations that existed in the equilib-
rium phase just above the glass transition [46]. How-
ever, while going through the glass transition, both tests
should produce results that deviate from those expected
for an equilibrium system.
A smoothly evolving density does not necessarily imply

a smoothly evolving local structure, since two distinct
structures may still have a similar density. The most
generic way to characterize local order is through the
radial distribution function g(r). The partial g(r) related

to Zr atoms is shown in Fig. 2 at a temperature just above
and another temperature just below T ∗. No changes can
be resolved in the shown range of r. A similar comment
applies to all other partial radial distribution functions
including the mixed ones, which, are not shown explicitly.
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FIG. 2. Zr-Zr radial distribution function for two tempera-
tures: one above (T = 850 K) and one below (T = 825 K)
FST temperature.

Another local quantity, which has recently enticed
some interest in the literature [28, 47–50], is the mean-
bond length a. In principle, a is difficult to define in
a liquid, since no reference positions of atoms exist as
in crystals. Even in crystals, there is overlap between
the nearest and the next-nearest neighbor peak in g(r)
making an accurate determination of instantaneous bond
lengths (which exceeds the ones associated with the crys-
tallographic positions due to thermal fluctuations normal
to the bond) from the analysis of g(r) alone inaccurate.
In order to better define local bonding and to discrimi-
nate between contributions from first and more distant
neighbors, Voronoi tessellation can be made. Recently,
we demonstrated that the mean bond lengths deduced
from Voronoi tessellations and that of a skewed-normal-
distribution (SND) analysis of the first peak of the radial
probability density defined as

Pr(r) ≡ 4πr2g(r)ρ0 (2)

match much more closely than those deduced from av-
eraging the bond length up to, say, the first minima in
either g(r) or P (r) (the integral over which stating the
average number of neighbors contained in the shell) [49].
An example of such a SND analysis is shown in the in-
set of Fig. 3, while the mean bond length deduced from
such analyses is shown in the main panel as a function
of temperature. The aZr−Zr(T ) relation for the smaller
N = 1,000 sample (not shown) was essentially indistin-
guishable from that of the N = 8,788 system, although
it had been cooled at a rate effectively five times smaller
than the large sample.
Fig. 3 reveals that the thermal expansion of the mean

bond length is considerably reduced in the strong phase
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FIG. 3. Main panel: Zr-Zr nearest-neighbor distance aZr−Zr

obtained a SND analysis. Straight lines are linear fits to the
simulation data above and below T

∗. The temperature is
normalized to our estimate for the FST-temperature of T ∗ =
830 K. Inset: Example of a SND analysis performed on the
first peak in the radial probability density Pr(r).

as compared to the fragile phase. This observation
supports previous interpretations of experimental X-ray
spectra obtained for a five-component BMG [12] having
a similar relative number of the dominating Zr and Cu
atoms as our model alloy. However, the bond expansion
coefficient remains positive also at T < T ∗, while previ-
ous works deducing bond lengths and neglecting overlap
effects of adjacent peaks in g(r) found it to be nega-
tive [28, 47, 48], see also the thorough discussion of this
issue in a recent review article [50].

At this point, we cannot yet explain convincingly how
a kink in a(T ) can have so little effect on V (T ). How-
ever, a first hint can be obtained from the simulations by
Zhang et al. [27], who conducted a careful Voronoi analy-
sis of a BMG forming melt. They found asymmetry in the
Voronoi polyhedra to suddenly increase above T ∗. Such
a structural change can lead to a change of mean bond
lengths without affecting volume. The simplest case to
illustrate this argument is to consider a perfect square
lattice, in which one atom is moved a small distance par-
allel to a diagonal. This preserves the total volume, but
increases the mean bond length.

B. Temperature-induced structural changes in

long-range order

Following results of Ornstein and Zernicke [39], den-
sity correlations in three-dimensional liquids (with suffi-
ciently quickly decaying direct atom-atom interactions)
can be described as a superposition of damped sinusoidal
functions [40] according to

G(r) =
∑

l

Gl r e
−r/ζl cos(klr − ϕl), (3)

where Gl is a parameter of unit inverse squared length, ζl
a correlation length, kl a wave number, and ϕl a phase.
The asymptotic behavior at large r is dominated by the
summand l having the largest correlation length ζl. In
non-monoatomic fluids, the asymptotic behavior is de-
scribed by the same complex wave number ql = kl+ i/ζl,
while the parameters Gl and ϕl must be indexed with
the respective atomic indices [51]. As mentioned in the
method section, we focus on G(r), see also Eq. (1). rather
than on g(r), because g(r) has poor resolution at large r.
Several radial distribution G(r) were measured for dif-

ferent atom pairs, i.e., Zr-Zr, Zr-Cu and Cu-Cu, in the
same way as presented exemplarily for Zr-Zr at two dif-
ferent temperatures in Fig. 4. Within (small) stochastic
uncertainties, the location of the complex wavenumbers
(or “poles”) ql = kl + i/ζl were identical for all consid-
ered correlation functions. Since statistics are best for
Zr-Zr in our alloy, it was decided to present results on
that atom pair in the following.
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FIG. 4. Main figure: Temperature-scaled G(r) for two tem-
peratures: one above and one below the FST. Inset: Fit
of G(r) at T = 850 K. Symbols represent simulation data
while the lines are produced using the asymptotically domi-
nant term on the r.h.s. of Eq. (3)

It can be observed that the (temperature-scaled) func-
tions G(r) shown in Fig. 3 superimpose within line width
up to a distance of, say, r ≈ 15 Å. However, they become
distinct at large separation, i.e., the decay length is ap-
parently slighly increased for the temperature just below
T ∗ as compared to that just above T ∗. A more detailed
analysis of the temperature dependence of the asymptotic
decay length ζ is shown next in Fig. 5.
In contrast to all other properties considered so far, the

density correlation length ζ changes discontinuously near
T ∗, when temperature is resolved with ∆T = 12.5 K.
Usually, we would have considered such a change to be
a clear indication of a first-order phase transformation,
which might potentially be smeared out. Since a previous
analysis of the specific heat revealed sub-extensivity [25],
we can exclude the possibility of a first-order thermo-
dynamic phase transformation and by extention exclude



5

0.9 1.0 1.1 1.2 1.3 1.4
T / T

*

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8
ζ 

/ Å

FIG. 5. Correlation length of the long-range density fluctua-
tions as a function of reduced temperature. Lines are fits to
data above and below T

∗.

the possibility of a true discontinuity of any property as
a function of temperature [52]. We therefore also argue
that the transition of ζ through the FST has to be con-
tinuous. Indeed, a more refined temperature grid near
T ∗ reveals the crossover to be continuous.
Our study is not the first one to report a sudden change

in the long-range density correlations at a given tem-
perature. Experiments on binary hard-sphere mixtures
revealed similar phenomena with changing composition
– rather than with temperature [53]. Statt et. al. [53]
demonstrated that this cross-over could be rationalized
without having to postulate a phase transition. If the
long-range asymptotics are described with a two-pole ap-
proximation to G(r), the imaginary part of the two poles
can be identical at the same temperature T ′ while their
real parts differ. Thus, one pole is asymptotically dom-
inant above T ′, while the other is dominant below T ′.
This scenario clearly does not apply to our system, as the
correlation length (i.e., the imaginary part of the complex
wavevector) is discontinuous while the real part is contin-
uous. For our system, the sudden change of G(r → ∞)
at T ∗ is not due to one pole becoming more important
than another one.

C. Density correlations during relaxation

While the analysis of non-equilibrium systems is not
part of this study, we wish to corroborate our claim
that the long-range density oscillations deviate notice-
ably from the Ornstein-Zernicke asymptotics during re-
laxation after a temperature reduction in the melt. To-
wards this end, we present data on G(r) at the lowest
temperature, namely T = 775 K, which was simulated,
but not deemed sufficiently equilibrated to be included
into the equilibrium data of this work.
The sampling for Fig. 6 was done as follows: The ini-

tial configuration was taken from T = 787.5 K and equi-

10 15 20 25
r /Å

-15

-10

-5

0

5

10

15

G
(r

) 
/ Å

-1

fitting range

t
relax

 = 700 ns

t
relax

 =   40 nsT = 775 K

T = 775 K

T = 850 K

FIG. 6. Example for a temperature-scaled G(r) deduced from
a sample that had only been partially equilibrated at T =
775 K, one time by 40 ns and one time by 700 ns. Data for an
equilibrated sample at T = 850 K, which is identical to the
one shown in the inset of Fig. 4, is included here to compare
the data quality. OZ fits cover the same range of distances as
in Fig. 4 (green lines for T = 775 K, red line for T = 850 K).
Note that the symbols only reflect every seven’th data point.
Other data points were skipped to facilitate the comparison
between OZ analysis (lines) and simulation data (circles).

librated at the new temperature over 40 ns and then for
another 660 ns. These numbers need to be set into re-
lation with the (estimated) energy correlation time of
15 ns, as deduced from the data presented in Fig. 2
of Ref. [25]. G(r) was averaged over the time intervals
40 ns < t < 80 ns and 700 ns < t < 740 ns, respectively.
The agreement between OZ asymptotics and measure-
ment turns out noticeably less satisfactory than in the
inset of Fig. 4, which had also been averaged over 40 ns,
however at T = 850 K. While symbols and fits over-
lap within symbol size in the range 10 Å < r < 25 Å
in the equilibrated T = 850 K sample (our admittedly
somewhat arbitrary extra criterion for equilibration to
be satisfactory), this is not the case for the T = 775 K
system. After the relatively short relaxation time of
trelax = 40 ns, which is still almost three times τE, the
OZ fit fails already at relatively short distances, while
the first clear discrepancies moves to larger values of r
for trelax = 700 ns, discregarding, of course, the devia-
tions between fit and MD data at small r, where density
correlations are not yet dominated by a single pole.
It may seem pedantic to judge the OZ analysis of the

trelax = 700 ns as a sign of insufficient equilibration, as
the green line is only marginally outside the symbol size
for r > 25 Å. However, we noticed that the values of ζ
deduced from fits of the given quality can lead to errors of
more than ∆ζ = O(0.2 Å). The observed need for exces-
sively large relaxation times is in line with the realization
by Coslovich et al. [54] that producing true equilibrium
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values of certain properties, e.g., for the specific heat, can
require equilibration times of more than 100 τE.

IV. CONCLUSIONS

Using molecular dynamics, we investigated structural
changes – particularly as characterized through the mod-
ified radial distribution function G(r) – at the fragile-to-
strong transition (FST) in a bulk-metallic-glass forming
melt. We identified a (quasi-) discontinuity in the density
correlation length ζ at the FST temperature T ∗, where
ζ abruptly increased by O(10%) upon a O(1%) temper-
ature change upon cooling. Above and below T ∗, an
O(1%) temperature increase induced only an O(0.3%)
decrease of ζ. Such a clear signal would usually have to
be interpreted as a first-order phase transition, because
a discontinuous change in G(r) implies a discontinuity in
(two-body) entropy [55]. What prevents us from drawing
this conclusion is that local changes in G(r) could not be
ascertained at the FST and more importantly that a for-
mer study found the specific heat to be sub-extensive [25].
The particle numbers beyond which the sub-

extensivity of the specific-heat peak of our system be-
comes small is N ≈ 200, which translates roughly into
a system size of 4 nm3. This volume is close to the
one of a cubic cell having a linear dimension equal to
three times the correlation length, in which case an atom
i sitting half way between another atom j and its first
periodic image j′ has a distance of 1.5 ζ to either one.
A possible – and certainly speculative – explanation of
the sub-extensivity of cp resulting from the G(r) analysis
is that a cluster with a radius of the liquid correlation
length behaves solid like. Only the coupling to a liquid
in a larger cell prevents or significantly reduces the ten-
dency of the central cluster to undergo a process akin of
a phase transformation. If this speculation were true, a
large peak in the specific-heat at the FST should go hand
in hand with a larger liquid correlation length ζ.
It also seems as though periodically repeated finite sys-

tems show a peak in the specific heat at the temperature
where the linear cell size L is slightly larger than twice
the correlation length ζ. In our previous work [25], the
N = 96 sample with 〈L〉 = 12.33 Å had a distinct maxi-
mum just below T ∗, where ζ ≈ 5.6 Å = 0.454〈L〉, while
an N = 48 sample with 〈L〉 = 9.74 Å revealed a max-
imum at T = 1,100 K, where ζ ≈ 4.4 Å = 0.452〈L〉.
In contrast, larger systems did not reveal any anomalies
at 1,100 K. Thus, a small system could appear to un-
dergo a (smeared-out) transformation simply because ζ
is roughly half the linear size of the simulation cell.
Finally, we wish to note that we believe that an

Ornstein-Zernicke based analysis can be beneficial for
the study of complex liquids and should actually be rou-
tinely used for this reason: first, it allows the simulator
to ensure that the system is large enough (i.e., the lin-
ear dimension of the cell should be ideally at least three
times the correlation length ζ) to be meaningful, but not
wastefully large so that – assuming a fixed computational
contingent – the smallest possible quenching rates can
be studied. Second, the Ornstein-Zernicke analysis is a
reliable tool to ensure that (meta-stable) equilibrium is
reached. After a short, but of course not too short, re-
laxation, we always observed clear differences between
the analytical asymptotic form and simulation results.
Agreement always necessitated long, at the lower tem-
perature painfully long, equilibration of the samples.
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