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As many other glass formers do, bulk-metallic-glass (BMG) forming melts undergo a fragile-to-
strong transition (FST), which is accompanied by a small but noticeable peak in the specific heat
cp. Because of this peak, the FST is sometimes interpreted as a smeared-out phase transformation.
Finite-size scaling analysis of peaks in cp allows the order of a phase transition to be accurately
determined. This motivated us to study cp along with structural and dynamical properties of a
ternary BMG former (Zr0.606Cu0.29Al0.104) using computer simulations, in which the system size was
varied in a well-controlled fashion. Our model system reproduces the typical, almost discontinuous
cross-over between non-Arrhenius to Arrhenius-type dynamics, which defines the FST. However,
in contrast to the expectation for any phase transformation, the larger the system the smaller the
peak in cp. Other properties also reveal a size dependence, which is difficult to reconcile with the
interpretation of the FST being a (smeared-out) phase transformation resulting from the competition
between local structures.

I. INTRODUCTION

A feature of many glass formers is the existence of
a transition temperature, at which the temperature-
dependent shear viscosity η(T ) and other dynamical
properties cross over from a high-temperature, non-
Arrhenius dependence to a low-temperature Arrhenius-
type dependence [1–11]. Thus, relaxation times and vis-
cosities are proportional to exp(−∆E/kBT ) with a con-
stant activation barrier at small temperatures T for so-
called “strong” liquids, where ∆E may still depend on
the property and pressure but not on T . In contrast,
in the high-temperature, “fragile” liquid, ∆E generally
increases noticeably with decreasing temperature. The
specific heat cp of fragile liquids tends to exceed 3kB per
atom – the value for any classical, harmonic solid – by
more than 50%, while strong liquids surpass it only by
15% or less [12].
The fragile-to-strong transition is an omnipresent phe-

nomenon not only in BMG formers [8, 9, 13, 14] but also
in other classes of glass-forming systems, for example, in
tetrahedral network liquids including traditional silicate
melts [7, 15–21]. FST-like phenomena have even been
observed outside thermal equilibrium, most notably in
metastable, supercooled water [22–30].
Multiple experimental [31, 32] and theoretical [7, 17,

33] works have attempted to unravel the nature of FSTs.
In loose analogy to phase transformations in crystalline
solids, it was proposed that the competition between dif-
ferent local structures could be at the root of FSTs. In
the simplest case, two competing local structures may
have a noticeable density difference [17, 22, 26, 34–36].
Generally, the precise nature of the structural differences
between possible competing phases has so far remained
rather vague in the context of FSTs. Despite few at-
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tempts [33], the concept of well-defined order parameters
has not yet been put forth to FSTs as successfully or as
rigorously as for phase transformations involving sym-
metry breaking [37]. Yet, the idea of competing phases
differing in structure has been proposed to apply to the
FST in BMG-forming melts [38] as well. It was even
argued that the FST in network glass formers [39] as
well as in BMG-forming melts [31] could be associated
with an underlying lambda transition, which is contin-
uous (i.e., second order) rather than discontinuous (i..e,
first order). The perhaps most-promising theory to de-
scribe the dynamical anomalies that occur at the FST
is the mode-coupling theory (MCT) [7, 40, 41], which is
not considered here, because it does not explain the ex-
istence of anomalies in thermal or structural properties
at the FST.
All of the above scenarios, except for MCT, imply that

the FST in liquids is thermodynamic in nature, or, that it
has at least a thermodynamic aspect akin of phase transi-
tions, as they occur, for example in crystals. If this were
true, the FST should be expected to become sharper with
increasing system size [37, 42]. The reason for this claim
is that thermal fluctuations make small systems “peek”
much more frequently from the more stable phase into the
less stable phase than large systems. This is because the
free-energy barriers to convert between the two phases
as well as their free-energy differences decrease with de-
creasing system size. In fact, a transition can only be
said to occur rigorously in the thermodynamic limit of
infinite particle numbers N → ∞.

There have been surprisingly few, perhaps even no
studies systematically addressing the question how sys-
tem size affects the FST of a given glass-forming melt.
In this work, we attempt to close this gap by running
molecular-dynamics (MD) simulations of an appropriate
model system. Originally, we meant to mimic the alloy
Zr0.585Cu0.156Ni0.128Al0.103Nb0.028, because it exhibits a
rather pronounced peak in cp near the FST [32]. How-
ever, due to the lack of reliable potentials for Ni and Nb
in this alloy, we replaced Ni and Nb atoms isoelectroni-
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cally with Cu and Al atoms, resulting in the composition
Zr0.606Cu0.29Al0.104. While this substitution – or per-
haps the imprecision of the employed potentials – lead
to a noticeable suppression of the peak, all mentioned,
generic features that commonly occur at FSTs remained
intact. Moreover, density, transition temperature, struc-
ture factors, etc. turned out close to the experimental
reference alloy, which is why we feel confident that the
simulation results are robust. Last but not least, our sim-
ulations reveal how Zr0.606Cu0.29Al0.104 would behave if
interactions were slightly different than they are in real-
ity. A general understanding of the FST should certainly
apply to such an alloy as well.
The remainder of this paper is organized as follows:

Model and methods are sketched in Sect. II. Sect. III
contains the results and some discussion. Conclusions
are drawn in Sect. IV.

II. MODEL AND METHODS

We model the alloy Zr0.606Cu0.29Al0.104 with an
embedded-atom potential, which was specifically
designed for Zr-Cu-Al ternaries and convincingly
tested [43]. Simulations are run in the NpT ensemble
using LAMMPS [44] with system sizes ranging from
N = 96 to N = 8788. Pressure is controlled with a
Nosé-Hoover chain [45] and temperature with a Langevin
thermostat [46].
In order to speed up the dynamics of the Zr and Cu

subsystems in the ternary alloy, the masses of both Zr
and Cu were replaced with that of the lightest atom in
the system, i.e., Al. This substitution only affects the
vibrational and attempt frequencies but leaves energy
barriers in the configurational space unchanged. Thus,
prefactors of relaxation times and viscosities are slightly
reduced, however, their temperature dependence remains
unaffected.
The specific heat, which is a central observable in this

work, is calculated in two different ways: (i) from the en-
thalpy fluctuations at a given temperature and (ii) from
taking the numerical derivative of the enthalpy H(T )
through finite differences. The two methods give similar
results when equilibration and observation times clearly
exceed the intrinsic relaxation time, but quickly deviate
from one another otherwise. In this work, we only report
the specific heat down to those temperatures, where both
methods give similar results.
Note that unlike Monte Carlo (MC), MD suffers from

(small) time-step discretization errors. This leads to mi-
nor systematic errors in the computation of cp, which fur-
thermore slightly differ between the two employed meth-
ods. We therefore ensured that the errors in cp remain
below 0.015 kB per atom, which corresponds to 1% of the
configurational specific heat of a harmonic solid. The rea-
son why we preferred MD over MC is that MC produces
intrinsically overdamped dynamics and that MD samples
phase space more efficiently as long as the trial moves in

MC consist only of local moves.

III. RESULTS AND DISCUSSION

A. Dynamical properties: Volume and energy

relaxation time

A systematic study of BMG-forming melts revealed
that the transition between a fragile and a strong liquid is
a general feature of these alloys [9] – and also widespread
in other classes of glass-forming melts [1–3, 7, 11]. The
cross-over from a non-Arrhenius to an Arrhenius-type
dependence at the FST is seen for different dynamic
properties at the same temperature. However, the ap-
parent activation barrier ∆E ≡ ∂ ln τ/∂β may depend
on the property τ , which can be, for example, the vol-
ume relaxation time (defined further below) or the shear
viscosity η. While experimentalists often measure the
shear viscosity, its computation is numerically demand-
ing, because the respective estimators require “expen-
sive” second-order derivatives of the potential energy to
be taken and statistics are tedious to acquire.
Since our simulations are run in the NpT -ensemble,

we measure the volume autocorrelation function (ACF)
instead. It is defined here as

CVV(t) ≡ 1−

〈

{V (t+ t′)− V (t′)}2
〉

〈δV 2〉
, (1)

where V (t′) is the volume at time t′. In Eq. (1), 〈. . . 〉 in-
dicates a time average in thermal equilibrium and

〈

δV 2
〉

the variance of the volume. The ACF is defined such
that CVV(∞) = 0 and CVV(0) = 1. This allows a mean
volume correlation time to be defined as

τV ≡

∫

∞

0

CVV(t)dt. (2)

This correlation time can also be associated with a relax-
ation time, because for a small temperature or pressure
change inducing a small change ∆V in the mean volume,
we observe that the relaxation obeys

〈V (t)− V (0)〉 = CVV(t) ·∆V, (3)

once t has exceeded a few inverse Debye frequencies. This
time, 〈. . . 〉 denotes a disorder average over different ran-
dom realizations. Since the integral is dominated by large
times, the minor differences between volume ACF and
volume relaxation function are not significant.
To make the integration in Eq. (2) numerically stable

at large times, we fit CVV(t) with a purely empiric, an-
alytic function and perfomed the integration over the fit
function rather than over the original data. We found

CVV(t) = a exp{−(t/τs)
β}+ b ln

t22 + t2

t21 + t2
. (4)
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to describe the volume ACF rather well, i.e., more ac-
curately with the same number of parameters than com-
monly used relaxation functions, such as two superim-
posed stretched exponentials. In Eq. (4), a, τs, β, b,
t1 and t2 are fit parameters. Examples of such fits are
shown in the inset of Fig. 1.
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FIG. 1. Main figure: Volume relaxation times τV as a function
of reduced inverse temperature T ∗/T . The FST temperature
T ∗ is estimated to be T ∗ = 830 K. The apparent activation
energy for the volume relaxation is ∆EV = 3.2 eV, which is
proportional to the slope of the black line. The τV(T ) curve
was fitted using Eq. (5). Inset: Simulation data on the volume
ACF at selected temperatures including fits of the N = 8788
data to Eq. (4), from which τV was deduced.

The main panel of Fig. 1 reveals that the apparent
activation barrier ∆EV is slightly dependent on T for
T > T ∗ but apparently independent of T for T < T ∗.
Moreover, ∆EV is (quasi-) discontinuous at T ∗, i.e., it is
smaller for the strong than for the fragile liquid. These
observations are consistent with simulation data on self-
diffusion coefficients in BMG-forming melts [10] and with
experimental data on shear viscosities of glass-forming
colloids [11]. To describe the dependence of relaxation
times on temperature, we adopted the commonly used
expression for the shear viscosity [47], which is referred to
as Mauro-Yue-Ellison-Gupta-Allan (MYEGA) equation.
This relation was derived from the Adams-Gibbs equa-
tion through a model for the configurational entropy. In
contrast to a simple, i.e., linear Taylor series expansion of
∆E, which would have been sufficient here, the MYEGA
equation has well-behaved properties in the limit of large
temperatures and does not diverge at any finite tempera-
ture. This was our motivation for its use. Here we adopt
the relation to relaxation times according to

ln (τV/τ
∞

V ) =
B T ∗

T
exp

(

C T ∗

T

)

, (5)

where τ∞V , B and C are empiric fit parameters. Fits of
the modified MYEGA equation to our simulations data
on volume relaxation times are shown on the main panel
of Fig. 1.

The analysis of the ACF and the deduced relaxation
times was repeated for the energy. Any function and ob-
servable was defined as above. For the precise definition,
the letter V for “volume” only needs to be replaced with
“E” for energy. Results are summarized in Fig. 2. We
note that only the potential energy was included in the
energy ACF, since the response of the kinetic energy is
quasi instantaneous and unrelated to the structural re-
laxation.
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FIG. 2. Main figure: Energy relaxation time τE as a function
of reduced inverse temperature T ∗/T . The FST temperature
T ∗ is estimated to be T ∗ = 830 K. The apparent activation
energy for the energy relaxation is ∆EE = 2.3 eV, which is
proportional to the slope of the black line. The τE(T ) curve
was fitted using Eq. (5). Inset: Simulation data on the energy
ACF at selected temperatures including fits of the N = 8788
data to Eq. (4), from which τE was deduced.

The FST temperature T ∗ is defined to be the tempera-
ture at which the relation for τ(T ) gives identical results
for the fragile and the strong liquid. Its value turned out
to be T ∗ = 830±2 K. Differences between the value of T ∗

deduced from the energy and the volume ACFs turned
out to be within the statistical uncertainties.

B. Thermodynamic properties: Specific heat

The FST in BMG-forming melts [31, 32] and other
glass-forming liquids [48] is often accompanied by a lo-
cal maximum in the specific heat. Such a peak may be
seen as an indication for a (smeared-out) thermodynamic
phase transition (TPT). A TPT occurs at a point, where
one phase (characterized, for example, by a [potentially
multi-component] order parameter and/or the density)
becomes more stable than another phase upon the change
of an intrinsic thermodynamic variable, such as, temper-
ature or pressure. TPTs are commonly classified accord-
ing to the way how extrinsic variables change at the TPT.
If one extrinsic thermodynamic variable changes discon-
tinuously, the transition is called first order, while it is
called a second-order transition when all extrinsic vari-
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ables change continuously. In the latter case, “suscepti-
bilities”, such as specific heat or compressibility, change
discontinuously at the TPT or show integrable singular-
ities without a δ-function contribution.
TPTs only occur in the thermodynamic limit (N →

∞). In any finite system, there is always a finite proba-
bility for the system to peek into an unstable phase, even
if this probability may be extremely small – and typically
exponentially suppressed with (a sub-linear power of) the
particle number N . Due to this exponential scaling, the
thermodynamic limit is essentially always reached in ex-
periments on bulk samples. This is different in computer
simulations, where N often leads to a noticeable smear-
ing out of the transition. The general rule is that the
larger N , the less smeared out is the transition. Irre-
spective of the order of the transition, singularities or
discontinuities occurring at a TPT are smeared out the
more the smaller N . Similar comments should apply for
a smeared-out TPT, for which correlation lengths do not
diverge as in true TPTs, as long as the volume (mean
size of the simulation cell) is less than the third power of
a correlation length [37, 42].
Before studying the size dependence of the specific

heat, we demonstrate in Fig. 3 that our largest studied
model system has a local maximum in cp. The form of
the peak is reminiscent of experimental data in BMGs —
see, e.g., Fig. 1(a) in Ref. 31 and Fig. 2(b) in Ref. 32 —
but also in other classes of glass-forming melts — see Fig.
2(b) in Ref. 12. On the longest simulation time scales
tmax
sim = 2 µs, which could be afforded for the largest sys-
tem, equilibration could no longer be guaranteed for tem-
peratures T < 0.9T ∗, at which point our in-silico sample
undergoes a glass transition, assuming an effective cool-
ing rate of ≈ 107 K/s at the smallest temperatures, i.e.,
1 µs simulation time for each temperature, separated by
roughly ∆T = 10 K. Note that the specific heat due to
the kinetic energy was included in Fig. 3, in order to
facilitate direct comparison to experimental data.
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FIG. 3. Specific heat cp of the N = 8788-system as a function
of reduced temperature T/T ∗. cp is scaled to the value that
a classical harmonic solid would have, i.e., to 3 kB per atom.

Small maxima in cp are observed for any studied sys-

tem size N . However, in contrast to what should be ex-
pected from drawing an analogy to thermodynamic phase
transitions, the maxima cmax

p decrease with increasing
system size. The specific numbers are reported in Fig. 4.
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FIG. 4. Maximum value of the specific heat cp at the FST as
a function of particle number N . cmax

p is scaled to the value
that a classical harmonic solid would have, i.e., to 3 kB per
atom.

The peak of cmax
p is particularly pronounced for the

smallest studied system considered here, i.e., for N = 96.
The number of cmax

p /ccrystp ≈ 2.3 means the configura-
tional specific heat (from which the excess specific heat
originates) is enhanced by a factor of 3.6 w.r.t. to a har-
monic solid. This can still be seen as a small number, yet,
the “jump” in internal energy after integration over the
peak is not entirely negligible, i.e., ∆U ≈ 28 kBK per
atom, while that for the largest studies system is only
∆U ≈ 4 kBK. Thus, the smaller systems show stronger
signs of a TPT than the larger ones, which is the oppo-
site trend of the generic features of TPTs. While we can-
not offer a good explanation of the phenomenon beyond
vague statements like the extensivity of entropy becom-
ing valid at larger particle numbers than the extensivity
of the internal energy, we feel that we can exclude the
possibility of a simple phase competition at the FST.

C. Structural properties: Radial distribution

function

To complete the analysis, we also investigated struc-
tural properties. Towards this end, the Zr-Zr radial dis-
tribution function (RDF) gZrZr(R) is shown in Fig. 5,
one time above and one time below T ∗. For a general
introduction to the structural evolution in BMG-forming
melts, we refer to a recent review article [49].
If there were a competition between two different lo-

cal structures, clear differences should appear between
the RDFs below and above T ∗. Changes in gZr−Zr(R)
for N ≥ 200 remain almost undetectable when cooling
from T = 850 K to T = 800 K. In fact, the RDFs super-
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FIG. 5. The Zr-Zr radial distribution gZrZr at T = 850 K
above (a) and at T = 800 K below (b) the transition temper-
ature T ∗

≈ 830 K.

impose within linewidth in the shown range when being
multiplied with temperature. Only the gZr−Zr(R) of the
smallest system changes in a noticeable way. Specifically
its second peak has more structure than the peaks of the
larger systems, as revealed in Fig. 5b. This observation
is again in contradiction to the expectations from TPTs,
where smaller systems have less structure in the (usually
but not always more ordered) low-temperature than in
the high-temperature phase.
We assured that the transition for the N = 96 system

did not (solely) arise due to a commensurability effect of
some preferred local structures with the periodic bound-
ary conditions of the cubic simulation cell. Towards this
end, additional simulations were run at T = 800 K in
which the N = 96 system was duplicated in each spatial
dimension. The extra features in the eightfold system dis-
appeared within less than 70 ns, while they had remained
stable in the original, small system for more than 10 µs.

IV. CONCLUSIONS

In this work, we studied the fragile-to-strong transi-
tion in a bulk-metallic-glass forming melt using molec-

ular dynamics. The size dependence of cp and of the
radial distribution function were analyzed, after the used
model had been shown to reproduce experimental results
for the cross over from a non-Arrhenius to an Arrhenius-
type dependence of dynamic properties and for the tem-
perature dependence of the specific heat. The FST was
found to be less sharp with increasing system size. In
particular, the small N = 96 system revealed a much
sharper peak in cp at the FST and more structure in
the Zr-Zr (and other not explicitly shown) RDFs below
T ∗ than the larger, N ≥ 200 systems. These observa-
tions contrast the expectations that arise from analogies
to usual thermodynamic phase transformations. In the
latter case, the specific heat increases with system size in
the vicinity of a thermodynamic phase transformation,
as long as the system volume is less than the third power
of the correlation length of the order parameter driving
the transition [37, 42].

An interesting observation was that the relatively
sharp transition in the N = 96 system did not (solely)
arise due to a potential commensurability or mismatch
of a particular, preferred phase with the cubic cell shape.
After duplicating the small, structured but yet equili-
brated system at T < T ∗ in all three spatial dimensions,
the internal energy per atom increased to the value taken
by the large systems and the detailed features of the RDF
distinguishing the N = 96 from the N ≥ 200 systems dis-
appeared within a relatively short time span. We note
that we made a similar observation for an even smaller
system, namely N = 48, at a temperature very close to
T = 1,100 K. As was the case for the N = 96 system
near T ∗, an apparent transformation of the small system
disappeared after doubling the linear system size along
all three spatial dimensions. At this higher temperature,
RDFs and specific heat of the eightfold system was es-
sentially indistinguishable from those of larger systems.

These observations make us conclude that volumes in
the studied BMG-forming melt can only be seen as rep-
resentative when they include more than O(50) atoms at
T = 1,100 K and more than O(100) atoms at T ∗ = 830 K.
These particle numbers, which should be expected to in-
crease with decreasing temperature, will certainly depend
on the system of interest and they could sometimes be
difficult to reach with ab initio methods. Anyone simu-
lating glass-forming melts in general and FSTs in partic-
ular, should surely confirm the considered volume to be
representative.

A theoretical understanding of the transition should
certainly reflect the sub-extensitivity of the specific heat
and latent heat of this and related (potentially even all
other?) BMG-forming melts at the FST. A simple de-
scription of two competing phases within a mean-field-
type picture does not appear to be consistent with our ob-
servations, even if the order parameter is allowed to have
more than one component. It might yet be interesting to
pursue the question what class of generalized Ginzburg-
Landau theory (potentially with negative square-gradient
corrections and higher-order stabilizing derivative terms)
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can reproduce the thermodynamic anomalies of (bulk-
metallic) glass-forming melts, even if the microscopic in-
terpretation of the order parameter remains unclear.

ACKNOWLEDGMENTS

We thank Dr. Moritz Stolpe, Dr. Isabella Gallino and
Prof. Ralf Busch for helpful discussions and the German
Research Science foundation (DFG) for financial support

through Grant No. Mu 1694/6-1. We also thank Jülich
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