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Abstract The o—f transition in quartz is investigated by
molecular dynamics simulations in the constant stress
ensemble. Based on a frequently used two-body inter-
action potential for silica, it is found that anomalies in
the elastic constants are at least in semiquantitative
agreement with experiment despite the fact that no
anomaly in the c¢/a ratio is observed in the simulations.
A finite-size scaling analysis shows that first-order
Landau theory is applicable to the employed model
potential surface. This statement also applies to the
susceptibility below the transition temperature T,
which has not yet been measured experimentally.
Examination of the local order near T, reveals that the
deformation of SiOy4 tetrahedral units is equally large in
the f phase as in the o phase. However, large hysteresis
effects can be observed in the local structure for dis-
tances r > 4 A. The results are in agreement with the
picture of a first-order displacive phase transformation
which is driven by the motion of deformed tetrahedral
SiO4 units. Yet, the fast oscillations of oxygen atoms are
around (time-dependent) positions that do not corre-
spond to the ideal oxygen positions in f-quartz. The
averaged configurations resemble the ideal structure
only if averaged over at least a few nanoseconds.

Key words Molecular dynamics model - Finite-size
effects - Landau Theory

Introduction

The nature of the a«—f transition in quartz and other
silica polymorphs has been the subject of long contro-
versy (Dolino 1990; Heaney et al. 1994; Carpenter et al.
1998; Demuth et al. 1999; Dove et al. 1999). It is often
discussed in terms of the real structure of f-quartz. If
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p-quartz consisted of o) and oy domains, which spatially
and dynamically averaged to the idealized p-quartz
structure, then the phase transformation could be
expected to be an order—disorder transition. Neutron
diffraction (Wright and Lehman 1981), NMR studies
(Spearing et al. 1992), and molecular-dynamics simula-
tions (Tsuneyuki et al. 1990) were interpreted as evi-
dence for this scenario. The majority of recent studies,
however, favors a displacive type of phase transforma-
tion. In this case, the actual structure of the high-tem-
perature phase is interpreted as an ideal pf-quartz
structure, which is distorted by rigid unit modes (RUM)
of relatively stiff tetrahedral SiO4 units. This point of
view explains the existence of soft modes in the « and f
phases (Axe and Shirane 1970; Tezuka et al. 1991;
Carpenter et al. 1998; Dove et al. 1999) and the absence
of symmetry forbidden phonons in the § phase of quartz
(Salje et al. 1992). A refined X-ray study of the f-quartz
structure also favored an ordered structure, although the
oxygen probability density functions (pdf) were seen to
deviate considerably from Gaussians (Kihara 1990). The
non-Gaussian behavior was not interpreted as disorder
but as librational motion of the oxygen atoms around
the Si-Si lines. In the following discussion, we will
mostly disregard the intermediate incommensurate
phase, which has been observed in a relatively small
temperature range of 1.5 K (Dolino 1990).

Recent molecular dynamics simulations (MDS) of
cristobalite and quartz (Gambhir et al. 1999) focused on
the importance of RUMs for the nature of the disorder
in the high-symmetry phase of these silica polymorphs.
In the simulations the stiffness, s, of SiO4 tetrahedra was
increased artificially. For cristobalite, no localization of
the oxygen position on preferred positions was observed
even for large values of s. The large number of RUMs in
cristobalite was made responsible for the disorder in the
high-temperature phase. Unlike fS-cristobalite, the oxy-
gen atoms in f-quartz were seen to localize when s was
increased. When all modes but the RUMs were frozen,
fp-quartz ordered. A subsequent theoretical treatment
(Dove et al. 1999) of the phase transition in quartz in



terms of a so-called coupled ¢* model (Cowley and
Bruce 1980) was nevertheless based upon the idea
that the f phase of quartz can distort to the o phase
through the rotation of RUMs. Semiquantitative
agreement in the transition temperature was found with
experiment and computer simulations (Tsuneyuki et al.
1990) which were based on a potential energy surface
giving some input into the ¢* theory as well.

Another recent study (Carpenter et al. 1998) suc-
cessfully linked a sophisticated Landau theory for first-
order phase transition with excess thermodynamic
properties and elastic constant variations associated
with the o—f phase transition. Unlike the above-men-
tioned ¢* theory, the Landau theory went to high orders
in the order parameter ¢ and included coupling between
stress and ¢. The coefficients of the Landau theory,
however, were not derived from microscopic interaction
potentials and no final statement could be made about
the mechanism that drives the phase transition. While
the ¢* theory and the Landau theory support the idea of
a displacive transition, the nature of the disorder in the f8
phase still remains unclear. In particular, it is unresolved
why, on one hand, one potential energy surface seem-
ingly favors the disorder—order point of view when
employed in MDS (Tsuneyuki et al. 1990) and, on the
other hand, the same potential energy surface supports
the idea of a displacive transition when used as an input
for the ¢* theory.

While molecular dynamics simulations have been
widely used to interpret the phase transition in quartz
and other silica polymorphs, some important issues have
not yet been addressed: (1) Do the model potentials
describe silica well enough to capture the anomalies
associated with the transition? So far, it has been shown
that the temperature dependence of the volume V' and
the order parameter ¢ show good agreement with
experiment (Tsuneyuki et al. 1990). It has nevertheless
never been established that the important anomalies in
the elastic constants and in the ¢/a ratio are reflected
in the simulations. This cannot be taken for granted,
e.g., the pressure dependence of the elastic constants
predicted by simulations and local-density functional
theory (Binggeli and Chelikowsky 1992) differ from
those measured experimentally (Gregoryanz et al. 2000).
(2) There has not yet been a finite-size scaling study
making sure that the phase transformation is first order
as in the real system. Such a study could address the
speculation whether the first-order nature of the transi-
tion arises due merely to the incommensurate instability
that occurs at a temperature which is 1.5 K higher than
the transition into the o-phase. This incommensurate
phase will be strongly suppressed in simulations due to
finite sizes. A proper analysis of the size dependence of
the various moments of ¢ is, furthermore, the only way
to determine properly the location of the transition, e.g.,
it is the only way to determine the phase-transition
temperature for fixed pressure and fixed model potential.
Alternatively, the phase transition can be induced by
varying the stiffness s of tetrahedral SiO4 units in a
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computer simulation and again a size scaling should be
done in order to assess at what value of s the transition
takes place. Calculating expressions of the form (¢) for

finite systems (as frequently done) only helps us to notice

whether or not the simulations are carried out (much)
longer than the longest intrinsic relaxation times which
typically are due to critical slowing down and/or finite
free-energy barriers in the system. (3) No information
exists about to what extent SiO4 units actually do de-
form at the transition. This information is hard to re-
trieve from experiment but easy to obtain from
simulations. More general, there has been little analysis
on how the local structure changes when o-quartz
transforms to f-quartz upon a temperature variation.
Such an analysis is especially interesting in the vicinity of
a first-order transformation, where the ordered phase
and the disordered phase are (meta)stable for the same
thermodynamic parameters.

In this paper, we intend to address these three open
issues. This is done by carrying out simulations at con-
stant temperature and zero external stress. For most
simulations, the BKS potential (van Beest et al. 1990)
was used. The BKS potential has the same functional
form as the TTAM potential (Tsuneyuki et al. 1988)
which has been used among others by Tsuneyuki et al.
(1990) and Gambhir et al. (1999). Typically, BKS gives a
somewhat better agreement with experiment than
TTAM (Tse and Klug 1991), although the differences
are usually quantitative and not qualitative. Of course, it
is never expected that classical potentials between the
ions describe a real material perfectly well: but if the
model reproduces the lattice parameters, elastic con-
stants, etc. within a reasonable approximation, it is safe
to draw qualitative conclusions about properties which
are easily accessible in the simulation, but not as easily
accessible experimentally. There are two reasons why the
calculation of elastic constants is crucial to test whether
the model describes the o—f transition well: (a) Elastic
constants are very sensitive to small changes in the
model potential energy surface and (b) they show dis-
tinct features at the o—f transition in quartz, as discussed
recently and most thoroughly by Carpenter et al. (1998).
Of course, it is also important to reproduce the char-
acteristics of the experimentally observed temperature
dependence of the order parameter. It is well established
that it can be described by the standard Landau
expansion for a first-order transition (Grimm and
Dorner 1975; Bachheimer and Dolino 1975; Banda et al.
1975). It still needs to be shown that this is also true for
the models used in MDS. In order to make predictions
for the thermodynamic limit from computer simulations
at a phase transition, it is necessary to study systemati-
cally the finite-size behavior of various moments of the
order parameter (Binder and Stauffer 1987). Once the
connection between simulation and experiment is made,
it is possible to obtain detailed atomistic information
from the simulation. Radial distribution functions g(r)
and bond angle distribution functions are well-suited
tools to study the instantaneous order in solids. While
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these properties are easily accessible in simulations, this
is not the case in experiments, where (generalized) radial
distribution functions typically have smaller resolution
than data relating to the average structure. Moreover,
the simulations allow us to measure g(r) for individual
chemical species separately, e.g., gsisi(7), gsio(r), and
gsio(r). Tt is difficult to extract this information from
experiment if, for example gs;s; () and goo(r) overlap in
the region of interest.

The molecular dynamics model

Classical molecular dynamics are employed in the constant stress
ensemble using the Rahman—Parrinello method (Parrinello and
Rahman 1980) for maintaining zero external stress at constant
temperature. Elastic constants are calculated exploiting the relation
between strain fluctuations and elastic constants (Parrinello and
Rahman 1982). The so-called BKS potential energy surface (van
Beest et al. 1990) is employed for all simulations, with the slight
modification that the short-range (non-Coulombic) interactions are
cut off at a distance r, = 9.5 A.

In order to speed up calculations, interactions and forces were
tabulated on a grid with a resolution of 5 x 10~* A. No significant
differences between simulations using the tabulated and the non-
tabulated interactions could be detected. The geometry of our
default system containing N = 1080 atoms is orthorhombic with
box lengths of 4 =25.0 A, B=26.0 A, and C =22.1 A with 4, B,
C, parallel to the crystallographic axes a, b, ¢, respectively. Some-
times, system sizes N = 2160 and N = 4320 are considered as well,
with 4 =300 A, B=347A, C=276A and 4 =400 A, B=
43.3 A, C =33.2 A, respectively.

In order to obtain information about the order in the system, a
global order parameter ¢ is defined that measures the rotation of
(distorted) tetrahedra about the [100] axis, such that

1 &
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where the sum over i* is confined to sites which are equivalent to
the sites marked by an arrow in Fig. 9. ¢} denotes the (averaged)
deviation of the orientation in the y—z plane of the (four) Si-O
bond(s) from the value in the ideal f-quartz structure.

Thermal expansion and elastic properties

The first check of our model consists of calculating the temperature
dependence of the volume. The temperature is lowered in incre-
ments of mostly AT = 150 K or AT = 50 K near the phase tran-
sition. One run typically consists of 200 x 103> MD steps adding up
to a net time of 200 ps. Correlation times for the N = 1080 system
do not exceed 5 ps so that one is on the safe side if the first 10 ps
are discarded for equilibration. The results are shown in Fig. 1.
Inserted are quantum-mechanical calculations based on path-inte-
gral molecular dynamics, which are described in detail elsewhere
(Miiser 2001). The relative difference between simulation (classical
MD) and experiment is only about 3%, as could be expected from
previous studies employing the BKS potential (van Beest et al.
1990; Tse and Klug 1991). This is a little less than half of the 7%
difference between the TTAM potential used in Tsuneyuki et al.
(1990) and experiment. It is interesting to note that even if the
model potential is perfect, a real agreement between experiment
and simulation down to low temperatures can only be expected if
the quantum mechanical nature of the ionic motion is taken into
account, e.g., only quantum-mechanical calculations result in a
vanishing volume expansion coefficient near absolute zero. In the
vicinity of the phase transition, such quantum effects do not play a
role and will not be considered in the following.
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Fig. 1 Volume V' per unit cell of quartz as a function of temperature
T. Classical molecular dynamics simulation, path integral molecular
dynamics (quantum-mechanical calculations) and experimental data
(Carpenter et al. 1998) are shown
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Fig. 2 c¢/a ratio of quartz as a function of temperature 7. Two
different system sizes are considered. Solid lines correspond to
experimental data. (Carpenter et al. 1998)

It is striking that the volume jump seen in the simulations is
much less pronounced than in experiment. This discrepancy can be
understood if the ¢/a ratio is calculated. Unlike experiment, no
discontinuity in the ¢/a ratio is observed in the simulations as
shown in Fig. 2. By considering different system sizes, it is possible
to rule out finite-size effects as the reason for the missing discon-
tinuity in the simulation. The same discrepancy between simulation
and experiment is obtained when the TTAM potential is used in-
stead of the BKS potential, which has been checked for some
representative data points. Unfortunately, this observation has not
yet been made public in other MDS studies of this transition
known to us. Since both the TTAM potential and the BKS
potential are two-body potentials, one may speculate that the
qualitative discrepancy between simulations and experiments could
be remedied if three-body forces were employed. Despite the
qualitative difference in the ¢/a behavior, a meaningful interpre-
tation of experimental results with the help of simulations can still
be possible. The main effect is a renormalization of the effective
coefficients describing the free energy as a function of ¢.

Despite the fact that computer simulation results for elastic
constants at nonzero temperature are plagued with large statistical



uncertainties, qualitative agreement between calculated and
experimentally observed elastic constants can be found, as shown
in Fig. 3. In particular, the strong temperature dependences near
T, are similar, although the transition temperatures 7;, differ by
about 100 K between simulation (N = 1080) and experiment. It is
interesting to note that the elastic constants at 7 = 0 K correspond
very closely to the experimental data at 7 =300 K while the
agreement is less good for the 7= 300 K simulations. This is, of
course, a consequence of the way in which the model potential
parameters were determined: ab initio data along with elastic
modulii measured experimentally at 7 = 300 K were used to con-
struct a potential energy surface such that the calculated classical
zero-temperature elastic constants agreed with the finite-tempera-
ture experimental data. Nonetheless, the experimental features
are well reflected, e.g., C; and Ci; cross between high and low
temperatures similar to Cy4 and Cgg (both shown in Fig. 3a), while
Cy3 and Cy4 do not cross. For symmetry reasons, Cj4 vanishes in
p-quartz. Thus, the slightly nonzero values for 7' > T;; shown in
Fig. 3b reflect the statistical uncertainties of our calculations.

Finite-size effects and comparison to Landau theory

As a next step, we are concerned with the characteristics related to
the order parameter. First, it is necessary to calculate the transition
temperature, Ti,. It is difficult to locate T;; precisely by just calcu-
lating the expectation value of the (absolute value) of ¢, because all
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Fig. 3a, b Elastic constants as a function of temperature. Solid lines
show experimental data accumulated in Carpenter et al. (1998).
Symbols show simulation results. a Cy;, Cs3, Cas, Ce6 b C12, C13, Cia
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thermodynamic properties behave smoothly for finite-size systems
near the phase transition temperature. In order to determine the
transition temperature Ty, nevertheless accurately, use is made of
the fourth order cumulant (Binder 1981), which is defined in the
case of a one-component order parameter as

1 N
ga(N,T) =53 — ) 2
D=3 ( ()% @

where (¢*) » denotes the thermal average of the £’th moment of the
order parameter for an N-particle system. It has been shown
(Vollmayr et al. 1993) that g4(N,T), aside from small correction
terms, has a size-independent crossing point g; at a first-order phase
transition. For the calculation of g}, the geometry of the simulation
cell is supposed to be constant. It is difficult to satisfy this
requirement without increasing the particle number N considerably
for the quartz structure if the cell geometries are approximately
cubic. The smallest box length should exceed twice the cutoff
radius, which limits us to N > 1080. While it is still possible to
equilibrate system sizes of the order N = 2000 near the phase
transition, this becomes extremely difficult for N ~ 4000. Note that
the equilibration time increases algebraically with N at a second-
order and exponentially with N at a first-order transition point.

The expectation values of the cumulants are shown in Fig. 4.
Due to the fact that the cell geometry slightly differs between the
N =1080 and the N =2160 system, we cannot expect perfect
crossing of the two different systems at 7;,. However, comparison
with the value where the cumulants cross in a Landau description
of this transition (see below for more details) makes it plausible
that the crossing of the cumulants shown in Fig. 4 is indeed
meaningful. Within the statistical error bars, it is possible to locate
the transition at Ti, &~ 740 K with an uncertainty of about 5 K for
both system sizes.

In order to describe the transition within a Landau theory with
a single scalar order parameter, we adopt the form (Carpenter et al.
1998; Bachheimer and Dolino 1975; Banda et al. 1975; Grimm and
Dorner 1975)

F(6.7) = SalT T8 + 3 bg* + ed 0
where F is the free energy per particle as a function of temperature
T and order parameter ¢ while a, b, ¢, and T, are (free) parameters.
In order to find those parameters that are appropriate to describe
our simulation results, we need to generalize the approach to finite
system sizes. This is done by evaluating numerically expectation
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Fig. 4 Fourth-order cumulant g4 as a function of temperature 7 for
two different system sizes. The value g; at which crossing of the
cumulants is predicted within Landau theory is indicated by a straight
line. Broken lines are drawn to guide the eye
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values of the n’th power of ¢ using (f = 1/kzT) in the following
way:

_ 75 dod” exp{~BNF(9,T)}
[ dpexp{—pNF($, T)}

The parameters a, b, ¢, and T, were determined by fitting the
temperature dependence of the order parameter (|¢|) for the
N = 1080 system. The fit is shown in Fig. 5 along with similar data
for N = 2160. We also included data in which the thermodynamic
limit was taken. It can be seen that the size effect in (|¢|) is rea-
sonably described by Landau theory.

Experimentally, susceptibilities y have been reported only above
Ty (Carpenter et al. 1998). Within linear response theory, y is the
proportionality factor between order parameter ¢ and an external
field that couples to ¢; for example, in the case of a magnetic
response (M) = yh, with (M) the magnetization (order parameter)
and & the magnetic field. y can also be determined from thermal
equilibrium fluctuations of ¢. Experimentally, the measurement of
7 associated with the order parameter describing the o—f transition
in quartz can only be done indirectly.

Here, we try to fill the gap for T < Ti, and check whether the
Landau description is also appropriate for the calculation of y. For
finite systems, y can be defined as:

:£X{<¢2> for g4 < g
kT = (%) — (|p])* for g4 > g;

This definition of yy gives the proper value of y in the thermody-
namical limit N — oo. Results are shown in Fig. 6, where predic-
tions from Landau theory are inserted as well. Again, the
agreement is reasonable but less satisfying than for the order pa-
rameter itself. In particular, at 7 = 0 K (not included in the graph),
the susceptibilities are twice as large in Landau theory compared to
the simulation. Of course, Landau theory cannot be expected to
hold down to 7 = 0 without terms of still higher order. Near the
transition, however, the agreement is fairly reasonable. The good
agreement between the N = 2160 data and the Landau theory for
the thermodynamic limit at temperatures 7 < 725 can be explained
by the observation that no crossing of the free-energy barrier to the
disordered state took place in the N = 2160 system. These transi-
tions are extremely infrequent, but their effect on y is very large.
Overall, coefficients similar to those from experimental data are
drawn from the simulations. Most importantly, the parameter b is
found to be slightly negative, 7. = 715 K is obtained about 115 K
smaller than in experiment, and 7,7, ~ 20 K is found about twice
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Fig. 5 Order parameter (|¢|) as a function of temperature. The /ines
reflect fits according to Landau theory, whose free parameters were
adjusted to the N = 1080 curve. The solid line corresponds to the
thermodynamic limit in Landau theory; broken lines represent finite-
size Landau theory

as large as in real experiment (Carpenter et al. 1998). Nonetheless,
the global picture of experiment is certainly reproduced.

Local structure in quartz near the phase transformation

Now, where we have established that the transition is
reflected well by our model system, we want to gain
insight into the local structure, in particular of the high-
temperature phase. In order to do this, we calculate the
radial distribution functions gsisi(#), ¢gsio(r), and
goo(r). As is well known, molecular dynamics simula-
tions can obtain all these three radial distribution
functions individually in a straightforward way and
with very good accuracy, and thus complement exper-
iments where this information is not easily available.
While the peaks in g(r) related to neighboring Si-Si, Si—
O, or O-0O evolve rather smoothly as the temperature is
lowered, many other peaks show abrupt changes as T
becomes smaller than 7., which was found to be
T, = 740 £ 5 K in our model system. Some effects in
g(r) are shown exemplarily for some selected areas of
the radial distribution functions in Fig. 7. A description
of the radial distribution functions over a much wider
range of distances at two temperatures far off from 7;,
is given in Fig. 8.

The local structures in f-quartz can certainly not
be interpreted as (temperature) broadened o-quartz
domains, e.g., there are clear double peaks in ggis; at
r~5.6 A and gsio at r = 6.25 A in the phase that are
absent in the f phase. The various ¢(r)s do not change
significantly with temperature above 7;;, but make sud-
den changes near and below T;;. The (double) peaks in
g(r) become increasingly more pronounced as the tem-
perature is lowered further below 7i.. It is important to
note that there are strong hysteresis effects in g(r) for
large systems. The configurations in Fig. 7at 7' = 750 K
have been equilibrated for 3000 MD steps before the
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Fig. 6 Inverse susceptibility y~' (per atom) as a function of
temperature 7 for two different system sizes. The /ines reflect Landau
theory
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Fig. 7a—d Details of the radial distribution function Si-Si a, Si-O b,
and O-O c for system size N = 4320 at various temperatures. d is
same as a, but from configurations that have been quenched from
high-temperature phase to 10 K

radial distribution functions were averaged over
2000 MD steps. The initial configurations were equili-
brated configurations from 25 K below or above 750 K.
Smaller systems, e.g., N = 1080 systems, relax consider-
ably at T = 750 K within the above-mentioned equili-
bration time period. It is striking that no double peak in
the SiSi radial distribution function is observed when
T =750 K configurations are quenched down to
T =10 K (Fig. 7d). Quenching is realized by suddenly
dropping the temperature and choosing much larger
couplings to the thermostat than usual. The quenching
simulations show that there are no o; and a, domains
35 K above T,.

While this paper was under review, an experimental
study was published with similar conclusions: Tucker
et al. (2000) deduced the nearest-neighbor Si—Si—Si angle
distribution from the so-called total pair correlation
function 7'(r). They found that two peaks of the Si—Si-Si
angle distribution coalesced upon heating at the o—p8
phase transition. This finding corresponds to the
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Fig. 8a, b Radial distribution functions for 3.5 A<r<100A at
temperatures 7 =875 Kaand T=625K b

behavior shown in Fig. 7a and d. Our simulations sug-
gest additionally that the splitting is even larger for
nearest-neighbor O-O-O angle distributions, see
Fig. 7c.
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Fig. 9 View along the [1 0 0] axis in a-quartz at 7' = 80 K (/eft) and
p-quartz at T = 1050 K (right). Dark and light atoms represent
oxygen and silicon atoms, respectively. Both snapshots belong to
identical subvolumes of the simulation cell. The [0 0 1] axis goes
from the left to the right. The rotation angles about the [1 0 0] axis
of the units marked by an arrow are used to define the order
parameter

It is instructive to visualize the changes of the struc-
ture in quartz. This is done in Fig. 9, where a snapshot
along the [1 0 0] axis is taken for a-quartz at 7 = 80 K
and for f-quartz at T = 1050 K. The rotation of tetra-
hedra about the [1 0 0] axis can be seen particularly well
for the positions that are equivalent to those sites
marked by an arrow. In the f-quartz phase, no o; or oy
domains become apparent. This statement also holds for
most configurations obtained near but above 7. For
large system sizes near Ty, it is actually possible to
observe jumps of the entire system between configura-
tions that entirely resemble the a-quartz structure and
those that resemble f-quartz.

Nevertheless, even in the high-temperature phase, the
local geometry is seldomly close to the f-quartz struc-
ture. By averaging the structure over different time
scales, we observe the following phenomena at 7 =
900 K (160 K above ‘“our” phase transition tempera-
ture): Snapshots of the configuration look very much like
the right-hand side of Fig. 9. When averaged over about
300 MDS, which corresponds to a time interval of about
0.4 ns, the local a-quartz order parameter is basically
identical to zero, but the average positions of the oxygens
have not yet relaxed onto their ideal positions! Hence,
the ideal f-quartz positions do not correspond to the
positions around which the oxygen atoms actually
fluctuate. When the configurations were averaged over
about 4 ns, the averaged oxygen positions were close to
the ideal oxygen positions of -quartz.

An indication for the fluctuations about the average
positions being anharmonic is obtained from the bond-
length distribution function. For p-cristobalite, it has
been shown experimentally that the real bond-length
distribution function peaks at a radius that is distinctly
larger than the bond length deduced from the average
structure (Dove et al. 1997). This effect is less strong in
p-quartz, as shown in Fig. 10. Yet, it is clear that the
tendencies in fS-cristobalite and f-quartz are similar: the
Si—O bond lengths deduced from the average structures
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Fig. 10 Probabilty p(b) to find an oxygen atom a distance b away
from a silicon atom. f-quartz and f-cristobalite simulations were
carried out at 7 = 1000 K, those for a-quartz at 500 K. The straight
lines reflect the location of the Si—O bond lengths as deduced from the
average structure

are located at a position that is markedly smaller than
the position where the bond-length distribution peaks.
The bond lengths from the average positions shown in
Fig. 10 are deduced from our simulation. The values we
obtain for f-cristobalite agree well with those suggested
by Dove et al. (1997). They state that the bond length of
the average position is about 1.55 A, while their bond
length distribution peaks at 1.61-1.62 A. There is also
qualitative agreement of our simulations with experi-
mental data on f-quartz: Kihara (1990) reported a real
SiO bond length of 1.62 A, which is about 0.04 A larger
than the spectroscopic bond length of 1.588 A, while our
simulations suggest a change of only 0.02 A. A recent
neutron diffraction study confirms Kihara’s results quite
accurately (Tucker et al. 2000).

The delocalization of the oxygen atoms is also illus-
trated in Fig. 11, where the probability p(r) to find an
atom a distance » away from its average position (with
respect to the center of mass of the simulation box)
divided by 7 is shown as a function of ». For the Si
atoms, a single Gaussian is obtained, while the O atoms
apparently have several preferred sites, which is obvious
from the anomaly in the p(r)/r? curve. These results
strongly support the X-ray study by Kihara (1990) in
which the oxygen pdf’s were conjectured to deviate
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Fig. 11 Probabilty p(r) to find an atom a distance » away from its
average position (with respect to the center of mass of the simulation
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considerably from Gaussians. Kihara (1990) examined
the pdf’s in further detail: the largest principal axis of the
ellipsoid representing the pdf did not coincide with the
vector connecting the oy and o, positions but deviated
toward the vector that is normal to the Si—-O-Si plane.
This observation is also fully supported by our simula-
tions. The analysis of pdf’s alone, however, does not
enable us to exclude the presence of small a-quartz
domains in f-quartz. This is why we concentrate on the
Si—Si radial distribution function gsg;si(r), which is dis-
cussed above.

Further evidence for the claim that the ideal f-quartz
structure is not a typical “reference” structure of the f
phase can be obtained by quenching the system from
T > Ty to extremely small temperatures. A system is
quenched by suddenly dropping the temperature to
T = 10 K and increasing the coupling to the thermostat
by a factor of 10. After a considerable amount of relax-
ation, the local order parameters still remain close to zero,
but the oxygen atoms do not relax to their ideal positions.

The local quantity that maybe differs most dramati-
cally between the average (spectroscopic) structure and
the real structure is the SiOSi bond angle, Jsjosi. The
average value of Jsjos; is close to the value that is ob-
tained if S-quartz is quenched to small temperatures, but
it is strikingly different from ¥gos; obtained from the
average/spectroscopic atomic positions. (Jsios;) is shown
as a function of temperature in Fig. 12. Note that the
value of ¥s;os; evaluated for the average or ideal struc-
ture is significantly larger, namely 19(3%2;) =159.2 for
T = 1000 K as compared to {Jsijosi) = 154.6. This result
is again in qualitative agreement with the experimental
results by Kihara (1990), who suggested a value of
HU8) — 153.4 as compared to (Jsios;) = 144.2. We wish
to note that we do not observe a dramatic discontinuity
in (Jsjosi) at the transition in the simulations.
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Fig. 12 Average Si-O-Si bond angle (dsiosi) as a function of
temperature 7. The cross indicates a simulation where an equilibrated
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Fig. 13 Bond angle distribution function for an N = 4192 system at
T =750 K with different thermal histories. Filled symbols refer to
heating simulations while open symbols refer to cooling simulations.
Both systems were equilibrated for 3000 MD steps before the
distribution was accumulated

It is interesting to note that the bond angle distribu-
tions on either side of the phase transition are similar,
although a small sudden change in the ¥g;og; distribution
can be observed. This is shown in Fig. 13. Again,
we consider the N = 4192 system, which can be held
stable at T = 750 K in either phase for a sufficiently long
time to analyze structural properties in detail. The dis-
tribution of the bond angle Josio, however, is nearly
identical for both symmetries. This observation indicates
that the SiO4 units basically do not distort at the tran-
sition. Consequently, SiO4 units are already distorted in
the f-quartz phase. This statement also holds for tem-
peratures far away from Ti;. A comparison of our data
with the data of Kihara (1990, Table 6) cannot be made
here, as we have not recorded O-Si—O bond angles
individually.
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The discontinuities in the Si—0 bond length and the
average O-Si—O bond angles show much smaller effects
near the o—f transition than Js;os;. We show exemplarily
the temperature dependence of the average O-Si-O
bond angle (Josio) as well as the second moment of the
(6920) in Fig. 14.

The observation that the local structure in f-quartz is
not similar to the ideal f-quartz structure has serious
implications for the calculation of bulk properties, in
particular, however, for the elastic modulii in the f
phase: in the (NVT) ensemble, correct elastic constants
are obtained by taking the second derivative of the
expectation value of the potential energy with respect to
the strain tensor around the actual, thermal positions
minus a term related to fluctuations of the stress plus
small corrections due to the ideal gas behavior (Squire
et al. 1969). Hence, clastic constants as well as all other
thermomechanical data evaluated around ideal -quartz
positions are not necessarily related to the properties
which one would obtain if thermal fluctuations were
taken into account properly, no matter how sophisti-
cated the level of the ab initio treatment. Hence, the large
overestimation of elastic modulii in the f-phase obtained
by density functional theory methods (Demuth et al.
1999). Similarly, the overestimation of 7;, by (Gambhir
et al. 1999) can be related to this observation: the
potential energy of the f§ phase is always overestimated
with respect to the one of the « phase. This, of course,
leads to an overestimation of 7i,. Similar statements can
be expected to hold for other properties and other crys-
talline high-temperature phases as well.

Summary

This molecular dynamics study shows to what extent
two-body potentials like the BKS potential can be used
to obtain qualitative information about the o—f phase

transition in quartz. The transition temperature 7;, as
well as the anomalies in the elastic constants can be
reproduced in good agreement with experimental data.
Like experimental data, the temperature dependence of
the order parameter and the susceptibility can be
interpreted in terms of a Landau theory for (weak)
first-order transitions. It has been shown that also the
susceptibilities below T7i, are in agreement with the
Landau description, which has not yet been tested
experimentally. However, the temperature regime in
which Landau theory predicts the susceptibility accu-
rately is considerably smaller than in the high-temper-
ature phase. There is a qualitative difference between
simulation and experiment, which is the absence of the
anomaly in the ¢/a ratio at T;; in the simulations. This
could be due to the absence of three-body interactions
in the BKS potential.

Thorough analysis of the local order near T, shows
that SiO4 units are already considerably deformed in
the f phase and do not deform significantly any further
at the phase transition. The main effect is a (small)
sudden change in the SiOSi bond angle distribution.
This change can be made responsible for the large
hysteresis effects observed in the local structure. In the f§
phase, we could identify two relaxation phenomena: (1)
relaxation of the orientation of deformed tetrahedra
and (2) relaxation of the oxygen atoms onto their ideal
f-quartz positions. Process (1) takes place on relatively
short time scales, e.g., 0.4 ns at 7 = T;, + 140 K, while
process (2) is much slower. Due to process (1), the
previous statement by Tsuneyuki et al. (1990) that
p-quartz consists of small o; and o, domains which
spatially and dynamically average to the [ quartz
structure domains could be ruled out. An important
consequence of the relaxation process (2) is that the
local f-quartz structure does not fluctuate around the
ideal p-quartz structure. The oxygen atoms fluctuate
around time-dependent equilibrium positions that
average to the ideal fp-quartz structure on time scales
longer than 1 ns. This picture is in agreement with the
observation of non-Gaussian oxygen probability density
functions suggested by Kihara (1990). Unfortunately,
ab initio studies and theoretical model building of high
quartz or other high-silica polymorphs often ignore this
effect, resulting in uncontrolled approximations for the
high-quartz phase.

While this paper was in the reviewing process, Tucker
et al. (2000) published a neutron scattering study prob-
ing simultaneously the local and the long-range struc-
tural order. Their study agrees well with our simulations,
namely, the phase transition invokes a concurrent
change in the long- and the short-range structural order.
Thus, the disorder in f-quartz is unequivocally unrelated
to a (hypothetical) coexistence of finite «; and o
domains in f-quartz above Ti;. The study by Kihara
(1990) gave early and important hints to rule out the
existence of such domains in ff-quartz, the possibility of
a weakly disordered model was yet still mentioned in the
concluding remarks.
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