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Using a theoretical approach and computer simulations, we calculate the normal stiffness K⊥ and
the transverse stiffness K‖ of the interface between two contacting isotropic solids with randomly
rough surfaces and Poisson ratio ν. The theoretical predictions for K⊥ agreed well with the sim-
ulations. Moreover, the theoretical result for the ratio K⊥/K‖ is (2 − ν)/(2 − 2ν), as predicted
by Mindlin for a single circular contact region. Lastly, we compare the theory to experimental
ultrasonic data.

I. INTRODUCTION

Contact mechanics between solid surfaces is the ba-
sis for understanding many tribological processes1–8 such
as friction, adhesion, wear and sealing. The two most
important properties in contact mechanics are the area
of real contact and the interfacial separation between
the solid surfaces. For non-adhesive contact and small
squeezing pressure, the (projected) contact area has been
found to depend linearly on the squeezing pressure9–11.

When two elastic solids with rough surfaces are
squeezed together, the solids will generally not make con-
tact everywhere in the apparent contact area, but only at
a distribution of asperity contact spots. The separation
u(x) between the surfaces will vary in a nearly random
way with the lateral coordinates x = (x, y) in the ap-
parent contact area. When the applied squeezing pres-
sure increases, the average surface separation u = 〈u(x)〉
will decrease, but in most situations it is not possible
to squeeze the solids into perfect contact correspond-
ing to u = 0. One of us has recently developed a the-
ory which predicts that, for randomly rough surfaces at
low squeezing pressures, p ∼ exp(−u/u0), where the ref-
erence length u0 depends on the nature of the surface
roughness but is independent of p2,12. From the relation
p = p(u) one can calculate the normal interfacial stiff-
ness K⊥ = −dp/du = p/u0. In this paper we will show
how one can obtain the transverse stiffness K‖. We note
that K⊥ and K‖ are very important for many applica-
tions, e.g., they determine the sound wave reflection from
interfaces. Its measurement provides one of the most im-
portant clues in quantitative nondestructive evaluation
on buried interfaces.

In a classical study, Mindlin13 calculated the normal
and transverse stiffness for the junction (with elliptic
shape) formed by squeezing together two elastic bod-
ies with quadratic surface profiles. For the special case
of an elastic ball squeezed against a flat surface (giving
a circular contact region) he found that the ratio be-
tween the normal and transverse stiffness is K⊥/K‖ =
(2 − ν)/(2 − 2ν), where ν is the Poisson ratio. Any the-
ory which treat the contact regions between two elas-
tic solids as (uncoupled) circular Hertzian contacts, will
give the same result for K⊥/K‖ as obtained by Mindlin.

However, it is now known that neglecting the long-range
elastic coupling between contact patches is a very severe
approximation14–16. Such theories neglect that when an
asperity is pushed downwards somewhere, the elastic de-
formation field extends a long distance away from the as-
perity, which will influence the contact involving other as-
perities further away17. The most prominent example is
the Greenwood-Williamson (GW) model, in which rough
surfaces are approximated by spherical bumps of equal
radii. In the GW model the relation between the squeez-
ing pressure and the (average) interfacial separation is
Gaussian-like10,15, p ∼ exp(−bu2) (where b is a constant
determined by the nature of the roughness) rather than
the (accurate) exponential relation12 p ∼ exp(−u/u0).
The GW theory makes the same error in the prediction
of K‖ as for K⊥.

Experimentally, K⊥/K‖ is approximately constant for

contacts formed by rough solids18. This observation
does not have to result from single-asperity mechanics,
but may as well be due to the self-affine properties of
most surface topographies, which result (for small load)
in a pressure distribution that remains unchanged with
load9,19–21, and produces fractal-like boundary lines22–24,
see Fig. 1. These boundaries differ from the circular (or
elliptical) contact regions assumed in GW. Thus, both
the normal and tangential stress in the contact regions
will be much more complex than predicted by the Hertz
and Mindlin theories. This is why one should try to avoid
to directly involve the nature of the contact regions when
studying contact mechanics problems, such as the contact
stiffness or the heat or electric contact resistance25. For
all these reasons it remains unanswered why K⊥/K‖ is
constant and what the value of this ratio is, when theo-
ries or simulations are used that properly reflect the elas-
tic coupling between asperities. In the contact mechanics
model of Persson24–29, which we use in the present study,
long-range elastic coupling16 is included.

Another important discovery is that for elastic contact,
the contact regions observed at atomic resolution may be
just a few atoms wide, i.e., the diameter of the contact
regions may be of the order of ∼ 1 nm20,31,32. The stress
acting in such small contact regions may be very differ-
ent from the stress acting in macroscopic contact regions.
However, for macroscopic objects the contact stiffness is



FIG. 1: The contact region (black area) between two elas-
tic solids observed at low (left) and high (right) magnifica-
tion. For surfaces which have fractal-like roughness all the
way down to the atomic length scale, the contact at the
highest magnification (atomic resolution) typically consists of
nanometer-sized clusters (right). The result in the picture was
obtained using Molecular Dynamics (MD), but since there
is no natural length scale in elastic continuum mechanics, it
could also correspond to the contact between two macroscopic
elastic solids. The contact stiffness mainly depends on the
long-wavelength roughness, and in general can be calculated
accurately from the nature of the contact observed at low
magnification (left). Adapted from Ref. 24.

usually determined mainly by the nature of the contact
observed at much lower magnification (i.e., larger length
scales), and is therefore not sensitive to the atomistic
nature of the contact, and can be accurately calculated
using continuum mechanics. Finally, we note that for
elastically hard solids the area of real (atomic) contact
A may be a very small fraction of the nominal or ap-
parent contact area A0, even at high nominal squeezing
pressures7,19.
The outline of the paper is as follows: In Sec. IIA we

briefly review the theory for K⊥. In Sec. IIB we derive
an expression for the asperity induced elastic energy due
to an applied shear stress τ . In Sec. IIC we derive an
expression for K⊥/K‖, and an alternative derivation is
presented in Sec. IID. In Sec. III we present numerical
results for K⊥/K‖ and compare them to the theoretical
prediction. In Sec. IV we review experimental results for
K⊥/K‖, and compare it to the theory prediction. Sec.
V contains the summary and conclusion.

II. THEORY

A. Normal stiffness K⊥

The theory presented in this paper for K⊥ and K‖ de-
pends on the elastic energy (per unit area) U⊥ and U‖

stored in the asperity contact regions as a result of the
applied squeezing pressure p and applied shear stress τ
(see Fig. 2). The applied stresses result in a normal and
transverse displacement of the (average) position of the
bottom surface of the elastic block. We denote the (av-
erage) normal separation of the surfaces at the interface
by u, and the (average) transverse shift by v.

Consider first the frictionless contact between an elas-
tic solid (elastic modulus E and Poisson ratio ν) with a
flat surface and a rigid, randomly rough surface with the
surface height profile z = h(x). The separation between
the average surface plane of the block and the average
surface plane of the substrate (see Fig. 2) is denoted
by u with u ≥ 0. When the applied squeezing force p
increases, the separation between the surfaces at the in-
terface will decrease, and we can consider p = p(u) as
a function of u. The elastic energy U⊥(u) stored (per
unit surface area) in the substrate asperity–elastic block
contact regions must be equal to the work done by the
external pressure p in displacing the lower surface of the
block towards the substrate. Thus

p(u) = −
dU⊥

du
. (1)

For elastic solids (1) is exact12,33.
Theory shows that with increasing p existing contact

areas grow and new contact areas form in such a way
that, in the thermodynamic limit (infinitely-large sys-
tem), the interfacial stress distribution, and also the
size distribution of contact spots, are independent of the
squeezing pressure as long as these distributions are nor-
malized to the real contact area A19. From this follows
immediately that A varies linearly with the squeezing
force pA0. Thus, the just-mentioned distribution func-
tions will scale linearly with p when they are normalized
to A0 (the apparent contact area) rather than to A. The
same linear scaling will be found for any quantity that
derives from the stress distributions within the vicinity
of true asperity contact, such as the elastic energy U⊥

stored there. (Note that the elastic energy density is
more localized than stress or strain fields are, because it
is proportional to their squares, see also Fig. 2.) Thus
at small loads, U⊥(u) = u0p(u), where u0 must be of
dimension length. Equation (1) then takes the form

p(u) = −u0
dp

du
, (2)

and the normal stiffness becomes

K⊥ = −
dp

du
=

p

u0
, (3)

i.e., the stiffness is proportional to the nominal squeezing
pressure p. Note also that from equation (2) we get

p(u) ∼ e−u/u0 . (4)

Further analysis, see Ref. 12, shows that u0 is of order the
root-mean-square roughness amplitude, but (as assumed
above) independent of p.
In Ref. 34 (see also35) we have presented experimental

results to test the theory predictions. We studied the
squeezing of a rubber block against an asphalt road sur-
face and found good agreement between the theory [Eq.
(4)] and the experiments.
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FIG. 2: Snapshot of an elastic block squeezed against a rigid
rough substrate as obtained in a small, two-dimensional, all-
atom simulation. The separation between the average plane
of the substrate and the average plane of the lower surface
of the block is denoted by u, i.e., the average value of ulocal

shown in the figure. The elastic energy is stored in the block
in the vicinity of the asperity contact regions. Normal and
transverse directions have been represented by different scales
as indicated in the figure. The lattice constant a gives the
spacing between two adjacent atoms in the elastic block.

B. Elastic energies U⊥ and U‖

Consider the contact between two elastic solids with
rough surfaces. We can write the elastic energy (per
unit area) induced by the normal stress and stored in
the vicinity of the asperity contact regions as

U⊥ =
1

2A0

∫

d2x 〈σz(x)uz(x)〉, (5)

where A0 is the nominal contact area, and where uz(x)
and σz(x) are the normal displacement and the normal
stress, respectively. We write

σz(x) =

∫

d2q σz(q)e
iq·x, (6)

and similar for uz(x). Substituting this in (5) gives

U⊥ =
(2π)2

2A0

∫

d2q 〈σz(q)uz(−q)〉, (7)

or using (see Appendix A)

uz(q) =Mzz(q)σz(q) = (ρc2T q)
−1(1− ν)σz(q), (8)

we get

U⊥ =
(2π)2

2A0

1− ν

ρc2T

∫

d2q q−1〈|σz(q)|
2〉. (9)

It is interesting to note that in most cases the largest
contribution to the elastic energy arises from the long-
wavelength roughness components. This is clear if we

note that for self affine fractal surfaces characterized by
the Hurst exponent H (or the fractal dimension Df =
3−H) we have the (probably exact) scaling relation14,16

〈|σz(q)|
2〉 ∼ q−(1+H). Using this relation in (9) gives

U⊥ ∼

∫ q1

q0

dq q−(1+H) ∼ q−H
0 − q−H

1 .

Since 0 < H < 1 (and typically H ≈ 0.8) the elastic
energy is dominated by the most long-wavelength rough-
ness components (say by the last decade of roughness
wavelength, corresponding to the range of wavevectors
q0 < q < 10q0). Since the stiffness K⊥ is determined
by the elastic energy (see Sec. IIA) the same conclu-
sion holds for the stiffness. The same conclusion can be
derived by studying how different surface roughness com-
ponents contribute to the length u0 (see Ref. 25 for such
an analysis).
Let us now apply a shear stress to the block with the

force vector pointing along the x-axis. This will induce
an elastic energy (per unit area) stored in the asperity
contact regions and given by

U‖ =
1

2A0

∫

d2x 〈σx(x)ux(x)〉. (10)

We have (see Appendix A)

ux(q) =Mxx(q)σx(q) = (ρc2T q)
−1[1− ν + νcos2φ]σx(q),

(11)
where φ is the angle between x̂ and e = ẑ× q̂. Substitut-
ing this in (10) gives

U‖ =
(2π)2

2A0

1

ρc2T

∫

d2q q−1[1− ν + νcos2φ]〈|σx(q)|
2〉.

(12)
For a single circular contact region (Mindlin case), the
stress in the contact region depends only on the distance
r from the center of the contact region, so in this case
σx(q) depends only on q = |q|. We expect this to hold
to a good approximation in the present case and we will
assume that 〈|σx(q)|

2〉 depends only on q. In this case we
can replace the term cos2φ in (10) by its angular average
1/2. This gives

U‖ =
(2π)2

2A0

2− ν

2ρc2T

∫

d2q q−1〈|σx(q)|
2〉. (13)

We expect 〈|σx(q)|
2〉 ∼ q−(1+H) to obey the same scal-

ing as for the perpendicular stress. Thus U‖ and hence
K‖ will, just like for U⊥ and K⊥, be dominated by the
most long-wavelength surface roughness components, i.e.,
short wavelength (e.g., nanometer) roughness is irrele-
vant. This also implies that plastic yield and adhesion
occurring in the contact regions observed at very high
magnification (i.e., at short length-scale) may have a neg-
ligible influence on the contact stiffness in most cases. A
similar conclusion was drawn in Ref. 25 for the heat and
electric contact resistance.



C. Transverse stiffness K‖

Consider (11) and assume we can replace cos2φ with
its angular average 1/2. We get

ux(q) = (2ρc2T q)
−1(2 − ν)σx(q), (14)

which has the same form (8) except for a numerical pref-
actor. Thus one may be tempted to infer that the dis-
placement and stress fields of the two contact mechanics
problems are proportional to each other. However, this
is not the case since the two problems involves different
boundary conditions: the parallel displacement ux(x) is
continuous in the contact regions (since we assume no-slip
boundary condition) while uz(x) in the contact regions
depend on the gap-function h(x). In particular if the
substrate is rigid, then ux(x) = 0 and uz(x) = h(x)
in the asperity contact regions. That the solution of
the two problems differ is, of course, well known for the
Mindlin problem of a single circular contact region where
σz ∼ [1− (r/r0)

2]1/2 while σx ∼ [1− (r/r0)
2]−1/2. How-

ever, as we now show, one can remove this difference
in the boundary conditions by reformulating the prob-
lem above by using a simple observation first applied by
Barber36 (but here we follow the presentation given in
Ref. 25) to the related problem of the electric (or ther-
mal) contact resistance between elastic solids with ran-
domly rough surfaces.
Note that uz and σz depend on the normal stress or

pressure p applied to the upper surface of the block. Al-
ternatively, since the average separation u between the
surfaces at the interface decreases monotonically with in-
creasing p we can consider uz and σz to depend paramet-
rically on u. Let us take the derivative of (8) with respect
to u. Denoting duz/du = u′z and similar for σz gives

u′z(q) = (ρc2T q)
−1(1− ν)σ′

z(q), (15)

with the boundary conditions that σ′
z(x) vanish in the

non-contact region, while u′z(x) vanish in the contact re-
gions (since h(x) is independent of u). In addition the
condition

1

A0

∫

d2x σz(x) = p,

takes the form

1

A0

∫

d2x σ′
z(x) = p′.

If we denote ψz = σ′
z/p

′ we can write

1

A0

∫

d2x ψz(x) = 1,

and (15) takes the form

φz(q) = q−1ψz(q), (16)

where

φz = ρc2T (1− ν)−1u′z/p
′. (17)

Note that ux and σx depend on the tangential stress
τ applied to the upper surface of the block and obey
equation (14). The relevant boundary condition are that
σx(x) vanish in the non-contact region while ux(x) vanish
in the contact regions (since ux(x) = 0 in the contact
area; no-slip boundary condition). In addition we must
have

1

A0

∫

d2x σx(x) = τ,

If we denote ψx = σx/τ we can write

1

A0

∫

d2x ψx(x) = 1,

and (14) takes the form

φx(q) = q−1ψx(q), (18)

where

φx = 2ρc2T (2 − ν)−1ux/τ. (19)

Note that the systems of equations for (φz , ψz) and
(φx, ψx) are identical and therefore φz = φx and ψz = ψx.
Using that φz = φx from (17) and (19) we get

u′z(x) =
2(1− ν)

2− ν

p′

τ
ux(x). (20)

Next note that
∫

d2x u′z(x) =
d

du

∫

d2x uz(x) =
d

du
A0u = A0,

while
∫

d2x ux(x) = A0v,

Thus, integrating (20) over x gives

A0 =
2(1− ν)

2− ν

p′

τ
A0v, (21)

or using that K‖v = τ and p′ = K⊥ we get

K⊥

K‖
=

2− ν

2− 2ν
, (22)

which is the same as the Mindlin result for a single cir-
cular contact region.

D. Alternative derivation of K‖

In Sec. IIB we derived the following expression for
the elastic energy (per unit area) induced by the normal
stress and stored in the vicinity of the asperity contact
regions:

U⊥ =
(2π)2

2A0

1− ν

ρc2T

∫

d2q q−1〈|σz(q)|
2〉. (23)



Similarly, the elastic energy induced by a parallel stress

U‖ ≈
(2π)2

2A0

2− ν

2ρc2T

∫

d2q q−1〈|σx(q)|
2〉. (24)

Note that σz(q) and σx(q) depends on the spatial vari-
ation of σz(x) and σx(x), respectively. There are two con-
tributions to the spatial dependence of the stress, namely
one derived from the variation of the stress within a con-
tact region, which of course differ for σz(x) and σx(x),
and one derived from the fact that the stress is non-
vanishing only in the area of real contact, and this spatial
dependence is the same for σz(x) and σx(x). If the lat-
ter contribution would dominate in the integrals (23) and
(24) one would expect

∫

d2q q−1 〈|σx(q)|
2〉

τ2
≈

∫

d2q q−1 〈|σz(q)|
2〉

p2
. (25)

which effectively would mean that

σx(x)/τ ≈ σz(x)/p, (26)

where τ is the average shear stress and p the average
normal stress30. However, the correct result (for small
load, where the area of real contact is proportional to
the load) is

∫

d2q q−1 〈|σx(q)|
2〉

τ2
≈

1

2

∫

d2q q−1 〈|σz(q)|
2〉

p2
. (27)

Using (24) and (27) we get

U‖ =
(2π)2

2A0

2− ν

4ρc2T

(

τ

p

)2 ∫

d2q q−1〈|σz(q)|
2〉 (28)

Comparing this to (23) gives

U‖ =
2− ν

4(1− ν)

(

τ

p

)2

U⊥ (29)

We can also write

U‖ =
1

2
K‖v

2 =
1

2

τ2

K‖
(30)

Using (29) and (30) and that p/u0 = K⊥ and U⊥ = u0p
we get

K⊥

K‖
=

2− ν

2− 2ν
. (31)

III. SIMULATIONS

A. Method

To assert the validity of the theory presented in
this work, numerical simulations were performed us-
ing the Green’s function molecular dynamics (GFMD)

technique37. In GFMD, all the degrees of freedom related
to the atoms that do not belong to the bottom surface of
the elastic block are integrated out. Such integration of
degrees of freedom yields a two-dimensional elastic layer
with renormalized atomic forces that is equivalent to the
original three-dimensional elastic block. By equivalent
we imply that the GFMD layer deforms identically to
the bottom surface of the original three-dimensional elas-
tic block under the action of an external squeezing pres-
sure. Thus, lowering the dimensionality of the problem
via GFMD allows one to simulate larger contact inter-
faces which represent better the continuum limit.

The interaction of the manifold atoms with the walls is
modeled via a hard wall potential. Whenever the atoms
have violated the constraint that they have to remain
above the substrate at the end of a molecular dynamics
time step, they are artificially moved right on top of the
substrate and their velocity is zeroed. This is done un-
til convergence is achieved. The force between manifold
atom and wall is then determined indirectly by calculat-
ing the force within the manifold. These two forces must
have the same magnitude but opposite sign in mechanical
equilibrium.

In the GFMD simulations presented here, we cre-
ated randomly rough surfaces using a Fourier filtering
algorithm14. The surfaces satisfied the small-slope ap-
proximation with rms-roughness slope of ≈ 0.032. Differ-
ent values of the Hurst exponents were taken into account
i.e., H = 0.3, 0.5, 0.8. The system size was kept fixed at
a default size N = 2048 × 2048 and a hard cutoff at a
default value of qc = 64 (in units of 2π/L, where L is the
linear dimension of the simulation cell) was imposed in
order to reach the continuum limit reasonably well (the
shortest wavelength divided by the lattice spacing equals
32). We did not explore roughness down to the smallest
scales, because our goal was to test the validity of the
solutions of a continuum theory rather than to ascertain
potential effects due to atomic-scale roughness. A rep-
resentative plot showing one of our surface topographies
and its height-height correlation function is portrait in
Fig. 3.

In order to ensure that our GFMD methodology is
properly implemented for the particular problem con-
cerning us here, we verified that our GFMD simulations
could reproduce the analytical prediction of Mindlin for
a single spherical Hertzian tip13. The elastic manifold
employed in such a test had Young modulus E = 2.5
and Poisson ratio ν = 1/4 which gives a Mindlin stiff-
ness ratio K⊥/K‖ = (2 − ν)/(2 − 2ν) = 7/6. As ex-
pected, the previous analytical prediction was properly
reproduced by the numerical calculations. For system
sizes of N = 256×256, 512×512 and 1024×1024 we ob-
tained K⊥/K‖ = 1.1365, 1.1421 and 1.1512, respectively,
all in good agreement with the K⊥/K‖ = 7/6 ≈ 1.1666
value stated by the theory. The difference between the
computed stiffness ratio and the exact one seems to dis-
appear according to the power law N−1/4. We will use
this scaling later in our simulations of rough solids. Of
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FIG. 3: Graphical representation of a rough topography with
Hurst exponent H = 0.3 and its corresponding height-height
correlation function C(q) = 〈|h(q)|2〉 in Fourier space. The
surface topography was created using a Fourier filtering tech-
nique and a hard cutoff qc = 64 was imposed to it in Fourier
space (in units of 2π/L,where L is the linear dimension of
the simulation cell). The continuous line represents the ideal
algebraic scaling expected for the height-height correlation
function of such a surface.

course, there the prefactor for the corrections will be dis-
tinctly larger, because each individual contact patch will
be much less resolved than in the Hertzian test case.
Next, a second (cross-validation) test was done and

compared to previous molecular dynamics simulations
that had been performed by some of us38,39 using the
smart block method on smaller surfaces and at a fixed
value (H = 0.8) of the Hurst exponent. For this com-
parison we replaced the Green’s function for elastically
isotropic solids with those for cubic systems that would
have been relevant for the older simulations. In these
simulations we (re-)validated the exponential functional
form relating squeezing pressure and average interfacial
separation in rough contacts, derived in Ref. 12. All
simulations shown in the following had been based on
isotropic Green’s function, because the theory has been
specifically developed for isotropic solids.

B. Results

In order to calculate the relation p(u) between the pres-
sure p and the interfacial separation u, we need an ac-
curate expression for the elastic energy stored in the as-

perity contact region. The elastic energy U⊥ = Uel is
written as16,27,40

Uel =
EA0

4(1− ν2)

∫

d2q qC(q)W (q) (32)

For complete contact W (q) = 1 rendering an exact re-
sult for the expression of the energy above. In Ref. 40
it was argued that W (q) = P (q) = A(ζ)/A0 is the rel-
ative contact area when the interface is studied at the
magnification ζ = q/q0. The qualitative explanation is
that the solids will mainly deform in the regions where
they make contact, thus, most of the elastic energy will
arise from the contact regions. Using W (q) = P (q) as-
sumes that the energy (per unit area) in the asperity
contact regions is just the average elastic energy (per
unit area) if complete contact would occur. This does
not take into account that the regions where no contact
occurs are those regions where most elastic energy (per
unit area) would be stored if complete contact would oc-
cur. Hence we expect smaller stored elastic energy (per
unit area) in the asperity contact regions than obtained
using W (q) = P (q). In Ref. 16,26 we found that using

W (q) = P (q)[γ + (1 − γ)P 2(q)], (33)

with γ ≈ 0.4 gives good agreement between theory and
MD-simulations for H = 0.8. Note that for complete
contact P (q) = 1 and hence W (q) = 1 which reduces
to the exact result for the elastic energy in the limit of
complete contact. In the limit of small contact, P (q) <<
1, then W (q) ≈ γP (q) and with γ ≈ 0.4 this result in an
elastic energy which is a factor of 0.4 smaller than would
result if the elastic energy (per unit area) stored in the
contact regions would be just the average elastic energy
(per unit area) for complete contact.
Using the elastic energy expressions given by (32) and

(33), for small squeezing pressures, results in a relation
p ∼ exp(−u/u0), where u0 ∼ γ. The area of real con-
tact for small load (where A ∼ p) also turns out to be
a function of γ and in Ref. 16 we have shown that it
scales as γ−1/2. This dependence of A on γ improves the
agreement between theory and numerically accurate sim-
ulations, which typically gave a contact area somewhat
larger than predicted by theory with γ = 1. Thus for
H = 0.8 the improved elastic energy given by (32) and
(33) gives good agreement between theory and computer
simulations both for the contact area and the interfacial
separation. Here we show that using γ = 0.45 gives good
agreement between theory and computer simulations also
for H = 0.3 and H = 0.5.
Comparison between the GFMD data and the theo-

retical predictions is displayed in Fig. 4. As shown, the
match between the simulated and predicted behavior is
very good. Theory and simulations of rough contacts
agreed in the functional form that describes the applied
pressure p as a function of the average separation u over
a wide range of pressure values and roughness exponents.
Recently, a value of γ = 0.48 has been independently re-
ported by Akarapu et al.43 after analyzing a variety of



rough contacts with roughness down to the atomic scale,
variable Poisson ratio and H = 0.5 and 0.8.
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FIG. 4: Relation between applied squeezing pressure p and
average interfacial separation u: Comparison between the
GFMD simulation data (for N = 2048 × 2048 and qc = 64)
and analytical predictions for surfaces with distinct values of
the Hurst exponent.

Similarly, the theoretical predictions and the numerical
outcome conveyed in describing the dependency of the
fractional contact area A/A0 as a function of the external
pressure. Support for the latter claim is provided in Fig.
5. The results of the aforementioned calculations served
to strengthen our confidence in the correct application of
GFMD when measuring normal and transverse stiffness
ratios in rough contacts.
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FIG. 5: Relative contact area A/A0 as a function of the ap-
plied pressure p for the surfaces corresponding to the results
presented in Fig. 4.

For the calculation of the K⊥/K‖ ratio in rough con-
tacts we performed simulations in which the GFMD layer
resolution, the surface cutoff, the random seed, the pres-
sure, and the rms-slope of the surfaces were varied. How-
ever, the elastic properties of the GFMD layer remained
unaltered. Furthermore, two distinct ways of estimating
K⊥ were considered. In the first one, K⊥ was ascertained
from the analytical slope of the pressure vs average in-
terfacial separation plots shown in Fig.4. In the second
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FIG. 6: Stiffness ratio K⊥/K‖ as a function of the inverse
square root of the linear system size N for different cut-off
wavenumbers qc and Hurst roughness exponents H . Errors
are about 0.1 for each measurement.

approach K⊥ was computed by taking the finite differ-
ences ratio ∆p/∆u in the limit of small ∆p at fixed con-
tact area. We did not find noticeable differences between
using either one of the two approaches. Our numerical
findings followed closely the analytical predictions of the
theory introduced in the past sections. Results are shown
in Fig. 6. One can see that the numerical estimates seem
to be somewhat larger than the Mindlin ratio, however,
only by∼ 12%. These calculations are plagued with large
numerical scatter so that a precise determination of the
K⊥/K‖ ratio is rather difficult.

IV. DISCUSSION OF ULTRA-SONIC DATA

The interfacial stiffness can be measured using ultra-
sonic wave interaction. In these experiments ultrasonic
sound waves are sent onto the interface under study.
From the measured shear and longitudinal reflection and
transmission coefficients one can deduce K⊥ and K‖, as-
suming that the wavelength λ of the sound waves is much
larger than the size and typical distance between the as-
perity contact regions. (More exactly, λ must be large
compared to λ0, where q0 = 2π/λ0 is the roll-off wavevec-
tor of the surface roughness power spectrum.) The reason
the reflection factor depends on K⊥ and K‖ is that these
quantities enters in the boundary conditions necessary
in solving the sound wave propagation at the interface.
These boundary condition consist of the continuity of the
tangential stress σzx and the normal stress σzz , while the
displacement is discontinuous and determined by

σzz = K⊥[uz(0
+)− uz(0

−)]

σzx = K‖[ux(0
+)− ux(0

−)]



where u(0+) and u(0−) are the displacement just above
and just below the contacting interface, respectively.
A large number of ultrasonic measurements of K⊥ and

K‖ have been presented in the literature. For example,

Baltazar et al41 studied the stiffness of the interface be-
tween two aluminum blocks with randomly rough sur-
faces prepared by sandpaper grinding and by sandblast-
ing. The root-mean-square roughness was in the range of
0.2− 0.7 µm. The ratio K‖/K⊥ for low nominal contact
pressure was 0.42± 0.03 which should be compared with
the theory prediction [Eq. (17) with ν = 0.33]: 0.80.
A summary of some earlier ultrasonic measurements of
K‖/K⊥ was presented by Nagy42 which we reproduce
below:
Wooldridge, steel surfaces (root-mean-square rough-

ness 0.2 µm):

K‖/K⊥(exp) = 0.38± 0.1, K‖/K⊥(theory) = 0.84.

Pyrak-Nolte et al, fractured granite surfaces:

0.40(exp), 0.84(theory).

Yoshioka et al, granite surfaces (2− 10 µm):

0.32± 0.05(exp), 0.84(theory).

Pyrak-Nolte et al, steel surfaces:

0.26(exp), 0.84(theory).

Nagy et al, aluminium surfaces (0.5 µm):

0.38(exp), 0.80(theory).

Hsu et al, Poly(methyl methacrylate):

0.45± 0.1(exp), 0.80(theory).

It is clear from these data that on the average the
experimental results for K‖/K⊥ is about half of what is
predicted by theory.

V. SUMMARY AND CONCLUSION

In this paper we have extended Persson’s contact me-
chanics theory to the calculation of the lateral stiffness
K‖ of a mechanical interface formed by two solids with
rough surfaces. This was done by assuming that no slip
occurs at the true contact points under a small exter-
nal shear stress. The problem of finding the dependence

between lateral displacement and shear stress was then
mapped onto a similar dependence for normal displace-
ment and normal stress, which, however, required a re-
formulation of the boundary conditions. The resulting
quotient of K‖ and the lateral stiffness K⊥ turned out
to be K‖/K⊥ = (2− 2ν)/(2− ν), where ν is the Poisson
ratio. This result is identical to that found by Mindlin
for spherical contacts. As the theory for K⊥ had al-
ready been developed previously and shown to exhibit
the correct linear dependence on load, and exponential
dependence on the interfacial separation, the present pa-
per implicitly contains a derivation of how K‖ depends
on these variables as well. The presented theory gives in-
formation about which length-scales are most important
for the determination of the contact stiffness, and can be
generalized in various ways, e.g., to include adhesion38.

The theoretical results have been tested with large-
scale molecular dynamics simulations. First, we have
shown that the theory for the load-displacement relation
works well for different Hurst roughness exponents, com-
plimenting already existing experimental and numerical
evidence. The present confirmation of the theory on K⊥

has the advantage that our elastic solid was isotropic (as
opposed to cubic in previous simulations), and that the
assumptions made in the model, such as hard wall in-
teractions, no adhesion, exactly known height profiles,
linear elasticity, etc., are better realized in the simula-
tions than in experiment. Next, we computed the stiff-
ness ratio. This calculation turned out to be plagued
by large numerical scatter and size effects. However,
most results were close to the theoretical predictions. De-
spite remaining uncertainties about the precise value, we
feel confident to rule out that the exact solution of the
model would produce the relatively large stiffness ratios
observed in ultrasonic measurements that had been con-
ducted in the context of non-destructive evaluation on
buried interfaces, and turned out to be twice the Mindlin
result for spherical contacts. This may result from small
(lateral) slip in the contact regions, which would effec-
tively reduce K‖, or may be caused by other effects such
as adhesion or plastic yielding, which was not included
in the theory presented above.
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Appendix A

Using the theory of elasticity (assuming an isotropic
elastic medium for simplicity), one can calculate the dis-
placement field ui on the surface z = 0 in response to the
surface stress distributions σi = σ3i. Let us define the
Fourier transform

ui(q, ω) =
1

(2π)3

∫

d2x dt ui(x, t)e
−i(q·x−ωt),

and similar for σi(q, ω). Here x = (x, y) and q = (qx, qy)
are two-dimensional vectors. In Ref. 9 we have shown
that

ui(q, ω) =Mij(q, ω)σj(q, ω),

or, in matrix form,

u(q, ω) =M(q, ω)σ(q, ω),

where the matrix (see Ref. 9):

M = −
i

ρc2T

(

1

S(q, ω)

[

Q(k, ω)(ẑq− qẑ)

+

(

ω

cT

)2

(pLẑẑ + pT q̂q̂)

]

+
1

pT
ee

)

, (A1)

where q̂ = q/q, e = ẑ × q̂ and where

S =

(

ω2

c2T
− 2q2

)2

+ 4q2pT pL,

Q = 2q2 − ω2/c2T + 2pTpL,

pT = ±

(

ω2

c2T
± iǫ− q2

)1/2

,

pL = ±

(

ω2

c2L
± iǫ− q2

)1/2

,



where the + and − sign refers to ω > 0 and ω < 0, respec-
tively, and where ǫ is an infinitesimal positive number. In
the equations above, ρ, cT and cL are the mass density
and the transverse and longitudinal sound velocities of
the solid, respectively. Note that cT and cL are complex
frequency dependent quantities given by

c2T =
E

2ρ(1 + ν)
,

c2L =
E(1− ν)

ρ(1 + ν)(1 − 2ν)
,

where E(ω) is the complex elastic modulus and ν(ω) the
Poisson ratio.
Here we are interested in low frequencies ω. As ω → 0

Eq. (A1) reduces to

M = −
1

2ρc2T q
[−i(1− 2ν)(ẑq̂ − q̂ẑ) + 2(1− ν) + 2νee] .

It is interesting to note that for an incompressible ma-
terial, ν = 0.5, there is no coupling between the trans-
verse and normal directions, e.g., a normal stress gives
a purely normal displacement and a transverse stress a
purely transverse displacement. Note that

Mzz = −(ρc2T q)
−1(1− ν),

and

Mxx = −(ρc2T q)
−1[1− ν + νcos2φ],

where φ is the angle between x̂ and e.


